JPS6035731B2 - magnetoresistive transducer - Google Patents

magnetoresistive transducer

Info

Publication number
JPS6035731B2
JPS6035731B2 JP56167828A JP16782881A JPS6035731B2 JP S6035731 B2 JPS6035731 B2 JP S6035731B2 JP 56167828 A JP56167828 A JP 56167828A JP 16782881 A JP16782881 A JP 16782881A JP S6035731 B2 JPS6035731 B2 JP S6035731B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetoresistive
shielding means
magnetic field
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56167828A
Other languages
Japanese (ja)
Other versions
JPS57103119A (en
Inventor
ジヤツク・デツセ−ル
ミシエル・エル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANTERUNASHONARU PUURU RANFUORUMATEIKU SEE I I HANIIUERUBURU CO
Original Assignee
ANTERUNASHONARU PUURU RANFUORUMATEIKU SEE I I HANIIUERUBURU CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANTERUNASHONARU PUURU RANFUORUMATEIKU SEE I I HANIIUERUBURU CO filed Critical ANTERUNASHONARU PUURU RANFUORUMATEIKU SEE I I HANIIUERUBURU CO
Publication of JPS57103119A publication Critical patent/JPS57103119A/en
Publication of JPS6035731B2 publication Critical patent/JPS6035731B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/10Structure or manufacture of housings or shields for heads
    • G11B5/11Shielding of head against electric or magnetic fields

Description

【発明の詳細な説明】 本発明は磁気抵抗変換器(トランスデューサ)に係る。[Detailed description of the invention] The present invention relates to magnetoresistive transducers.

本発明は特に、剛性又は可榛性磁気ディスク及び磁気テ
ープの如き磁気記録媒体に収録された情報の続取りに適
される。磁気ディスクでは情報が同0円状記録トラック
に坦持され、該トラックは100分の数ミリメートル以
下の半径方向幅を有しており通常は磁気ディスクの両面
の大半部を占めることは公知である。
The present invention is particularly suited to the succession of information recorded on magnetic recording media such as rigid or flexible magnetic disks and magnetic tape. It is well known that in a magnetic disk, information is carried on circular recording tracks, which have a radial width of a few hundredths of a millimeter or less, and usually occupy most of both sides of the magnetic disk. .

磁気テープでは情報がテープの長手方向に平行なトラッ
ク上に担持される。通常、磁気ディスク又は磁気テープ
の1トラックに収録された一連の磁気情報は、トラック
の全長に亘つて分布しており同じモジュールで逆向きの
磁気誘導を持つ“基本磁区”と指称される一連の小磁区
の形状である。
In magnetic tape, information is carried on tracks parallel to the length of the tape. Normally, a series of magnetic information recorded on one track of a magnetic disk or magnetic tape is distributed over the entire length of the track, and is distributed over the entire length of the track, and in the same module, a series of magnetic information called "fundamental magnetic domains" having opposite magnetic induction directions are distributed over the entire length of the track. This is the shape of a small magnetic domain.

磁気ディスクの場合は1トラックの周に沿って測定した
単位長さ当り、磁気テープの場合はテープの長手方向に
沿って測定した単位長さ当りの情報の数は、長手方向密
度(又は直線密度)と指称される。
The number of information per unit length measured along the circumference of one track in the case of a magnetic disk, and the number of information per unit length measured along the longitudinal direction of the tape in the case of a magnetic tape, is called the longitudinal density (or linear density). ).

ディスク又はテープに於ける情報の書込み又は銃取り又
は双方の機能を交互に実行し得る手段は、磁気変換デバ
イスと指称される。
Means capable of writing or capturing information on a disk or tape, or alternatively performing both functions, are referred to as magnetic transducer devices.

通常、所与の記録媒体に1個又は数個の磁気変換デバイ
スを結合し、媒体にデバイスの前面を通過させる。現状
では、トラック又はテープ上の情報を続取るために、1
個又は数個の磁気抵抗を含む“磁気抵抗変換器”と指称
される変換デバイスの使用が増加している。特に、記録
媒体の進行速度が遅いか又は記録媒体の速度変動が大き
いとき(特に磁気テープに於いて生じ易い)に前記の如
き変換デバイスが使用される場合が多い。磁気抵抗は、
極めて厚みのづ・さし、(数百オングストロームから数
ミクロンの厚みの)薄層又は薄膜の形状を有する電気抵
抗であり、幅に比較して長さが極めて大きい。
Typically, one or several magnetic transducer devices are coupled to a given recording medium and the medium is passed in front of the device. Currently, in order to continue information on a track or tape, one
Transducing devices, referred to as "magnetoresistive transducers", containing one or more magnetoresistive elements are increasingly being used. In particular, the above-mentioned conversion device is often used when the traveling speed of the recording medium is slow or the speed fluctuations of the recording medium are large (which is particularly likely to occur with magnetic tape). Magnetic resistance is
An electrical resistor in the form of a very thick diagonal, thin layer or film (from a few hundred angstroms to a few microns thick), with a length that is extremely large compared to its width.

これらの磁気抵抗はいよいよ、電気絶縁材から成る基板
に付着して使用される。
These magnetoresistors are then used attached to a substrate made of electrically insulating material.

その抵抗の値は、磁場の作用を受けると変化する。大き
さのRの前記の如き磁気抵抗をゼネレータの端子に接続
し、抵抗の長手方向に沿って電流1を供給する場合、該
抵抗は、磁気記録媒体に結合される磁気抵抗変換器の一
種であり媒体に極めて近接して、例えば媒体に接触して
配置されると考えることができる。
The value of its resistance changes when subjected to the action of a magnetic field. When a magnetoresistive resistor of magnitude R as described above is connected to the terminals of a generator and a current 1 is supplied along the length of the resistor, the resistor is a type of magnetoresistive transducer coupled to a magnetic recording medium. It can be thought of as being placed in close proximity to, for example in contact with, the medium.

媒体の各基本磁区は、磁気抵抗の前を順次通過するとき
に、媒体の表面の近傍で漏れ磁界Hfを生じさせ、該漏
れ磁界Hfは磁気抵抗の抵抗変化△Rを生じさせる。
Each elementary domain of the medium generates a leakage field Hf near the surface of the medium as it sequentially passes in front of the magnetoresistor, and the leakage field Hf causes a resistance change ΔR of the magnetoresistor.

従って端子にV=1×△Rの変化を生じる。これにより
式△V/V=△R/Rが成立し、△R/Rは“磁気抵抗
係数”と指称される。この係数は通常2%のオーダであ
り、負の値であることが多い。磁気抵抗の端子で収集さ
れる電気信号は、記録媒体の速度に関わりの無い振幅を
持つ。
Therefore, a change of V=1×ΔR occurs at the terminal. As a result, the formula △V/V=△R/R is established, and △R/R is referred to as a "magnetoresistance coefficient." This coefficient is typically on the order of 2% and is often a negative value. The electrical signal collected at the magnetoresistive terminals has an amplitude that is independent of the speed of the recording medium.

“磁性体の初透磁率”なる用語は、8と日とが0に近い
ときに第1磁化曲線上に現われると磁場と磁気誘導との
比(B/H)を指すことは公知である。
It is known that the term "initial permeability of a magnetic material" refers to the ratio of magnetic field to magnetic induction (B/H) as it appears on the first magnetization curve when 8 is close to 0.

第1磁化曲線とは、磁性体に磁化磁場を作用させたとき
、Bと日とが0に近い初期磁気状態を原点とし、Bの変
化を磁場日の関数として示す曲線である。言い換えれば
磁性体の初透磁率は、点B=0,H=0の近傍の第1磁
化曲線の勾配に等しい。他方、1個の平面内に存在する
磁気等方性材料(即ち長さ及び幅に比較して厚みの極め
て小さい磁気等方性材料)が、材料自体の内部に、通常
は互いに垂直な2個の固有磁化方向を持つことは公知で
ある。
The first magnetization curve is a curve whose origin is an initial magnetic state where B and day are close to 0 when a magnetizing magnetic field is applied to a magnetic body, and which shows the change in B as a function of the magnetic field day. In other words, the initial magnetic permeability of the magnetic material is equal to the slope of the first magnetization curve near the points B=0 and H=0. On the other hand, a magnetically isotropic material that exists in one plane (i.e., a magnetically isotropic material that has a very small thickness compared to its length and width) has two layers inside the material itself, usually perpendicular to each other. It is known that it has a specific magnetization direction of .

