JPS5984328A - Magneto-resistance effect type film head - Google Patents

Magneto-resistance effect type film head

Info

Publication number
JPS5984328A
JPS5984328A JP19331482A JP19331482A JPS5984328A JP S5984328 A JPS5984328 A JP S5984328A JP 19331482 A JP19331482 A JP 19331482A JP 19331482 A JP19331482 A JP 19331482A JP S5984328 A JPS5984328 A JP S5984328A
Authority
JP
Japan
Prior art keywords
conductor
bias
shield
magnetoresistive
shield layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19331482A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sato
佐藤 一比古
Hiroshi Yokoi
横井 啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp, Pioneer Electronic Corp filed Critical Pioneer Corp
Priority to JP19331482A priority Critical patent/JPS5984328A/en
Publication of JPS5984328A publication Critical patent/JPS5984328A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3945Heads comprising more than one sensitive element
    • G11B5/3948Heads comprising more than one sensitive element the sensitive elements being active read-out elements
    • G11B5/3951Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged on several parallel planes
    • G11B5/3954Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged on several parallel planes the active elements transducing on a single track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Abstract

PURPOSE:To eliminate the asymmetry of a reproduced waveform, by arranging conductors to two gaps formed by two shield layers and a magnetoresistance effect element and making a bias current to flow in the opposite direction. CONSTITUTION:An insulating layer (SiO2) 8A, conductor (Al, Au, etc.) 3a, insulating layer 8B, magnetoresistance effect (MR) element (Fe-Ni alloy) 2, conductor 3B, and shield layer 4 are successively formed on a shield plate 1 made of a high-magnetic-permeability material by sputtering, evaporation, etc. When the distances, namely the length of the gaps between the MR element 2 and the shield layer 1 and between the MR element 2 and the shield layer 4 are made equal and a bias magnetic field is impressed upon the MR element 2 by making an electric current to flow to the conductors 3a and 3b in the opposite direction, the asymmetry of a reproduced waveform can be eliminated.

Description

【発明の詳細な説明】 この発明は、強磁性I?膜の磁気抵抗効果を利用した磁
気ヘッドに関し、特に磁気抵抗効果の薄膜素子に磁界を
与えるバイアスの印加構成に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention provides ferromagnetic I? The present invention relates to a magnetic head that utilizes the magnetoresistive effect of a film, and particularly to a configuration for applying a bias that applies a magnetic field to a magnetoresistive thin film element.

強磁性金属S膜の磁気抵抗効果を利用した、薄膜再生ヘ
ッドは感度が高いこと、再生出力が媒体との相対速度に
依存せず、高周波動作が可能なこと、更にIC等の微細
加工技術を用い一ζ一括生産が可能なことから注目され
、盛んに研究され°ζいる。
The thin-film read head, which utilizes the magnetoresistive effect of the ferromagnetic metal S film, has high sensitivity, the playback output does not depend on the relative speed with the medium, and high-frequency operation is possible.Furthermore, it has been developed using microfabrication technology such as IC. It has attracted attention because it can be produced in bulk and is being actively researched.

磁気抵抗効果素子(以下MR水素という)を利用した電
流バイアス法による薄膜−・ソト゛の原理を説1すjす
る構成を第1図に示す。
FIG. 1 shows a configuration for explaining the principle of thin film deposition using a current bias method using a magnetoresistive element (hereinafter referred to as MR hydrogen).

記録媒体7に近接させて薄膜のMR素子2が配置されて
いる。MR素子2の両端には電極5が設りられζおり、
この電極には直流電圧が印加され、MR素子2の一方向
に電流■が流れるようになっ−ζいる。更にMR水素に
バイアス磁界を印加ず為のバイアス導体3がある。又、
短波長領域の分解能向上の為にMR水素の両側には高透
研率祠からなるシールドN1,4が設レノられている。
A thin film MR element 2 is arranged close to the recording medium 7. Electrodes 5 are provided at both ends of the MR element 2,
A DC voltage is applied to this electrode, so that a current (1) flows in one direction of the MR element 2 (-ζ). Furthermore, there is a bias conductor 3 for not applying a bias magnetic field to the MR hydrogen. or,
In order to improve the resolution in the short wavelength region, shields N1 and 4 made of high transmission rate grinding holes are installed on both sides of the MR hydrogen.

