JPS5984448A - Resin sealed type semiconductor device and manufacture thereof - Google Patents

Resin sealed type semiconductor device and manufacture thereof

Info

Publication number
JPS5984448A
JPS5984448A JP57194547A JP19454782A JPS5984448A JP S5984448 A JPS5984448 A JP S5984448A JP 57194547 A JP57194547 A JP 57194547A JP 19454782 A JP19454782 A JP 19454782A JP S5984448 A JPS5984448 A JP S5984448A
Authority
JP
Japan
Prior art keywords
resin
film
semiconductor
integrated circuit
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57194547A
Other languages
Japanese (ja)
Other versions
JPH049381B2 (en
Inventor
Ken Ogura
謙 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP57194547A priority Critical patent/JPS5984448A/en
Publication of JPS5984448A publication Critical patent/JPS5984448A/en
Publication of JPH049381B2 publication Critical patent/JPH049381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Non-Volatile Memory (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Read Only Memory (AREA)

Abstract

PURPOSE:To enable the resin sealing of a P-ROM type IC which can be erased by a method wherein resin sealing is performed so as to surround a semiconductor chip by leaving an ultraviolet ray incidence surface of the semiconductor chip having a transparent thermosetting resin film. CONSTITUTION:The P-ROM type IC elements 12 which can be erased are formed on a semiconductor substrate 11. Next, polyimide resin 13 of ultraviolet ray transmitting type is applied on the substrate 11, thus forming a polyimide film 13 by heating, and the film 13 is etched with resist patterns 14 as a mask. Then, the patterns 14 are removed. The substrate 11 is divided into element 12 chips, i.e., semiconductor chips 16 by scribing. This chip 16 is mounted on a mounting material 17. Thereafter, lead chips 18 and the bonding pad part of the chip 16 are connected by wires 19. Except an ultraviolet ray incidence hole 21 at the part of a film 13 of the chip 16, sealing is performed by means of a sealing resin 20. Thereby, mold packaging is enabled.

Description

【発明の詳細な説明】 この発明は、小型にして安価で量産性の高い樹脂封止型
半導体装置およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resin-sealed semiconductor device that is small, inexpensive, and highly mass-producible, and a method for manufacturing the same.

集積回路素子を収容する74ツケージには種々の形態が
ある。すなわち、キャンパッケージ、デュアルインライ
ンパッケージ、フラット/ゼッヶージ、アキシャル♂ン
パッケージ、リードレスチップキャリヤijツケージな
どである。
There are various forms of 74 cages that house integrated circuit devices. That is, they include can packages, dual in-line packages, flat/square packages, axial female packages, and leadless chip carrier packages.

これらのパッケージの中で、最も大量に用いられている
ものは、デュアルインラインパッケージ(以下、DIP
と云う)である、このDIPは使用材料により、セラミ
ックDIP、CER−DIP。
Among these packages, the one most widely used is the dual inline package (hereinafter referred to as DIP).
Depending on the material used, this DIP can be ceramic DIP or CER-DIP.

プラスチックDIP (モールドDIP)に分けられる
Divided into plastic DIP (mold DIP).

これらのうち、特に、量産性や価格の面から、プラスチ
ックDIPがすぐれておシ、最も大量に使用されている
。したがって、集積回路素子はその種類によらず、グラ
スチックDIPに収容することが望まれている。
Among these, plastic DIP is particularly superior in terms of mass production and cost, and is used in the largest quantity. Therefore, regardless of the type of integrated circuit element, it is desired to house it in a plastic DIP.

しかしながら、集積回路素子の特性などにより、プラス
チックDIPに収容するに適さない素子がある。たとえ
ば、続出専用メモリの中で書込み、消去可能なEPRO
M (Erasable ProgramImable
Read 0nly Memor)’)は多品種少量生
産的な装置や製品の記憶素子として最適であシ、新製品
の開発や設計および仕様の変更に対し、従来とは異なる
融通性を与えている。
However, due to the characteristics of integrated circuit elements, some elements are not suitable for being accommodated in a plastic DIP. For example, an EPRO that can be written and erased in a dedicated memory
M (Erasable Program Imable
The ReadOnly Memory) is ideal as a memory element for devices and products produced in high-mix, low-volume production, and provides flexibility that is different from the conventional technology for the development of new products and changes in design and specifications.