一方は“磁化容易方向”と指称され、他方は“磁化困難
方向”と指称される。材料の磁化困難方向の初透磁率は
、材料の磁化容易方向の初透磁率より遥かに大きい。
One is designated as the "easy magnetization direction" and the other is designated as the "hard magnetization direction." The initial permeability of the material in the direction of hard magnetization is much greater than the initial permeability of the material in the direction of easy magnetization.

材料の磁化困難方向に作用し該方向で材料を飽和せる磁
場日の値は、異方性磁場HKと指称される。
The value of the magnetic field acting in the direction of hard magnetization of the material and saturating the material in that direction is designated as the anisotropy field HK.

通常、使用磁気抵抗は、磁気異方性材料、例えば鉄ニッ
ケル合金(鉄18%とニッケル82%)から成る。
Usually the magnetoresistive material used consists of a magnetically anisotropic material, for example an iron-nickel alloy (18% iron and 82% nickel).

該磁気抵抗の磁化容易軸は電流1の方向と磁気抵抗の長
手方向とに平行であり、磁化困難軸は該長手方向に垂直
である。磁気抵抗変換器の1個(又は複数個)の磁気抵
抗は、結合される記録媒体に対して、媒体の表面に垂直
な磁気抵抗の磁化困難軸が媒体の基本磁区の漏れ磁界に
平行になるように配置される。磁気抵抗にいかなる磁場
も作用しないときは、該抵抗の磁化(即ち該抵抗の内部
の磁気誘導)は磁化容易軸の方向に沿って生じる。
The easy axis of magnetization of the magnetoresistive member is parallel to the direction of the current 1 and the longitudinal direction of the magnetoresistive member, and the hard axis of magnetization is perpendicular to the longitudinal direction. The magnetoresistance (or magnetoresistances) of the magnetoresistive transducer is such that the hard axis of magnetization perpendicular to the surface of the medium is parallel to the stray field of the fundamental domain of the medium with respect to the recording medium to which it is coupled. It is arranged like this. When no magnetic field acts on the magnetoresistive resistor, the magnetization of the resistor (ie magnetic induction inside the resistor) occurs along the direction of the easy axis of magnetization.

磁気異万性材料から成る磁気抵抗に、磁化困難軸に平行
な分極磁場日poそを作用させて、該抵抗の感度を改良
すること、即ち、作用磁場の関数たる出力信号電圧を増
加し得ることは公知である。
By applying a polarizing magnetic field parallel to the hard axis to a magnetoresistive resistor made of anisotropic material, the sensitivity of the resistor can be improved, i.e., the output signal voltage can be increased as a function of the applied magnetic field. This is well known.

このことは、1971年12月22日出願のコンパニィ
・アンテルナシヨナル・プール・ランフオルマテイク
C。mpagnie lntemati。na
le p。mL lnfomatiq順によるフラ
ンス特許第2,165206号“改良磁気抵抗及びこれ
らを組込んだ電磁変換器Me飢e′toresjsta
nceperにctionn′eesettranSd
uCteur e′leCtromag肥′ti
que leSIMorporanrに記載され
ている。分極磁場畑polの値は、磁気抵抗の磁化を角
度8だけ回転させるように選択される。
This is due to the Compagnie International Pour l'Ormatake filed on December 22, 1971.
C. mpagnie lntemati. na
le p. French Patent No. 2,165,206 "Improved magnetoresistive devices and electromagnetic transducers incorporating them"
nceper to ctionn'eesettranSd
uCteur e'leCtromag fertilization
It is described in que leSIMorporanr. The value of the polarization field field pol is chosen to rotate the magnetization of the magnetoresistive element by an angle of 8.

8の値は450に近いのが好ましい(この場合、該磁化
は、磁化容易方向と45oの角度を形成する)。
Preferably, the value of 8 is close to 450 (in which case the magnetization forms an angle of 45° with the easy magnetization direction).

この場合、磁気抵抗の感度が最大になる。In this case, the magnetoresistive sensitivity is maximized.

即ち(磁場Hpol以外の)作用磁場の所与の変化△日
に応じて、最大の抵抗変化、従って最大の出力電圧変化
が生じる。実用化されている磁気抵抗変換器は、10分
の1ミクロンのオーダの間隔を隔てた平行な(即ち長手
方向で平行な)2個の磁気抵抗素子を含む。
That is, for a given change in the applied magnetic field (other than the magnetic field Hpol), a maximum resistance change and therefore a maximum output voltage change will occur. Practical magnetoresistive transducers include two parallel (ie longitudinally parallel) magnetoresistive elements spaced apart on the order of a tenth of a micron.

前記の素子間の間隔は常に、磁気媒体の各収録トラック
に含まれた基本磁区の長さより実質的に小さく、従って
、2個の磁気抵抗は、両者と対向する1個の磁区により
生じた1個の漏れ磁界の作用を受ける。即ち2個の磁気
抵抗に作用する漏れ磁界の値は等しいo2個の磁気抵抗
素子は、磁化が450だけ回転し互いに約90oを成す
ように分極されている。
The spacing between said elements is always substantially less than the length of the elementary domains contained in each recording track of the magnetic medium, so that two magnetoresistances are equal to affected by leakage magnetic fields. That is, the o2 magnetoresistive elements, in which the values of the leakage magnetic fields acting on the two magnetoresistive elements are equal, are polarized so that their magnetizations rotate by 450 degrees and form an angle of about 90 degrees with respect to each other.

このことは、1973王10月23日出願のコンパニィ
・アンテルナシヨナル・プール・ランフオルマテイクに
よるフランス特徴第2,24& 566号“改良電磁変
換 器 Tramducにur electroma
gnetiquePeげectron肥”に記載されて
いる。第1磁気抵抗素子の出力信号AV,は差動増幅器
の第1入力に供給され、第2磁気抵抗素子の出力信号△
V2は同じ差動増幅器の第2入力に供給される。実質的
に△V.=−△V2なので、2個の差動増幅器の出力で
2×l△V,lに比例する信号が得られる。差動増幅器
の使用によって2×△Vに比例する信号に対するノイズ
信号を実質的に低減させ得ることは明らかである。ノイ
ズ信号は特に、磁気抵抗内の熟寝乱及び2個の磁気抵抗
に対向する磁区により生じた漏れ磁場以外の全部の磁場
に帰因する。
This is reflected in French Characteristics No. 2, 24 & 566 by the Compagnie International pour l'Informatake, filed on October 23, 1973.
The output signal AV of the first magnetoresistive element is supplied to the first input of the differential amplifier, and the output signal AV of the second magnetoresistive element is
V2 is fed to the second input of the same differential amplifier. Substantially △V. =-ΔV2, so a signal proportional to 2×lΔV,l is obtained from the outputs of the two differential amplifiers. It is clear that the use of a differential amplifier can substantially reduce the noise signal for signals proportional to 2×ΔV. The noise signal is particularly attributable to all magnetic fields other than the field disturbances in the magnetoresistors and the fringing fields produced by the magnetic domains facing the two magnetoresistors.

2個の磁気抵抗素子に作用する磁場として、2個の磁気
抵抗素子に対向している磁区の漏れ磁界以外に、前記磁
区の両側に位置する磁区群により生じた漏れ磁界群の合
力を考慮しなければならないことは明らかである。
As the magnetic field acting on the two magnetoresistive elements, in addition to the leakage magnetic field of the magnetic domains facing the two magnetoresistive elements, the resultant force of the leakage magnetic fields generated by the magnetic domains located on both sides of the magnetic domains is considered. It is clear that there must be.