このように構成された磁気抵抗効果型″a股ヘソ1”の
動作原理を説明する。
The operating principle of the magnetoresistive type "a-crotch belly button 1" constructed in this way will be explained.

記録媒体7上にMR素子2を近接さ−B、M I? 素
子の両端に設りられた電極に直流電圧が印加されMR素
子2に定電流を流す。この時記録媒体からのy方向信号
磁界成分tr yによるM R素子2の11L抗変化を
電極5の両端の電圧変化として検出するMR素子2の動
作特性は第2図に示すようである。
Place the MR element 2 close to the recording medium 7 -B, MI? A DC voltage is applied to electrodes provided at both ends of the element, causing a constant current to flow through the MR element 2. At this time, the operating characteristics of the MR element 2, which detects the 11L resistance change of the MR element 2 due to the y-direction signal magnetic field component try from the recording medium as a voltage change across the electrodes 5, are as shown in FIG.

動作特性を線変化する為に動作点が入点付近になるよう
にバイアス磁界HeをMR素子2に印加する必要がある
。バイアス磁界の印加方法としては、主にバイアス導体
3に電流を流す方法と、永久磁石膜による方法とがある
。第3図は具体的な構成を示す磁気抵抗効果型薄膜ヘッ
ドの断面図であり、第1図と同符号のものは同一部材を
示ず。なお付番8,9,10はシールドN1、M R素
子2、バイアス導体3、シールド層4とを絶縁する絶縁
層である。
In order to linearly change the operating characteristics, it is necessary to apply a bias magnetic field He to the MR element 2 so that the operating point is near the entry point. As methods for applying the bias magnetic field, there are two main methods: passing a current through the bias conductor 3, and using a permanent magnet film. FIG. 3 is a sectional view of a magnetoresistive thin film head showing a specific structure, and the same reference numerals as in FIG. 1 do not indicate the same members. Note that numbers 8, 9, and 10 are insulating layers that insulate the shield N1, the MR element 2, the bias conductor 3, and the shield layer 4.

MR素子20分解能は、MR素子2からシールド層1,
4までの距1tll1g++g2で決まる。すなわちg
+ はシールド層1とMR素子2との間の5i02等の
絶縁膜8からなり、g2はMR素子2とバイアス導体3
間の5i02等の絶縁膜9、バイアス導体3、バイアス
導体3とシールド層4間のSiO□等の絶縁膜10の和
となる。
The MR element 20 resolution is from the MR element 2 to the shield layer 1,
The distance to 4 is determined by 1tll1g++g2. That is, g
+ consists of an insulating film 8 such as 5i02 between the shield layer 1 and the MR element 2, and g2 consists of the MR element 2 and the bias conductor 3.
This is the sum of the insulating film 9 such as 5i02 between them, the bias conductor 3, and the insulating film 10 such as SiO□ between the bias conductor 3 and the shield layer 4.

絶縁層7,8.9の厚さは0.3μm程度で、バイアス
導体3の厚さは0.4〜0.5μm程度必要で38m1
ギヤツプg2cwJ、pmとなり〜ギャップg+ より
ギャップg2がかなり大きくなる。このようにギヤツブ
g+ とギャップg2が等しくない場合、再生波形は、
ギャップが大きい方にピークシフトする欠点がある。
The thickness of the insulating layers 7 and 8.9 is about 0.3 μm, and the thickness of the bias conductor 3 is about 0.4 to 0.5 μm, which is 38 m1.
Gap g2cwJ, pm becomes ~gap g+ Gap g2 becomes considerably larger. In this way, if the gear g+ and the gap g2 are not equal, the reproduced waveform will be
The disadvantage is that the peak shifts toward the larger gap.

この発明は上記事情の欠点に着目してなされたものであ
り、その目的とするところはMR水素とシールド間のギ
ャップ長gltg2を等しくし、再生波形の非対称性を
無くした磁気抵抗効果型薄膜ヘッドを提供するにある。
This invention was made in view of the above-mentioned drawbacks, and its purpose is to provide a magnetoresistive thin film head that equalizes the gap length gltg2 between the MR hydrogen and the shield and eliminates the asymmetry of the reproduced waveform. is to provide.