近年EPROMの需要は増加の一途をたど9、今や民生
用、産業用を問わず、多くの製品に使われているが、E
FROMにおいては、メモリの消去を行うに、フローテ
ィングゲートに残された負電荷を43 eV以上の紫外
線(2537^= 4.9 eV)で励起し、Si基板
に放電させて行う。
Demand for EPROMs has been increasing in recent years9, and they are now used in many products, both consumer and industrial.
In FROM, memory is erased by exciting the negative charges left on the floating gate with ultraviolet rays of 43 eV or more (2537 = 4.9 eV) and discharging them onto the Si substrate.

さらに詳細に記述すると、EPROMのメモリセル構造
および記憶方法を説明する。メモリセルは基本的ニN゛
チャンネルのMOS)ランジスタ構造であシ、これに電
荷蓄積用の7四−ティングr−トが付加されている。初
期の状態では、フローテ(7グ)r”−トに電荷はなく
、スレックヨールト電圧は小さい。
More specifically, the memory cell structure and storage method of EPROM will be described. The memory cell has a basic two-channel MOS (MOS) transistor structure, to which is added a 74-ring gate for charge storage. In the initial state, there is no charge on the float (7g) r''-to, and the Sleckjord voltage is small.

書込み時はドレインとコントロールゲートに高電圧をか
け、アンパランシュ降伏時に発生させたホットエレクト
ロンをフローティングダートにチャージさせる。このフ
ローティングゲートは絶縁されておシ、電荷は電源を切
っても残っておシ、記憶内容が保持されている。
During writing, a high voltage is applied to the drain and control gate to charge the floating darts with hot electrons generated during unparanche breakdown. This floating gate is insulated, so the charge remains even when the power is turned off, and the memory contents are retained.

このとき、MOSトランジスタはフローティングクー・
−トにチャージされた負電荷によシ、そのID8− V
G8曲線が右にシフトする。読出し時には、ダート電圧
(VO2)を適当な値に固定し、電流(ID8 )の有
無をセンスアップで判定し、情報の「1」または「0」
を出力する。
At this time, the MOS transistor is a floating cooler.
- Due to the negative charge charged to the ID8-V
The G8 curve shifts to the right. When reading, the dart voltage (VO2) is fixed at an appropriate value, the presence or absence of current (ID8) is determined by sense-up, and the information is set as "1" or "0".
Output.

消去は前述したように、紫外線を照射することニヨシ、
フローティングダートに残された負電荷をSi基板に放
′電させて行う。この結果、MOSトラン、ジスタのI
ns −VGs曲線は左にシフトし、書込み前の状態に
戻る。
As mentioned above, erasing is done by irradiating with ultraviolet light.
This is done by discharging the negative charges left on the floating darts onto the Si substrate. As a result, the I of the MOS transistor and transistor
The ns-VGs curve shifts to the left and returns to the state before writing.

ここで、従来のEFROMのノ’?ツケージを第1図(
a)、第1図(b)に示す。第1図(a)は斜視図であ
り、第1図(b)は第1図(a)の断面図である。この
第1図(a)、第1図(b)の両図において、前述した
ように、EFROMは紫外線を照射する必要上、パッケ
ージのベレットマウント部2の封止用のキャップに紫外
線透過用部材1であるサファイヤまたは透明アルミナ製
υッドを低融点ガラスなどの接着剤で貼ジ付けたり、あ
るいは紫外線透過ガラス(UVガラス)をキャップに埋
め込んだりしている。
Here, what about conventional EFROM? Figure 1 (
a) and shown in FIG. 1(b). FIG. 1(a) is a perspective view, and FIG. 1(b) is a sectional view of FIG. 1(a). In both FIG. 1(a) and FIG. 1(b), as mentioned above, since the EFROM needs to be irradiated with ultraviolet rays, an ultraviolet transmitting member is attached to the sealing cap of the bullet mount portion 2 of the package. 1, a sapphire or transparent alumina υ pad is pasted with an adhesive such as low-melting glass, or an ultraviolet-transparent glass (UV glass) is embedded in the cap.