たとえ前記の合力が前記磁区の漏れ磁界の値に比較して
比較的4・ごい場合でも、情報の直線密度が比較的小さ
い場合には、直線密度が大きい場合と違って、前記合力
が前記漏れ磁界に比較して相対的に大きいと考えられる
。従って、2個の磁気抵抗素子の両側に磁気遮蔽手段を
配置する必要がある。該手段は、通常、互いに結合され
た非磁性薄層で隔てられた磁性材料の薄膜アセンブリか
ら構成されている。
Even if the resultant force is relatively small compared to the value of the leakage magnetic field of the magnetic domain, when the linear density of information is relatively small, the resultant force is different from the case where the linear density is large. It is considered to be relatively large compared to the magnetic field. Therefore, it is necessary to arrange magnetic shielding means on both sides of the two magnetoresistive elements. The means usually consist of an assembly of thin films of magnetic material separated by thin non-magnetic layers bonded together.

これらの個々の膜の面は記録媒体及びトラックの進行方
向に垂直である。好ましくは、磁気遮蔽手段を構成する
膜は磁気異方性材料から成り、該膜の磁化困難軸は磁気
媒体垂直な方向に配向されている。
The planes of these individual films are perpendicular to the direction of travel of the recording medium and tracks. Preferably, the film constituting the magnetic shielding means is made of a magnetically anisotropic material, and the hard axis of magnetization of the film is oriented in a direction perpendicular to the magnetic medium.

従って、磁気抵抗に対向する滋区の周囲の磁区群により
生じた磁力線全部が、2個の磁気抵抗素子でなく前記膜
によって捕集される。好ましくは、前記の如き磁気抵抗
変換器の各磁気抵抗素子は、もう一方の磁気抵抗素子内
の電流通過により生じた磁場により分極される。
Therefore, all the lines of magnetic force generated by the magnetic domains surrounding the magnetic field opposite the magnetoresistive element are collected by the film rather than by the two magnetoresistive elements. Preferably, each magnetoresistive element of a magnetoresistive transducer as described above is polarized by a magnetic field created by the passage of current through the other magnetoresistive element.

従って、第1磁気抵抗素子内を電流1が通過して生じた
磁場を日,とすると、第2磁気抵抗素子は磁場日,によ
り分極される。同様にして第2磁気抵抗素子内で同じ電
流1により生起した磁場を日2とすると、第1磁気抵抗
素子は磁場日2により分極される。通常、日,と日2と
は絶対値が実質的に等しく符号が反対なことは明らかで
ある。従って2個の磁気抵抗素子に与える電流1の強度
を調整するだけで、2個の素子を夫々45oのオーダの
角度だけ分極し、2個の磁気抵抗の夫々の磁化を互いに
90oにし得ることは明らかである。2個の磁気抵抗素
子を持つ磁気抵抗変換器が、該素子の両側に配置された
磁気遮蔽手段を含む場合、下記の現象が現れる。
Therefore, if the magnetic field generated when the current 1 passes through the first magnetoresistive element is 1, then the second magnetoresistive element is polarized by the magnetic field 1. Similarly, if the magnetic field generated by the same current 1 in the second magnetoresistive element is 2, then the first magnetoresistive element is polarized by the magnetic field 2. It is clear that, normally, day 2 and day 2 have substantially equal absolute values and opposite signs. Therefore, by simply adjusting the intensity of the current 1 applied to the two magnetoresistive elements, it is possible to polarize each of the two elements by an angle of the order of 45o and make the magnetizations of the two magnetoresistive elements 90o with respect to each other. it is obvious. When a magnetoresistive transducer with two magnetoresistive elements includes magnetic shielding means arranged on both sides of the elements, the following phenomenon appears.

−第1磁気抵抗素子の側に位置する磁気遮蔽手段は、該
素子内を電流1が通過して生じた磁場日,の作用を受け
る。
- the magnetic shielding means located on the side of the first magnetoresistive element are subjected to the action of the magnetic field generated by the passage of the current 1 through the element;

該磁場日,に応じて磁気遮蔽手段の内部で磁気量分布が
生じる。該磁気量分布は、錫畑,の作用下の磁気遮蔽手
段の領域の内部及び表面の体積磁気量と表面磁気量とか
ら成る。これらの磁気量は、一方で場日,の作用下の磁
気遮蔽手段の体積が大きく他方で場の強度が大きい程大
きくなる。この現象をより詳細に説明した文献として、
W.F.BROWN“プランシップ・ドウ・フエロマグ
ネチスムPrincipedeferromagnet
isme”第0,m章,DUNOD刊,1970,及び
、DURANDの著書、第W章、第1項第3節及び第風
車、MASSON刊、1968が挙げられる。
A magnetic quantity distribution occurs inside the magnetic shielding means depending on the magnetic field. The magnetic quantity distribution consists of a volume magnetic quantity and a surface magnetic quantity inside and on the surface of the area of the magnetic shielding means under the action of the tin field. These magnetic quantities increase as the volume of the magnetic shielding means under the action of the field increases and on the other hand as the field strength increases. As a document that explains this phenomenon in more detail,
W. F. BROWN “Principedeferromagnetism”
isme'' Chapter 0, M, published by DUNOD, 1970, and DURAND's book, Chapter W, Section 1, Section 3 and Windmill, published by MASSON, 1968.

第2磁気抵抗素子の側に配置され該素子内の電流1の通
過により生じた磁場比の作用を受ける磁気遮蔽手段の内
部に於いても、同様の現象が生じることは明らかである
It is clear that a similar phenomenon occurs inside the magnetic shielding means, which is arranged on the side of the second magnetoresistive element and is affected by the magnetic field ratio produced by the passage of the current 1 through the element.

磁気遮蔽手段の内部の磁気量は“戻り磁場”と指称され
る磁場を生成する。
The magnetic mass inside the magnetic shielding means generates a magnetic field referred to as the "return field".

該磁場は前記磁気量を生成した磁場日,に対抗する(こ
こでは第1磁気抵抗素子の側に配置された第1磁気遮蔽
手段を扱うが、他方の磁気遮蔽手段により生じる現象も
等しいことは明らかである)。この戻り磁場をHrとす
る。磁場Hrの絶対値は磁場日,の絶対値の1/3に実
質的に等しい。この場合、第2磁気抵抗素子の分極磁場
はもはや日,でなく日,一日rとなる。同様に、第1磁
気抵抗素子の分極磁場は日2でなく日2−Hrである。
The magnetic field opposes the magnetic field that generated the magnetic quantity (here, we are dealing with the first magnetic shielding means disposed on the side of the first magnetoresistive element, but the phenomenon caused by the other magnetic shielding means is also the same). it is obvious). Let this return magnetic field be Hr. The absolute value of the magnetic field Hr is substantially equal to 1/3 of the absolute value of the magnetic field Hr. In this case, the polarizing magnetic field of the second magnetoresistive element is no longer 1, but 1, 1, r. Similarly, the polarizing field of the first magnetoresistive element is 2-Hr instead of 2-Hr.

磁気抵抗は45oでなくより小さい値の角度で分極され
、従って450で分極されていたときに比較して感度(
即ち比△R/△H)が低下する。更に、送出される信号
が直線性を失なう。この欠点を除去するには、2個の磁
気抵抗内の電流強度を増加して場日,,比の強度を増加
し磁気抵抗内で450のオーダの分極角度を回復するこ
とが必要である。
The magnetoresistance is polarized at a smaller value of the angle instead of 45o and therefore has less sensitivity (
That is, the ratio ΔR/ΔH) decreases. Furthermore, the transmitted signal loses its linearity. To eliminate this drawback, it is necessary to increase the current strength in the two magnetoresistors to increase the relative strength and restore a polarization angle of the order of 450 in the magnetoresistors.

このような電流増加は、一方で磁気抵抗の過度の加熱を
伴ない、他方で磁気抵抗分極用ェネルギの増加を必要と
する。本発明に於いては前記の欠点を除去すべく、一方
で、磁気抵抗内の電流通過により生じた磁場の作用を受
ける磁気遮蔽手段の体積を減縮し、他方で該磁場の強度
を低減する。
Such an increase in current entails, on the one hand, excessive heating of the magnetoresistor and, on the other hand, an increase in the energy for magnetoresistive polarization. In order to eliminate the above-mentioned disadvantages, the present invention reduces, on the one hand, the volume of the magnetic shielding means which is affected by the magnetic field generated by the passage of current in the magnetoresistive element, and, on the other hand, reduces the strength of the magnetic field.