以下、この発明の一実施例と図面を参照して説明する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第4図はこの発明の磁気抵抗すJ果型薄膜ヘットの断面
図を示す図であり、第3図に示す同一符号は同一部材を
示す。第4図において、高透磁率磁性材料からなる第1
のシールド板1を媒体としてこの上にスパンクリング、
蒸着等により0.3μmの5i02からなる絶縁層8A
を形成し、さらに絶縁層8AのEにはバイアス印加用の
第1の導体3八がA 11 % Ca % A u等の
導電材料を0.2 p mの厚さでスパッタ、蒸着等で
形成されている。第1の導体3Δの上に絶縁M8Aと同
様に絶縁層8Bを形成し、この絶縁層8Bには厚さ50
0人のFe−Ni合金のMR素子2が形成される。MR
素子2の上には絶縁層9(厚さ0.3μm)、バイアス
印加用の第2の導体3B(厚さlO12μm)、絶縁M
9 (厚さ0.3+um)が絶縁層8Aおよび第1の導
体3八と同様に形成され、絶縁層9の上にはre−Ni
等の高透磁率磁性体をスパッタ、蒸着等で厚さ1μm程
度に形成してシールド層4が配設されている。
FIG. 4 is a cross-sectional view of the magnetoresistive J-shaped thin film head of the present invention, and the same reference numerals shown in FIG. 3 indicate the same members. In FIG. 4, the first
Using the shield plate 1 as a medium, spankling on this,
Insulating layer 8A made of 5i02 with a thickness of 0.3 μm by vapor deposition etc.
A first conductor 38 for bias application is formed on E of the insulating layer 8A using a conductive material such as A11%Ca%Au to a thickness of 0.2 pm by sputtering, vapor deposition, etc. has been done. An insulating layer 8B is formed on the first conductor 3Δ in the same manner as the insulating layer M8A, and this insulating layer 8B has a thickness of 50 mm.
An MR element 2 of Fe--Ni alloy is formed. M.R.
On top of the element 2 are an insulating layer 9 (thickness 0.3 μm), a second conductor 3B (thickness lO 12 μm) for bias application, and an insulating layer M
9 (thickness 0.3+um) is formed in the same manner as the insulating layer 8A and the first conductor 38, and on the insulating layer 9, re-Ni is formed.
The shield layer 4 is formed by forming a high permeability magnetic material such as the above by sputtering, vapor deposition, etc. to a thickness of about 1 μm.

そしてバイアス印加用の第1の導体3A、第2の導体3
Bには逆方向に電流が流され、MR素子2にバイアス磁
界を印加するように構成するようにしているため、MR
素子2とシールド板(層)■、4の距離すなわちギャッ
プ長gl  9g11を略等しくすることができる。
And a first conductor 3A for bias application, a second conductor 3
Since the configuration is such that a current is passed in the opposite direction to B and a bias magnetic field is applied to the MR element 2, the MR
The distance between the element 2 and the shield plates (layers) 1 and 4, that is, the gap length gl9g11, can be made approximately equal.