ところが、従来構造においては、リッドの貼付けや、埋
込みのために特別な工程が必要であり、工数が多くなる
他に、リッド貼付は部の機械的および熱的衝撃に弱く、
半導体装置の信頼性低下の原因となるおそれがあるなど
の欠点がある。
However, in the conventional structure, a special process is required for attaching and embedding the lid, which not only increases the number of man-hours but also makes the lid attaching vulnerable to mechanical and thermal shocks.
There are drawbacks such as the possibility of causing a decrease in reliability of the semiconductor device.

したがって、これらを解決するために、封止用のキャッ
プ自体を紫外線透過材料で形成する試みがある。しかし
ながら、この方法も、グラスチックDIP+75形態に
はなシ得ず、量産性、コストの面において不十分である
Therefore, in order to solve these problems, attempts have been made to form the sealing cap itself from an ultraviolet-transparent material. However, this method is also incomparable to the glass DIP+75 form, and is insufficient in terms of mass production and cost.

この発明は、上記従来の欠点を解消するためになされた
もので、低コスト、量産性にすぐれ、・しかも信頼性も
すぐれ、EPROMのモールド形パッケージに利用する
ことのできる樹脂封止型半導体装置およびその製造方法
を提供することを目的とする。
This invention was made to eliminate the above-mentioned conventional drawbacks, and is a resin-sealed semiconductor device that is low cost, excellent in mass production, and has excellent reliability, and can be used in a molded package of EPROM. The purpose is to provide a method for producing the same.

以下、この発明の樹脂封止型半導体装置およびその製造
方法の実施例について図面に基づき説明するが、具体的
実施例の説明に先立ち、まず、この発明の特徴について
概述することにする。
Embodiments of a resin-sealed semiconductor device and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.Prior to describing specific embodiments, the features of the present invention will first be outlined.

この発明の樹脂封止型半導体装置の製造方法の特徴は紫
外線消去形EPROMのノ+ツケージ方法において、従
来のパッケージのごとく、透明アルミナあるいは紫外線
透過ガラスあるいは透明グラスチックのキップをパッケ
ージに接着させる構造とは異なり、集積回路素子製造プ
ロセスにおいて、ウェハの状態、すなわら、素子を分割
しない状態において、紫外線透過形態硬化性樹脂浴液を
ウェハに塗浄し、加熱工程を経た後、熱硬化性樹脂膜を
形成し、周知のホトリソグラフィにより、谷素子のメモ
リ部の所望・ぞターン以外、を除去するようにしている
The feature of the method for manufacturing a resin-sealed semiconductor device of the present invention is that in the packaging method of an ultraviolet erasable EPROM, a cap made of transparent alumina, ultraviolet transmitting glass, or transparent glass is bonded to the package, as in the case of conventional packages. In contrast, in the integrated circuit device manufacturing process, an ultraviolet-transparent curable resin bath liquid is applied to the wafer in the wafer state, that is, in a state where the devices are not divided, and after a heating process, a thermosetting resin bath liquid is applied to the wafer. A resin film is formed, and the memory portion of the valley element except for the desired turns is removed using well-known photolithography.

したがって、スクライプラインあるいはポンプイングツ
4ツド部などは何等後工程であるワイヤデンディングあ
るいはスクライプラインなどへの影響はない。
Therefore, the scribe line or the pumping tube 4 joint portion has no effect on subsequent processes such as wire endings or scribe lines.

その後、ウエノ・を後処理工程であるスクライブあるい
はワイヤボンディングなど、組立て工程を経て、最後に
モールド樹脂材、たとえは、エポキシ樹脂により、前記
熱硬化性樹脂膜の所望部以外を除いて、樹脂封止するこ
とによシ、これまで困難であったEPROMのモールド
形パッケージヲ可能とするものである。これによシ、素
子の量産性、コストおよび信頼性が大幅に向上すると云
う利点を有するものである。
After that, the urethane film goes through an assembly process such as scribing or wire bonding, which is a post-processing process, and is finally resin-sealed with a molding resin material, for example, an epoxy resin, except for the desired parts of the thermosetting resin film. By stopping the process, it becomes possible to create an EPROM mold package, which has been difficult up to now. This has the advantage that the mass productivity, cost, and reliability of the device can be greatly improved.

次に、この発明の樹脂封止型半導体装置の製造方法の=
実施例について図面に基づき説明する。
Next, = of the method for manufacturing a resin-sealed semiconductor device of the present invention
Examples will be described based on the drawings.