前記の目的は、磁気抵抗と磁気遮蔽手段との間に、磁気
抵抗素子により生じた磁場を磁気記録媒体から最も遠い
磁気遮蔽手段部分に偏向させる磁気偏向手段を配置する
ことによって達成される。
The above object is achieved by arranging a magnetic deflection means between the magnetoresistive element and the magnetic shielding means, which deflects the magnetic field generated by the magnetoresistive element to the part of the magnetic shielding means furthest from the magnetic recording medium.

磁場偏向用の磁気偏向手段は、磁気抵抗素子により生成
された磁場のスクリーンの機能を果す。磁気媒体の複数
のトラックの内部に収録された情報謙取のための本発明
の磁気抵抗変換器は、−情報の進行方向に垂直に配置さ
れており長手方向に電流を通過させる少くとも1個の磁
気抵抗素子と、−前記素子に対向するトラックの情報の
周囲の情報群の磁束を橘集すべ〈前記素子の両側に配置
された第1及び第2の磁気遮蔽手段と、を含む磁気抵抗
変換器であり、前記変換器が、前記素子内を流れる電流
により生じた磁場の偏向手段を含んでおり、前記偏向手
段は、一方で、前記素子と第1遮蔽手段との間及び前記
素子と第2遮蔽手段との間に夫々配置されているこを特
徴とする。
The magnetic deflection means for magnetic field deflection serve as a screen for the magnetic field generated by the magnetoresistive element. The magnetoresistive transducer of the present invention for the acquisition of information recorded inside a plurality of tracks of a magnetic medium comprises: - at least one magnetoresistive transducer arranged perpendicular to the direction of information propagation and passing a current in the longitudinal direction; a magnetoresistive element; - first and second magnetic shielding means disposed on both sides of the element for collecting the magnetic flux of the information group around the information on the track facing the element; a transducer, said transducer comprising means for deflecting a magnetic field produced by a current flowing in said element, said deflection means being arranged between said element and said first shielding means and between said element and said element; It is characterized in that it is respectively arranged between the second shielding means and the second shielding means.

本発明の別の特徴及び利点は、添付図面に示す非限定具
体例に基く下記の記載より明らかにされるであろう。
Further characteristics and advantages of the invention will become apparent from the following description based on a non-limiting example illustrated in the attached drawings.

本発明の磁気抵抗変換器の構成をより十分に理解するた
めに、一方で第la,lb及び2図によって磁気抵抗の
作動原理を多少説明し、他方で第3a,3b,3c,4
,5,6a及び6b図によって従来技術の2個の磁気抵
抗を含む磁気抵抗変換器に関して説明しておくのが適当
であろう。
In order to understand more fully the construction of the magnetoresistive transducer of the invention, the working principle of the magnetoresistive system will be explained somewhat by means of figures la, lb and 2 on the one hand, and figures 3a, 3b, 3c, 4
, 5, 6a and 6b, it may be appropriate to describe a prior art magnetoresistive transducer comprising two magnetoresistors.

第la図及びlb図は、唯1個の磁気抵抗M旧から成る
基本的磁気抵抗変換器TMREを示す。第la図に於い
て、磁気抵抗MRは、磁気テープの如き磁気記録媒体S
MのトラックPに対向して配置されている。磁気抵抗の
長さLはトラックPの幅LPとほぼ同じ寸法であり、媒
体S肌こ垂直に測定した高さh‘ま例えば、30乃至4
0ミクロンのオーダである。長さLは幅そより大きい。
磁気抵抗MRの2個の端子は、(第la図で省略した)
接続導体を含んでおり、該導体は磁気抵抗を、媒体SM
に収録された情報の電子回路に接続し得る。磁気抵抗M
Rの磁化容易軸Axfは長手方向に平行であり、磁化困
難鞠AXdは長手方向及び媒体SMに垂直である。電流
1が磁気抵抗MRに供給され、例えば第la図及び第l
b図に示す方向、即ち、磁化容易軸AXfに平行に流れ
る。磁気抵抗M旧は媒体の基本磁区の漏れ磁界Hfの作
用を受ける。
Figures 1a and 1b show a basic magnetoresistive transducer TMRE consisting of only one magnetoresistive element M. In Figure la, the magnetoresistive MR is connected to a magnetic recording medium S such as a magnetic tape.
It is arranged opposite to the track P of M. The length L of the magnetic resistance is approximately the same as the width LP of the track P, and the height h' measured perpendicular to the surface of the medium S is, for example, 30 to 4
It is on the order of 0 microns. The length L is greater than the width.
The two terminals of the magnetoresistive MR are (omitted in Figure la)
includes a connecting conductor, which conductor connects the magnetoresistive medium SM
It can be connected to the electronic circuit of the information stored in the . Magnetic resistance M
The easy magnetization axis Axf of R is parallel to the longitudinal direction, and the hard magnetization axis AXd is perpendicular to the longitudinal direction and the medium SM. A current 1 is supplied to the magnetoresistive MR, e.g.
It flows in the direction shown in figure b, that is, parallel to the easy axis of magnetization AXf. The magnetic resistance M is affected by the leakage magnetic field Hf of the basic magnetic domain of the medium.

(こられの磁区のいくつか則ちA,,A2,Ai,Aj
が第la図示れている)。漏れ磁界は記録媒体に垂直で
あり、従って磁気抵抗M旧の磁化困難軸Axdに平行で
ある。第2図は、磁気抵抗MRの抵抗Rの変化△Rを、
磁化困難軸Axdに沿って作用する磁場日の関数として
示すグラフであり、基本的磁気抵抗変換器TMREの作
動をより十分に理解し得る。
(Some of these magnetic domains are A,, A2, Ai, Aj
is shown in Figure la). The leakage field is perpendicular to the recording medium and therefore parallel to the hard axis Axd of the magnetoresistive member M. Figure 2 shows the change △R in the resistance R of the magnetoresistive MR,
Figure 2 is a graph shown as a function of the magnetic field acting along the hard axis Axd, allowing a better understanding of the operation of the basic magnetoresistive transducer TMRE;

日の値が、磁気抵抗構成材料の異万性磁場Hkに等しい
場合、材料は磁化困難方向で飽和されており抵抗Rは変
化しない。磁気抵抗に分極磁場Hpo夕を作用させて第
2図の座標軸を原点○,から原点02に移すと、磁気抵
抗MRに最高感度を与えることが可能である。このこと
は前出のフランス特許第2165206号に記載されて
いる。(第1図で省略した外部ソースにより生成される
)分極磁場日poそは磁気抵抗MRの磁化困難軸Axd
に平行であり、従って媒体SMの情報の漏れ磁界Hrに
平行である。即ち記録媒体の面に垂直である。磁気抵抗
に分極磁場が作用すると磁気抵抗の変化△Rは比較的大
きい。分極磁場Hpoその値が磁化方向を約45o、回
転させる値を有するときに△Rが最大になり得る。(磁
気抵抗に磁場が全く作用していないときは磁化は磁化容
易軸Axfに平行である)。従って磁気抵抗に作用する
磁場の比較的小さい変化△H‘こよって抵抗値の比較的
大きい変化△Rが生起される。
If the value of h is equal to the anisotropic magnetic field Hk of the magnetoresistive material, the material is saturated in the hard magnetization direction and the resistance R does not change. By applying a polarizing magnetic field Hpo to the magnetoresistance and moving the coordinate axes in FIG. 2 from the origin ○, to the origin 02, it is possible to give the magnetoresistance MR the highest sensitivity. This is described in the aforementioned French patent no. 2165206. The polarization magnetic field (generated by an external source omitted in Figure 1) is the hard magnetization axis Axd of the magnetoresistive MR.
Therefore, it is parallel to the information leakage magnetic field Hr of the medium SM. That is, it is perpendicular to the surface of the recording medium. When a polarizing magnetic field acts on magnetoresistance, the change in magnetoresistance ΔR is relatively large. ΔR may be maximum when the polarization magnetic field Hpo has a value that rotates the magnetization direction by about 45°. (When no magnetic field acts on the magnetoresistance, the magnetization is parallel to the easy axis of magnetization Axf). Therefore, a relatively small change ΔH' in the magnetic field acting on the magnetoresistance causes a relatively large change ΔR in the resistance value.