以上説明したようにこの発明は、強磁性薄膜よりなる磁
気抵抗効果素子の両側に非磁性層を介して設けられた、
高透磁率磁性体よりなるシール)層を備えた磁気抵抗効
果ヘッドにおいて、該シールド層と、磁気抵抗9ノ果素
子で形成される2つのギャップにそれぞれ導体を配置し
、該導体に互に逆方向の電流を流すことにより磁気抵抗
効果素子にバイアス磁界を印加するように構成したので
、再生波形の対称性をいしして歪の少ないものとなる。
As explained above, the present invention provides a magnetoresistive element made of a ferromagnetic thin film, which is provided on both sides with nonmagnetic layers interposed therebetween.
In a magnetoresistive head equipped with a sealing layer made of a high permeability magnetic material, a conductor is placed in each of the two gaps formed by the shielding layer and the magnetoresistive element, and the conductors are placed in opposite directions. Since the configuration is such that a bias magnetic field is applied to the magnetoresistive element by passing a current in the direction, the reproduced waveform is symmetrical and has little distortion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMR水素を用いた電流バイアスの磁気ヘソ1′
の原理を説明する図、第2図は動作波形図、第3図は従
来の磁気効果型薄膜ヘッドの尺体例を示ず断面図、第4
図はこの発明の磁気効果型vri膜)ノドの一実施例を
示す断面図である。
Figure 1 shows the magnetic navel 1' of current bias using MR hydrogen.
Figure 2 is an operational waveform diagram, Figure 3 is a cross-sectional view of a conventional magnetic effect thin film head without showing an example of its length, and Figure 4 is a diagram explaining the principle of
The figure is a sectional view showing an embodiment of the magnetic effect type VRI film (node) of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 強磁性薄膜よりなる磁気抵抗効果素子の両側に非磁性j
賛を介して設。りられた高透磁率磁性体よりなるシール
ド層を備えた磁気抵抗効果ヘッドにおいて、該シールド
層と、磁気抵抗効果素子で形成される2つのギャップに
それぞれ導体を配置し、該導体に互に逆方向の電流を流
すことにより磁気抵抗効果素子にバイアス磁界を印加す
ることを特徴とする磁気抵抗効果型薄膜ヘッド。
A non-magnetic layer is placed on both sides of a magnetoresistive element made of a ferromagnetic thin film.
Established through support. In a magnetoresistive head equipped with a shield layer made of a highly permeable magnetic material, a conductor is placed in each of the two gaps formed by the shield layer and the magnetoresistive element, and the conductors are placed in opposite directions. A magnetoresistive thin film head is characterized in that a bias magnetic field is applied to a magnetoresistive element by flowing a current in the direction of the magnetoresistive element.
JP19331482A 1982-11-05 1982-11-05 Magneto-resistance effect type film head Pending JPS5984328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19331482A JPS5984328A (en) 1982-11-05 1982-11-05 Magneto-resistance effect type film head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19331482A JPS5984328A (en) 1982-11-05 1982-11-05 Magneto-resistance effect type film head

Publications (1)

Publication Number Publication Date
JPS5984328A true JPS5984328A (en) 1984-05-16

Family

ID=16305839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19331482A Pending JPS5984328A (en) 1982-11-05 1982-11-05 Magneto-resistance effect type film head

Country Status (1)

Country Link
JP (1) JPS5984328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061210A (en) * 1997-09-22 2000-05-09 International Business Machines Corporation Antiparallel pinned spin valve with high magnetic stability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6061210A (en) * 1997-09-22 2000-05-09 International Business Machines Corporation Antiparallel pinned spin valve with high magnetic stability

Similar Documents

Publication Publication Date Title
WO1991015012A2 (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
JPS5984328A (en) Magneto-resistance effect type film head
US4928188A (en) Magnetoresistive element sandwiched between a sal ferrite substrateand a cover containing an easy axis biasing magnet
JPS5987617A (en) Thin film magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JP3537380B2 (en) Magnetic head and magnetic reproducing device
JPS58220240A (en) Magneto-resistance effect type magnetic head
JPS6035731B2 (en) magnetoresistive transducer
JPH0542049B2 (en)
JPH0214418A (en) Magnetic head, manufacture thereof and magnetic recorder using it
JPS61134912A (en) Thin film type magnetic head
JPH0115927B2 (en)
JPH02270106A (en) Thin-film magnetic head
JP2001155310A (en) Magnetic head and magnetic reproducing device
JPS622363B2 (en)
JP2000182217A (en) Magnetic head and magnetic recording and reproducing device
JP2002056510A (en) Shielding type magnetic head and magnetic reproducing device
JPH0438614A (en) Magneto-resistance effect element and its applied magnetic head and recording and reproducing device
JPS6154013A (en) Magneto-resistance effect type thin film head
JPS592092B2 (en) magnetic head
JPH05266435A (en) Thin film magnetic head
JPH11213339A (en) Magnetic head and magnetic reproducing device using the head
JPS6032245B2 (en) magnetoresistive head
JPH0426908A (en) Magneto-resistance effect type head
JPS62110615A (en) Thin film magnetic head