第2図(a)ないし第2図(g)はその−実施例の工程
説明図である。。まず、第2図(a)に示すように、半
導体基板11上にEPROM型集積回路素子12を形成
する。
FIG. 2(a) to FIG. 2(g) are process explanatory diagrams of this embodiment. . First, as shown in FIG. 2(a), an EPROM type integrated circuit element 12 is formed on a semiconductor substrate 11.

次いで、半導体塞板11上に、紫外線透過形のポリイミ
ド樹脂前駆体溶液PI2566 (商品名rユポン社(
米国)M品名)を塗布し、その後、100°(!IH,
200°QIHおよび350°CIHで(窒素中循環雰
囲気中)加熱し、ポリイミド膜13をおよそ1〜100
μmの厚さに形成する。
Next, an ultraviolet-transmissive polyimide resin precursor solution PI2566 (trade name: Yupon Co., Ltd.) was placed on the semiconductor blocking plate 11.
100° (!IH,
Heating at 200°QIH and 350°CIH (in a nitrogen circulating atmosphere), the polyimide film 13
Formed to a thickness of μm.

その後、第2図(b)に示すように、周知のホトリソグ
ラフィ法により、EFROMの所望メモリ部をカバーす
るように、レジストパターン14を形成する。このレジ
ストパターン14はその後のポリイミド膜13を第2図
(c)に示すごとくにエツチングする際のマスクであシ
、プラズマによりポリイミド膜13をエツチングするに
は、ボッ型レジストであるMP 1400レジスト(商
品名であυ、シラプレー社(米国))あるいはポリシリ
コン膜やシリコン窒化膜あるいはアルミニウムなどの金
属膜が適している。
Thereafter, as shown in FIG. 2(b), a resist pattern 14 is formed by a well-known photolithography method so as to cover a desired memory portion of the EFROM. This resist pattern 14 is used as a mask when etching the polyimide film 13 as shown in FIG. The product name is υ, Silapray Corporation (USA)), a polysilicon film, a silicon nitride film, or a metal film such as aluminum is suitable.

一方、湿式エツチングによシ、ポリイミド膜13をエツ
チングするには、ネガ形しノストKMR747レジスト
(商品名であシ、コダック社製)が適している。これら
を用いて、前記方法によりポリイミド膜13をエツチン
グする。
On the other hand, for etching the polyimide film 13 by wet etching, a negative type Nost KMR747 resist (trade name: Ashi, manufactured by Kodak Corporation) is suitable. Using these, the polyimide film 13 is etched by the method described above.

この湿式エツチングでは、ヒドラジン系溶液全温度30
°C〜40℃にして、前記半導体基板11をこのヒドラ
ジン系溶液内に約10〜20分間浸漬し、ポリイミド膜
13の膜厚をおよぞ50μmエツチングする。
In this wet etching, the total temperature of the hydrazine solution was 30
The semiconductor substrate 11 is immersed in this hydrazine solution for about 10 to 20 minutes at a temperature of .degree. C. to 40.degree. C., and the polyimide film 13 is etched to a thickness of about 50 .mu.m.

その後、第2図(d)に示すように、不要のレジストパ
ターン14を除去する。この後、半導体基板11は周知
の後処理工程を経て、EPROM集積回路素子片に分割
すると、第2図(e)の外観斜視図のごとくになる。こ
の第2図(e)の16は一つの半導体チップを示す。
Thereafter, as shown in FIG. 2(d), unnecessary resist pattern 14 is removed. Thereafter, the semiconductor substrate 11 undergoes a well-known post-processing process and is divided into EPROM integrated circuit element pieces, resulting in an appearance as shown in the perspective view of FIG. 2(e). Reference numeral 16 in FIG. 2(e) indicates one semiconductor chip.

このようにして得られたEPROM型集積回路素子片の
半導体チツ−7’16は第2図(f)に示すごとく、周
知の組立て工程で組み立てられる。
The semiconductor chip 7'16 of the EPROM type integrated circuit element piece thus obtained is assembled by a well-known assembly process, as shown in FIG. 2(f).