従って、作動点PF従って横座標○,,02がHpo夕
に等しいと定義する。磁気抵抗に媒体の情報の漏れ磁界
Hfが作用すると、抵抗値の変化は△Rfであり、磁気
抵抗の端子で集められる電圧は△V=1×△Rfである
。従って作動点PFの周囲では、抵抗変化は、磁化困難
軸の方向で磁気抵抗に作用した漏れ磁界の一次関数であ
る。第3a,3b及び3c図は実用化されている従来技
術の磁気抵抗変換器を示す。
Therefore, it is defined that the operating point PF and the abscissa 0,02 are equal to Hpo. When the leakage magnetic field Hf of the information of the medium acts on the magnetoresistive element, the change in resistance value is ΔRf, and the voltage collected at the terminal of the magnetoresistive member is ΔV=1×ΔRf. Around the operating point PF, the resistance change is therefore a linear function of the leakage field acting on the reluctance in the direction of the hard axis. Figures 3a, 3b and 3c show prior art magnetoresistive transducers in practical use.

この変換器をTMRAで示す。変換器TMRAは、−第
1磁気抵抗M収・と、 −第2磁気抵抗M旧2と、 −第1磁気遮蔽手段M旧,と、 −第2磁気遮蔽手段M旧2と、/ を含む。
This converter is designated TMRA. The transducer TMRA includes: - a first magnetoresistive member M; - a second magnetoresistive member M2; - a first magnetic shielding means M2; - a second magnetic shielding means M2; .

第3a,3b及び3c図に於いて、明瞭に示すために変
換器TMRAを構成する種々の素子間の間隔がかなり拡
大して示されていることは明らかである。
It is clear that in Figures 3a, 3b and 3c, the spacing between the various elements making up the transducer TMRA has been considerably enlarged for clarity.

同じ理由から、該素子の夫々を隔てる則ち素子M旧,と
MR,,素子MR,とMR2,素子MR2とM旧2を夫
々隔てる非磁性層も図示しない。更に、これらの非磁性
層もまた電気絶縁性である。図示の変換器TM旧Aは記
録媒体SMのトラックPに対向して配置されており、該
トラックの数個の基本滋区、即ち、磁区A,,A2,A
i‐1,Ai,Ai,Ai十・が図示されている。素子
MR,とMR2とは第la,lb図の素子MRと完全に
等しく、長手方向に電流1が流れる。L,,Axf,,
Axd.は夫々、磁気抵抗M旧,の長さ、磁化容易軸、
磁化困難軸を示す。同様にL2,Axf2,AXd2は
夫々、磁気抵抗M旧2の長さ、磁化容易軸、磁化困難軸
を示す。長さL,とL2とは互いに実質的に等しくトラ
ックPの幅LPに近い値である。2個の磁気抵抗は下記
の如く分極される。
For the same reason, the nonmagnetic layers that separate the elements, ie, elements Mold and MR, elements MR and MR2, and elements MR2 and Mold2, are also not shown. Furthermore, these non-magnetic layers are also electrically insulating. The illustrated transducer TM A is arranged opposite to a track P of the recording medium SM, which corresponds to several basic regions of the track, namely magnetic domains A, , A2, A.
i-1, Ai, Ai, Ai 10. are illustrated. Elements MR and MR2 are completely identical to element MR in FIGS. 1a and 1b, and a current 1 flows in the longitudinal direction. L,,Axf,,
Axd. are the length of magnetic resistance M, the axis of easy magnetization, and
Indicates the hard axis of magnetization. Similarly, L2, Axf2, and AXd2 indicate the length of the magnetic resistance M old 2, the easy axis of magnetization, and the axis of difficult magnetization, respectively. The lengths L and L2 are substantially equal to each other and have values close to the width LP of the track P. The two magnetoresistances are polarized as follows.

磁気抵抗MR,の磁化AM.は磁化容易軸AXf,と十
450の角度を成す。即ち、休止中の磁気抵抗K岬,の
磁化AM,の位置に対して十450の角度を成す。磁気
抵抗M位2の磁化AM2は磁化容易軸AXf2と−45
0の角度を成す。即ち作用磁場が存在しないときの(休
止中の)磁気抵抗M旧2の磁化AM2の位置に対して−
45oの角度を成す。従って、磁気抵抗M町,及びMR
2の磁化AM,及びAM2は互いに900 の角度を成
す。好ましくは磁気異万性材から成る磁気遮蔽手段M旧
,,M&は夫々、磁化容易軸AF,,AF2と磁化困難
軸AD,,AD2とを有する。
Magnetization of magnetoresistance MR, AM. forms an angle of 1450 with the axis of easy magnetization AXf. That is, it forms an angle of 1450 with respect to the position of the magnetization AM, of the magnetoresistive cape K, which is at rest. Magnetization AM2 of magnetoresistance M level 2 is -45 with easy magnetization axis AXf2
form an angle of 0. That is, for the position of the magnetization AM2 of the (resting) magnetoresistive Mold 2 in the absence of an acting magnetic field -
Forms an angle of 45o. Therefore, magnetoresistance M town, and MR
The two magnetizations AM and AM2 form an angle of 900 degrees with each other. The magnetic shielding means M, , M&, preferably made of a magnetically anisotropic material, each have an easy axis of magnetization AF, , AF2 and a hard axis of magnetization AD, , AD2.

軸AF,及びAF2は軸Axf,及びAxf2に平行で
あり、磁化困難軸AD,,AD2は磁化困難軸A血,A
Xd2に平行である。好ましくは磁気遮蔽手段MB,,
M旧2は、互いに平行で非磁性層により隔離された複数
の磁性薄膜から成る。
The axes AF and AF2 are parallel to the axes Axf and Axf2, and the hard magnetization axes AD, AD2 are parallel to the hard magnetization axes A, A, and A.
It is parallel to Xd2. Preferably magnetic shielding means MB,,
M old 2 consists of a plurality of magnetic thin films parallel to each other and separated by non-magnetic layers.

図を簡単にするためにこれらの膜は第3図に図示されて
いない。特に第3c図に示した如く、2個の磁気抵抗M
R,とMR2との間の間隔は十分に小さく、2個の磁気
抵抗が事実上同一漏れ磁界Hfの作用を受けるように配
置されなければならない。
These membranes are not shown in FIG. 3 for simplicity of illustration. In particular, as shown in Figure 3c, two magnetoresistive elements M
The spacing between R, and MR2 must be sufficiently small and arranged such that the two reluctances are subjected to virtually the same stray magnetic field Hf.

MR,とMR2とが媒体SMのトラックPの磁区Ai‐
,とAiとの境界FRiから実質的に等距離になると情
報の読取りが行なわれる。第3b図で示したように遮蔽
手段MB,M旧2は、境界FR,の両側の2個の磁気抵
抗MR,,MR2と対向する磁区A;‐,,Ai以外の
磁区群から生じた漏れ磁界の合力の磁力線を補集し得る
MR and MR2 are magnetic domains Ai- of track P of medium SM.
, and Ai become substantially equidistant from the boundary FRi, the information is read. As shown in Fig. 3b, the shielding means MB, M old 2 is configured to prevent leakage caused by magnetic domain groups other than the magnetic domains A; The magnetic field lines of the resultant force of the magnetic fields can be collected.

即ち、遮蔽手段MB,MBが存在するため、磁気抵抗M
R,,MR2は前記合力の作用を受けない。次に第4図
に関して説明する。磁気抵抗MR,とMR2との間の間
隔をdとする。磁気抵抗の幅は間隔dに比較して遥かに
小さい。このことは、磁気抵抗M旧,とMR2との間隔
dが、第4図に示す如く記録媒体SMに垂直な磁気抵抗
MR,及びMR2の夫々の対称鞠問の距離に等しいこと
を意味する。次に第6図に関して説明する。Hpo夕,
とHpo夕2との間にIHpoと,l=IHpoそ2
lが成立すると考えると、磁気抵抗MR,,MR2の分
極磁場が磁化容易軸AXf,,AXf2に対して形成す
る角度8,,82は、磁化AM,,A地と同様に夫々十
450 ,一450 に等しい。
That is, since the shielding means MB, MB are present, the magnetic resistance M
R,, MR2 are not affected by the resultant force. Next, FIG. 4 will be explained. Let d be the distance between the magnetic resistances MR and MR2. The width of the reluctance is much smaller compared to the spacing d. This means that the distance d between the magnetoresistive elements M and MR2 is equal to the distance between the symmetrical distances of the magnetic resistances MR and MR2 perpendicular to the recording medium SM, as shown in FIG. Next, FIG. 6 will be explained. Hpo evening,
IHpo between and Hpo2, l=IHposo2
Considering that l holds true, the angles 8, 82 formed by the polarization magnetic fields of magnetoresistances MR, MR2 with respect to the easy magnetization axes AXf, AXf2 are 1450 and 1, respectively, similar to the magnetizations AM, , A. Equal to 450.