この第2図(f)において、マウントアイランド15に
上記の半導体チップ16をマウント材17(Auあるい
はエポキシ系有機銀ペースト)によシ接着する。その後
、Au線あるいはA、d線によるワイヤ19をリード片
18と半導体チップ16のl?ンデイングパッド部とを
接続する。
In FIG. 2(f), the semiconductor chip 16 is bonded to the mounting island 15 using a mounting material 17 (Au or epoxy organic silver paste). After that, wires 19 made of Au wires or A and d wires are connected to the lead piece 18 and the semiconductor chip 16. Connect to the binding pad section.

その後、封入樹脂20により、EIROMのメモリ部に
紫外線照射を要する所望領域を除いて封入すると、その
完成品は第2図(g)の斜視図のごとくになる。なお、
第2図(f)、第2図(g)における21は紫外線照射
孔である。
Thereafter, the memory section of the EIROM is sealed with a sealing resin 20 except for the desired area requiring ultraviolet irradiation, and the finished product becomes as shown in the perspective view of FIG. 2(g). In addition,
Reference numeral 21 in FIGS. 2(f) and 2(g) indicates an ultraviolet irradiation hole.

以上説明したように、第1の実施例では、紫外線透過形
のポリイミド樹脂を半導体基板に塗布してポリイミド膜
を形成し、EFROMの紫外線照射を要する所望領域に
選択的にパターンを形成し、EPROM型集積回路素子
に対応するポリイミド膜以外を除去して樹脂村正イるS
う1zしr:ので、を棗田難テアったEPROMのモー
ルドパッケージが可能となる。したがって、量産性、コ
スト、信頼性向上の点で大きな利点がある。
As explained above, in the first embodiment, a polyimide film is formed by coating a semiconductor substrate with an ultraviolet-transmissive polyimide resin, and a pattern is selectively formed in a desired area of the EFROM that requires ultraviolet irradiation. Muramasa resin is removed by removing the polyimide film that corresponds to the type integrated circuit element.
1zr: Therefore, it becomes possible to mold package the EPROM, which was difficult to achieve by Natsuda. Therefore, there are great advantages in terms of mass productivity, cost, and reliability improvement.

以上のように、この発明の樹脂封止型半導体装置および
その製造方法によれば、EPROM型集積回路素子を形
成した半導体基板に紫外線に対して透明な熱硬化性樹脂
を塗布および加熱して熱硬化性樹脂膜を形成し、この熱
硬化性樹脂膜をEPROM型集積回路素子の部分を除い
て除去して半導体基板をスクライプ分割して得た半纏体
チップをマウント材に接着させかつ所定の接続を行った
後、熱硬化性樹脂膜の表面を除いて封入樹脂で封入する
ようにしたので、モールドパッケージが可能となる。
As described above, according to the resin-sealed semiconductor device and its manufacturing method of the present invention, a thermosetting resin transparent to ultraviolet rays is coated and heated on a semiconductor substrate on which an EPROM type integrated circuit element is formed. A curable resin film is formed, this thermosetting resin film is removed except for the EPROM type integrated circuit element, and the semi-integrated chips obtained by scribing and dividing the semiconductor substrate are adhered to a mounting material and predetermined connections are made. After this, the entire surface of the thermosetting resin film is encapsulated with an encapsulating resin, making it possible to form a mold package.