このように作動点PF,及ぼPF2を決定する。M旧,
とMR2とに同一漏れ磁界Hfが作用すると、該磁気抵
抗の端子の電圧変化は夫々△V,,△V2である。該電
圧変化は夫々、差動増幅器AMPDIFの入力E,,E
2に送られる(第5図参照)。
In this way, the operating points PF and PF2 are determined. M old,
When the same leakage magnetic field Hf acts on MR2 and MR2, the voltage changes at the terminals of the magnetic resistances are ΔV, ΔV2, respectively. The voltage changes are applied to the inputs E, , E of the differential amplifier AMPDIF, respectively.
2 (see Figure 5).

従って第1入力は信号△V,十B,を受容する。B,は
ノイズ信号である(ノイズ信号は特に、トラックPの隣
接トラック群の磁気情報、及び、2個の磁気抵抗内の熱
擾乱等より生じる)。差動増幅器AMPDIFの入力E
2は信号△V2十&を受容する。第6a図を検討すると
△V2=−△V,が得られる。
The first input therefore receives the signals ΔV, 1B. B, is a noise signal (the noise signal is generated particularly from magnetic information of a group of tracks adjacent to track P, thermal disturbance within the two magnetic resistors, etc.). Input E of differential amplifier AMPDIF
2 receives the signal ΔV2+&. Examining FIG. 6a, we obtain ΔV2=−ΔV.

従って増幅器AMPDIFの出力で得られる信号の絶対
値はl2△V,l+B=l2△V2l+Bに比例する。
Therefore, the absolute value of the signal obtained at the output of the amplifier AMPDIF is proportional to l2ΔV,l+B=l2ΔV2l+B.

式中B=B−B2であり、BがB2に近い値であるから
Bは極めて小さい。差動増幅器の使用により、1個の磁
気抵抗の出力信号の2倍に比例する出力信号が得られる
ことが理解されるであろう。
In the formula, B=B-B2, and since B has a value close to B2, B is extremely small. It will be appreciated that the use of a differential amplifier provides an output signal that is proportional to twice the output signal of a single magnetoresistor.

先ず、磁気遮蔽手段MB,MB2は、磁気抵抗からの距
離dの範囲では、磁気抵抗内を電流1が通過して生じた
磁場に影響を与えないと想定する。
First, it is assumed that the magnetic shielding means MB, MB2 do not affect the magnetic field generated by the current 1 passing through the magnetic resistance within a distance d from the magnetic resistance.

(磁気抵抗内で生じ磁場の分布に関しては、磁気抵抗変
換器TMRAが遮蔽手段MB,MBを持たない場合と同
様である)。従って、磁気抵抗からの距離dの範囲では
、磁気抵抗M凪.,MR2内を電流1が通って生じた磁
場日,,日2は夫々、Hpoそ,,Hpo夕2 に等し
いと想定する。
(The distribution of the magnetic field generated within the magnetoresistive device is the same as in the case where the magnetoresistive transducer TMRA does not have the shielding means MB, MB). Therefore, within the range of distance d from the magnetoresistor, the magnetoresistive force M calm. , MR2 are assumed to produce magnetic fields 1, 2, which are equal to Hpo, , Hpo2, respectively.

磁気抵抗内を通って日,,比に前記の値を与え得る電流
の強度をlsBとする。(前記の値は2個の磁気抵抗に
ほぼ45oの分極を生じる)。作動点はPF,及びPF
2である(第6a図参照)。ところが、磁気遮蔽手段M
B,,M旧2は、磁気抵抗M旧,,MR2内を強度ls
Bの電流1が通って生じた磁力線日,,日2の分布に影
響を与えるのみでなく、該磁場の強度にも影響を与える
と考えられる。
Let lsB be the strength of the current that can pass through the magnetoresistor and give the above value to the ratio. (The above values result in a polarization of approximately 45° in the two magnetoresistances). The operating points are PF and PF
2 (see Figure 6a). However, the magnetic shielding means M
B,,M old 2 has magnetic resistance M old,,MR2 with intensity ls
It is thought that this not only affects the distribution of the magnetic field lines 1, 2 caused by the current 1 of B, but also affects the strength of the magnetic field.

前記の如く、手段MBに磁場日,が作用する。As mentioned above, a magnetic field acts on the means MB.

磁場日.は磁気手段M旧,の内部及び表面に磁気量を生
成し、該磁気量群は、場日,と逆向きの戻り磁場Hr,
を生成する。同様にして、場伍2の作用を受けた遮蔽手
段M旧2は、磁気抵抗MR2のレベルで場はと逆向きの
戻り磁場Hr2を生成する。戻り磁場Hr,及びHr2
の強度は場日,及び日2の強度の1/3に近い値であり
、一方で磁気遮蔽手段MB,及びM旧2が含む磁気量の
関数であり、他方で場日,及び日2の強度の関数である
。前記の磁気量目体は、磁場日,,日2の作用を受けた
手段MB,MB2の体積と表面積との関数である。従っ
て、磁気抵抗M旧,,MR2に作用する合成分極磁場を
夫々H′poそ,,Hpo〆2とすると、Hpo,=日
,一日r,及びHpoそ2 =均一Hr2である。
Magnetic field day. generates a magnetic quantity inside and on the surface of the magnetic means M, and the group of magnetic quantities is generated by a return magnetic field Hr, which is in the opposite direction to the field Hr,
generate. Similarly, the shielding means Mold2, which is acted upon by the field 52, generates a return magnetic field Hr2, which is at the level of the magnetic resistance MR2 and has a direction opposite to that of the field. Return magnetic field Hr, and Hr2
The intensity of is close to 1/3 of the intensity of ba day and day 2, and on the one hand is a function of the amount of magnetism contained in the magnetic shielding means MB and M old 2, and on the other hand is a value of ba day and day 2. It is a function of intensity. Said magnetic quantity is a function of the volume and surface area of the means MB, MB2 subjected to the influence of the magnetic fields 1, 2. Therefore, if the composite polarization magnetic fields acting on the magnetoresistances M old, MR2 are respectively H'poso, Hpo〆2, then Hpo,=day, dayr, and Hposo2=uniform Hr2.

従って IHpo〆l<IHpo夕,l及びIH′po夕2 l
<IHpoZ2 lである。
Therefore, IHpo〆l<IHpo〆l and IH'po〆l
<IHpoZ2 l.

その結果、作動点はPF,,PF2でなくPF′,,P
F′2である。
As a result, the operating point is not PF,,PF2 but PF',,P
It is F'2.

このときに磁気抵抗の感度はかなり低下し、従って磁気
抵抗の抵抗変化従って端子電圧変化は、作用する漏れ磁
界の一次関数にならない。MR,,MR2の初期作動点
をPF,,PF2に戻すために、H′poそ,,H′p
o〆2 がHpoそ.,Hpo〆2に実質的に等しくな
るように場日,,日2の強度を増加する必要がある。
At this time, the sensitivity of the magnetoresistive device is considerably reduced, so that the change in resistance of the magnetoresistive device and hence the terminal voltage change is no longer a linear function of the acting leakage field. In order to return the initial operating point of MR,, MR2 to PF,, PF2, H'po so,, H'p
o〆2 is Hpo so. , Hpo〆2 needs to be increased in intensity so that it becomes substantially equal to Hpo〆2.

このことは、磁気抵抗内を流れる電流の強度を実質的に
増加させる必要があること、即ちlsBより遥かに大き
い強度IBを得る必要があるこを意味する。この結果磁
気抵抗が余分に加熱され、より強力な給電源の使用を要
することは明らかである。更に、磁気抵抗が生成するノ
イズ信号が大幅に増大する。第7a図と第7b図、及び
、第8a図と第8b図は、変換器TM旧Aの如き従来技
術の磁気抵抗変換器の欠点を除去し得る本発明の磁気抵
抗変換器の2個の具体例TMR1,,TMR12を示す
。本発明の原理は、変換器の2個の磁気抵抗の磁場日,
,日2の作用を受ける遮蔽手段の体積と表面積とを最小
にし、該磁気遮蔽手段の内部及び表面で日,,日2の強
度を低減させ、これにより戻り磁場Hr,,Hr2をか
なり低減させるか又は消去することにある。これは、第
1磁気抵抗と隣援磁気遮蔽手段との間に、該磁気抵抗内
の電流通過により生じた磁場を偏向せしめる磁気偏向手
段を配置し、第2磁気抵抗と隣接磁気遮蔽手段との間に
も、第2磁気抵抗により生じた磁場を偏向せしめる第2
の磁気偏向手段を配置することによって達成される。第
7a図及び第7b図は、本発明の磁気抵抗変換器の好ま
しい第1具体例TMR1,を示す。
This means that it is necessary to substantially increase the intensity of the current flowing through the magnetoresistive element, ie to obtain an intensity IB much greater than IsB. It is clear that this results in extra heating of the magnetoresistor and requires the use of a more powerful power supply. Additionally, the noise signal generated by the magnetoresistive device is significantly increased. Figures 7a and 7b and Figures 8a and 8b illustrate two examples of the magnetoresistive transducer of the present invention, which can eliminate the disadvantages of prior art magnetoresistive transducers such as the transducer TM old A. Specific examples TMR1, TMR12 are shown. The principle of the invention is that the magnetic field of the two magnetoresistances of the transducer,
, 2 to minimize the volume and surface area of the shielding means subjected to the action of the magnetic shielding means, thereby reducing the intensity of the magnetic shielding means inside and on the surface of the magnetic shielding means, thereby significantly reducing the return magnetic field Hr,, Hr2. or to erase it. In this method, a magnetic deflection means for deflecting a magnetic field generated by current passing through the magnetic resistance is arranged between the first magnetic resistance and the adjacent magnetic shielding means, and a magnetic deflection means is arranged between the first magnetic resistance and the adjacent magnetic shielding means. In between, there is a second magnetic field that deflects the magnetic field generated by the second magnetic resistance.
This is achieved by arranging magnetic deflection means. Figures 7a and 7b show a first preferred embodiment of the magnetoresistive transducer of the invention, TMR1.

該変換器は、−互いに平行な2個の磁気抵抗MR1,,
MR12と、−磁気遮蔽手段M旧1,,MB12と、−
磁気偏向手段MMD,,MMD2とを含む。
The transducer comprises: - two magnetoresistive resistors MR1, , parallel to each other;
MR12, -magnetic shielding means M old 1, MB12, -
It includes magnetic deflection means MMD, , MMD2.

2個の磁気抵抗MR1,,MR12は、従釆技術の変換
器TMRAの2個の磁気抵抗MR,,MR2と全く等し
い。
The two magnetoresistances MR1, MR12 are exactly equal to the two magnetoresistances MR1, MR2 of the secondary technology transducer TMRA.

該磁気抵抗は、磁気異方性材料から成り、その長さは、
変換器TMR1,に向き合って配置された媒体SMの幅
LPに実質的に等しい。
The magnetoresistor is made of magnetically anisotropic material and has a length of
substantially equal to the width LP of the medium SM arranged opposite the transducer TMR1.

磁化容易軸と磁化困難軸とは、第3a図の変換器TMR
Aの磁気抵抗M旧,,MR2の磁化容易軸Axf,,A
xf2及び磁化困難軸Axq,Axd2と同様に配置さ
れている。更に、2個の磁気抵抗MR1,,MR12は
、磁気抵抗M股,,MR2と同様にして分極されている
The easy magnetization axis and the hard magnetization axis are the converter TMR shown in Figure 3a.
Magnetic resistance Mold of A,, easy axis of magnetization Axf of MR2,,A
They are arranged similarly to xf2 and the hard magnetization axes Axq and Axd2. Further, the two magnetic resistors MR1, MR12 are polarized in the same manner as the magnetic resistors M, MR2.

磁気遮蔽手段MB1,,MB12は従来技術による変換
器TMRAの磁気遮蔽手段MB,M珍と完全に等しい。
2個の磁気抵抗MR1,,MR12により生成された磁
場の磁気偏向手段MMD,,MMD2は互いに全く等し
い。
The magnetic shielding means MB1, MB12 are completely equivalent to the magnetic shielding means MB, MB12 of the prior art transducer TMRA.
The magnetic deflection means MMD, MMD2 of the magnetic field generated by the two magnetoresistive resistors MR1, MR12 are completely equal to each other.

該手段は夫々、互いに平行で非磁性薄層により互いから
隔離された平行な複数の磁性薄膜から成る。従って、第
7a図の手段Mhm,は、例えば6個の磁性薄膜LAM
,,LAM2,LAM3,LAM4,LAM5,LAM
6を含んでおり、各膜間に非磁性材料の膜LIS.,L
IS2,LIS3,LIS4,LIS5が配置されてい
る。
The means each consist of a plurality of parallel magnetic thin films parallel to each other and separated from each other by non-magnetic thin layers. Therefore, the means Mhm, of FIG.
,,LAM2,LAM3,LAM4,LAM5,LAM
6, and a film LIS.6 of non-magnetic material is provided between each film. ,L
IS2, LIS3, LIS4, and LIS5 are arranged.

同様に、磁気偏向手段MMD2は、非磁性薄膜LIS6
乃至LIS,.によって互いから隔離された複数の磁性
薄膜LAM7乃至LAM,2を含む。
Similarly, the magnetic deflection means MMD2 includes a non-magnetic thin film LIS6.
~ LIS, . It includes a plurality of magnetic thin films LAM7 to LAM,2 separated from each other by.

膜LAM,乃至LAM6及びLAM7乃至LAM,2は
好ましくは磁気異方性材料から成り磁化容易軸及び磁化
困難軸は夫々、磁気抵抗MR1,,M肝12の磁化容易
軸及び磁化困難軸に平行である。絶縁薄層LIS,乃至
LIS5及びLIS6乃至LIS,.の厚みは、各層の
両隣の磁性膜間の磁気的結合が比較的小さくなるように
選択される。
The films LAM, to LAM6 and LAM7 to LAM,2 are preferably made of a magnetically anisotropic material, and their easy and hard axes of magnetization are parallel to the easy and hard axes of the magnetoresistors MR1, MR12, respectively. be. Insulating thin layers LIS, to LIS5 and LIS6 to LIS, . The thickness of each layer is selected such that the magnetic coupling between adjacent magnetic films of each layer is relatively small.

磁気偏向手段MMD,は非磁性材料の薄層CAM,によ
って磁気遮蔽手段M旧1,から隔離されており、磁気偏
向手段MMD2は、CAM.と同様の非磁性層CA地に
よって磁気遮蔽手段MB12から隔離されている。2個
の磁気抵抗MR1,,MR12‘ま電気絶縁性の非磁性
薄層によって互いに隔離されており、各磁気抵抗は、第
7a図で省略したやはり電気絶縁性の非磁性層によって
近援の磁気偏向手段から隔離されている。
The magnetic deflection means MMD, are separated from the magnetic shielding means M1, by a thin layer of non-magnetic material CAM, and the magnetic deflection means MMD2 are separated from the magnetic shielding means M1, by a thin layer CAM of non-magnetic material. It is isolated from the magnetic shielding means MB12 by a non-magnetic layer CA ground similar to the above. The two magnetoresistive resistors MR1, MR12' are separated from each other by an electrically insulating non-magnetic thin layer, and each magnetoresistive member is separated from the adjacent magnetic resistor by an electrically insulating non-magnetic layer which is also omitted in FIG. 7a. isolated from deflection means.