したがって、量=Bならびに信頼性が向上するとともに
、コストダウンが可能となる利点を有しEPROMのモ
ールド形・七ツケージに利用することができる。
Therefore, the quantity B and reliability are improved, and the cost can be reduced, and it can be used in a mold type EPROM and a seven-stage cage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来のEFROMのパッケージの斜視図
、第1図(b)は第1図(a)の断面図、第2図(a)
ないし第2図(g)はそれぞれこの発明の樹脂封止型−
ト得体装置の製造方法の一実施例の工程説明図である。 11・・・半導体基板、12・・・EPROM型集積回
路素子、13゛・・・ポリイミド膜、14・・・ンジス
トパターン、15・・・マウントアイランド、16・・
・半導体チップ、17・・・マウント材、18・・・リ
ード片、19・・・ワイヤ、20・・・封入樹脂、21
・・・紫外線照射孔。 特許出願人  沖電気工業株式会社 手続補正書 昭和58年杓月N、9日 特許庁長官若杉和夫 殿 1、事件の表示 昭和57年 特 許  願第 194547  号2、
発明の名称 樹脂封止型半導体装縫およびその製造方法3、補正をす
る者 事件との関係     特 許 出願人(029)沖電
気工莱株式会社 4、代理人 5、補正命令の日刊  昭和  年  月  日 (自
発)6、補正の対象 ランシエ」とIJ正する。
Fig. 1(a) is a perspective view of a conventional EFROM package, Fig. 1(b) is a sectional view of Fig. 1(a), and Fig. 2(a)
2(g) to 2(g) respectively show resin-sealed molds of the present invention.
FIG. 2 is a process explanatory diagram of an embodiment of a method for manufacturing a toner body device. DESCRIPTION OF SYMBOLS 11... Semiconductor substrate, 12... EPROM type integrated circuit element, 13'... Polyimide film, 14... Insist pattern, 15... Mount island, 16...
- Semiconductor chip, 17... Mounting material, 18... Lead piece, 19... Wire, 20... Encapsulating resin, 21
...UV irradiation hole. Patent Applicant: Oki Electric Industry Co., Ltd. Procedural Amendment No. 9, 1982, Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1, Indication of Case, 1981, Patent Application No. 194547, 2,
Name of the invention: Resin-encapsulated semiconductor packaging and its manufacturing method 3; Relationship with the case of the person making the amendment Patent Applicant (029) Oki Denki Korai Co., Ltd. 4, Agent 5, Daily publication of the amendment order Monthly, Showa year (Voluntary) 6. Rancier subject to correction,” IJ corrected.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上にEPROM型集積回路素子を有し
かつこのEPROM型集積回路素子上に紫外線に対して
透明な熱硬化性樹脂膜を有する半導体チップと、この半
導体チップをマウントするマウント材と、上記半導体チ
ップに接続されたリードと、上記熱硬化性樹脂膜の表面
の紫外線を入射する面を残して上記リードの一部ととも
に上記半導体チップを包囲するように封入した封入樹脂
とよシなる樹脂封止型半導体装置。
(1) A semiconductor chip having an EPROM type integrated circuit element on a semiconductor substrate and having a thermosetting resin film transparent to ultraviolet rays on the EPROM type integrated circuit element, and a mounting material for mounting this semiconductor chip. , a lead connected to the semiconductor chip and an encapsulating resin that is encapsulated so as to surround the semiconductor chip together with a part of the lead, leaving a surface of the thermosetting resin film on which ultraviolet rays are incident. Resin-sealed semiconductor device.
(2)熱硬化性樹脂膜はポリイミド樹脂膜であることを
特徴とする特許請求の範囲第1項記載の樹脂封止型半導
体装置。
(2) The resin-sealed semiconductor device according to claim 1, wherein the thermosetting resin film is a polyimide resin film.
(3)半導体基板にEPROM型集積回路素子を形成す
る工程と、上記EPROM型集積回路素子を形成した半
導体基板に紫外線に対して透明な熱硬化性樹脂を塗布し
て加熱することKよ多熱硬化性樹脂膜を形成する工程と
、上記熱硬化性樹脂膜上において上記EPROM型集積
回路素子の領域にレジストパターンを形成しかつこのレ
ジストパターンをマスクとして上記熱硬化性樹脂膜をエ
ツチングするとともにこのエツチング後上記レジストパ
ターンを除去する工程と、上記半導体基板をスクライプ
して半導体チップに分割する工程と、との半導、体チツ
ゾをマウントア、イランドにマウントスるとともに上記
熱硬化性樹脂膜の紫外線入射部分を除いて封入但丁脂に
よシ封入する工程とよシなる樹脂封止型半導体装置の製
造方法。 (4J熱硬化性樹脂はポリイミド樹脂であることを特徴
とする特許請求の範囲第3項記載の樹脂封止型半導体装
置の製造方法。
(3) The process of forming an EPROM type integrated circuit element on a semiconductor substrate, and applying a thermosetting resin transparent to ultraviolet rays to the semiconductor substrate on which the EPROM type integrated circuit element is formed and heating it. forming a curable resin film, forming a resist pattern on the thermosetting resin film in the area of the EPROM type integrated circuit element, and etching the thermosetting resin film using the resist pattern as a mask; After etching, the resist pattern is removed; the semiconductor substrate is scribed into semiconductor chips; A method for manufacturing a resin-sealed semiconductor device that is different from the step of encapsulating the incident part with a resin. (The method for manufacturing a resin-sealed semiconductor device according to claim 3, wherein the 4J thermosetting resin is a polyimide resin.
JP57194547A 1982-11-08 1982-11-08 Resin sealed type semiconductor device and manufacture thereof Granted JPS5984448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194547A JPS5984448A (en) 1982-11-08 1982-11-08 Resin sealed type semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194547A JPS5984448A (en) 1982-11-08 1982-11-08 Resin sealed type semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5984448A true JPS5984448A (en) 1984-05-16
JPH049381B2 JPH049381B2 (en) 1992-02-20

Family

ID=16326346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194547A Granted JPS5984448A (en) 1982-11-08 1982-11-08 Resin sealed type semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5984448A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894707A (en) * 1987-02-12 1990-01-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a light transparent window and a method of producing same
US5037779A (en) * 1989-05-19 1991-08-06 Whalley Peter D Method of encapsulating a sensor device using capillary action and the device so encapsulated
US5079190A (en) * 1988-02-09 1992-01-07 Canon Kabushiki Kaisha Method of eliminating uneven refractive index in resin of a resin encapsulated photoelectric converting device
US5424249A (en) * 1992-01-23 1995-06-13 Mitsubishi Denki Kabushiki Kaisha Method of making mold-packaged pressure sensing semiconductor device
US5622873A (en) * 1994-01-24 1997-04-22 Goldstar Electron Co., Ltd. Process for manufacturing a resin molded image pick-up semiconductor chip having a window

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894707A (en) * 1987-02-12 1990-01-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a light transparent window and a method of producing same
US5079190A (en) * 1988-02-09 1992-01-07 Canon Kabushiki Kaisha Method of eliminating uneven refractive index in resin of a resin encapsulated photoelectric converting device
US5037779A (en) * 1989-05-19 1991-08-06 Whalley Peter D Method of encapsulating a sensor device using capillary action and the device so encapsulated
US5424249A (en) * 1992-01-23 1995-06-13 Mitsubishi Denki Kabushiki Kaisha Method of making mold-packaged pressure sensing semiconductor device
US5622873A (en) * 1994-01-24 1997-04-22 Goldstar Electron Co., Ltd. Process for manufacturing a resin molded image pick-up semiconductor chip having a window

Also Published As

Publication number Publication date
JPH049381B2 (en) 1992-02-20

Similar Documents

Publication Publication Date Title
US6958261B2 (en) Optical sensor package
US7253026B2 (en) Ultra-thin semiconductor package device and method for manufacturing the same
US7713788B2 (en) Method of manufacturing semiconductor package using redistribution substrate
US20120001328A1 (en) Chip-sized package and fabrication method thereof
US4766095A (en) Method of manufacturing eprom device
US20090026593A1 (en) Thin semiconductor die packages and associated systems and methods
US9953933B1 (en) Flow over wire die attach film and conductive molding compound to provide an electromagnetic interference shield for a semiconductor die
US20070080435A1 (en) Semiconductor packaging process and carrier for semiconductor package
CN102157401A (en) High-density SIP (system in package) method of chip
US4635165A (en) Printed-circuit construction with EPROM IC chip mounted thereon
JPS5984448A (en) Resin sealed type semiconductor device and manufacture thereof
US4460915A (en) Plastic package for radiation sensitive semiconductor devices
JPS58207645A (en) Semiconductor device
JPH0883859A (en) Production of semiconductor device
JPS58207656A (en) Resin-sealed type semiconductor device
US20200111685A1 (en) Glob top encapsulation using molding tape
TWI743120B (en) Chip packaging structure with lead tabs on top and manufacturing method thereof
JP2000021906A (en) Manufacture of semiconductor chip
US7851270B2 (en) Manufacturing process for a chip package structure
JPS5990965A (en) Optoelectric conversion module
TWI301948B (en)
JPS63133653A (en) Optically erasable semiconductor storage device
TWI575761B (en) Optoelectronic chip package and optoelectronic chip packaging process
JPS5891663A (en) Semiconductor device and manufacture thereof
JPH05259320A (en) Ultraviolet erasable prom device