第7a図及び第7b図によれば、磁気偏向手段の磁性膜
及び非磁性膜の高さ(約30乃至50ミクロン)は、磁
気遮蔽手段の高さ(約200ミクロン)より小さい。
According to Figures 7a and 7b, the height of the magnetic and non-magnetic films of the magnetic deflection means (approximately 30 to 50 microns) is smaller than the height of the magnetic shielding means (approximately 200 microns).

(高さは記録媒体に垂直に測定した膜の寸法である)。
第7b図は特に、磁気偏向手段MMD,,MMD2の機
能を示す。
(Height is the dimension of the film measured perpendicular to the recording medium).
FIG. 7b particularly shows the function of the magnetic deflection means MMD, , MMD2.

第7b図に於いて、磁気抵抗MR,内の電流1の通過に
よって生じた磁力線は点線で示される。磁気偏向手段が
存在しないと仮定した場合(該手段が作動していないと
仮定した場合も同様であるが)、磁力線は磁気抵抗MR
12を通り、該抵抗を45o分極させる。この場合、磁
場日,は領域Z内部で磁気遮蔽手段MBI.内に侵入す
る。領域乙は磁気記録媒体の近傍に位置しており、磁気
抵抗MR,,MR2の高さに実質的に近い高さを有する
。変換器TMRAの磁気偏向手段MMD,が作動してい
ると想定し、磁気抵抗MR1,に同じ電流1を通して生
成した磁場をHD,とする。
In FIG. 7b, the lines of magnetic force caused by the passage of the current 1 in the magnetoresistive element MR are indicated by dotted lines. Assuming no magnetic deflection means are present (and also assuming that said means are not activated), the magnetic field lines are
12 to polarize the resistor at 45°. In this case, the magnetic field is within the region Z inside the magnetic shielding means MBI. invade inside. Area B is located near the magnetic recording medium and has a height substantially close to the height of the magnetoresistive elements MR, MR2. Assuming that the magnetic deflection means MMD of the converter TMRA is in operation, let HD be the magnetic field generated by passing the same current 1 through the magnetoresistive resistor MR1.

磁力線HD,を実線で示す。磁力線HD,は磁気抵抗M
R12を通り該抵抗を45o分極する。この磁力線は、
磁気偏向手段MMD,により磁力線日,に対して変形さ
れている。HD,は日,に対して偏向されており、領域
Z,上方の領域Z2の内部で磁気遮蔽手段M旧1.に侵
入する。(換言すれば、領域Z2は、領域Zより記録媒
体SMから遠い)。領域Z2内の場HD.の強度が偏向
手段MMD,が存在しないときの領域Z,内の場日,の
強度より小さいこと、及び、揚HD,の作用下の磁気遮
蔽手段MB1,の体積及び表面積が磁気偏向手段が存在
しないときの場日,の作用下の同じ磁気遮蔽手段MB1
,の体積及び表面積より小さいことは明らかである。従
って、領域Zの内部及び表面で磁気遮蔽手段MD1,の
内部及び表面に磁場HD,が生成する磁気量は、領海Z
,の内部及び表面で場日,が生成する磁気量より明らか
に小さい。
The magnetic field lines HD are shown as solid lines. Magnetic field line HD, is magnetic resistance M
Polarize the resistor 45o through R12. These lines of magnetic force are
It is deformed with respect to the magnetic field lines by the magnetic deflection means MMD. HD, is deflected with respect to the sun, and inside the region Z, the upper region Z2, the magnetic shielding means M old 1. to invade. (In other words, area Z2 is farther from recording medium SM than area Z). Field HD in area Z2. is smaller than the intensity in the area Z when the deflection means MMD is not present, and the volume and surface area of the magnetic shielding means MB1 under the action of the magnetic deflection means is The same magnetic shielding means MB1 under the action of
, is clearly smaller than the volume and surface area of . Therefore, the amount of magnetism generated by the magnetic field HD inside and on the surface of the magnetic shielding means MD1, inside and on the surface of the territorial sea Z
, is clearly smaller than the amount of magnetism generated inside and on the surface of .

(後者は常に、磁気偏向手段MMD,が存在しないか作
動していないと想定した場合である)。従って、手段M
B,の領域Zの磁気量が生じさせる磁気抵抗MR12の
戻り磁場Hrd.は極めて小さい。第1の理由は、領域
Z2内で生成される磁気量が小さいためであり、第2の
理由は領域Zが磁気抵抗MRI,,MR12から比較的
遠いためである。前記の如く、磁気偏向手段MMD,の
存在は戻り磁場Hrd,を極めて顕著に低減し、磁気抵
抗MR12を分極する磁場HD,に対する磁気遮蔽手段
MB1,の影響を消去する。
(The latter is always the case assuming that the magnetic deflection means MMD, are not present or in operation). Therefore, the means M
The return magnetic field Hrd. is extremely small. The first reason is that the amount of magnetism generated within region Z2 is small, and the second reason is that region Z is relatively far from magnetoresistive regions MRI, MR12. As mentioned above, the presence of the magnetic deflection means MMD, very significantly reduces the return magnetic field Hrd, and eliminates the influence of the magnetic shielding means MB1, on the magnetic field HD, polarizing the magnetoresistive MR12.

換言すれば、磁気偏向手段MMD,が存在するので、約
45o の分極角度を得るために磁気抵抗に与える電流
の値を増加する必要がない。第8a図及び第8b図は、
本発明の磁気抵抗変換器の第2の好ましい具体例TMR
12を示す。
In other words, because of the presence of the magnetic deflection means MMD, there is no need to increase the value of the current applied to the magnetoresistor in order to obtain a polarization angle of approximately 45°. Figures 8a and 8b are
Second preferred embodiment TMR of the magnetoresistive transducer of the present invention
12 is shown.

第8図に示す本発明の磁気抵抗変換器TMR12は、下
記の如き種々の構成素子を含む。一変襖器TMR1,の
磁気抵抗MR1,,M則2と同種の互いに平行な磁気抵
抗MR13,MR14(寸法、磁気異万性材料の種類、
磁化容易轍と磁化困難軸との配置及び分極角度がMR1
,,MR12と同じ)。
The magnetoresistive transducer TMR12 of the present invention shown in FIG. 8 includes various components as described below. Magnetoresistances MR1, MR1, M-law 2 and parallel magnetoresistances MR13, MR14 (dimensions, type of magnetic anisotropic material,
The arrangement of the easy magnetization track and the hard magnetization axis and the polarization angle are MR1
,,same as MR12).

−偏向遮蔽手段MD&,MDB4。- deflection shielding means MD&, MDB4;

非磁性絶縁薄層は、一方で2個の磁気抵抗M旧13とM
R14との間に、他方で各磁気抵抗と該磁気抵抗に近接
の偏向遮蔽手段MD&,MDB4との間に配置されてい
るが、図を簡単にするために第8a図に示していない。
The non-magnetic insulating thin layer on the other hand has two magnetoresistive elements M old 13 and M
R14, and on the other hand between each magnetoresistor and the deflection shielding means MD&, MDB4 proximate to the magnetoresistor, but are not shown in FIG. 8a for the sake of simplicity.

磁気偏向偏向手段MDB3は磁性薄膜L3.,,L3.
2,L3.3,L3.4,L瓶を含んでおり、各膜は非
磁性絶縁薄層LIS3.,,LIS3.2,LIS3.
3,LISMにより互いから隔離されている。
The magnetic deflection deflection means MDB3 includes a magnetic thin film L3. ,,L3.
2, L3.3, L3.4, and L bottles, each film having a non-magnetic insulating thin layer LIS3. ,,LIS3.2,LIS3.
3. Isolated from each other by LISM.

例えば層LISMは磁性膜LMとL3.2との間に配置
されている。磁性膜LM乃至L3.5の厚みに関しては
、磁気抵抗M旧13,MR14から遠い膜ほど厚みが大
きく、種々の磁性膜間の非磁性層の厚みに関しては、該
磁気抵抗から遠い層ほど厚みが4・さし、。換言すれば
、例えば膜L3.,の厚みは膜L3.2の厚みより小さ
く、後者は膜L3.3の厚みより小さく、以後同様であ
る。絶縁膜LIS3.,の厚みは膜LIS3.2の厚み
より大きく、後者は膜LIS3.3の厚みより大きく、
以後同様である。このことは、磁気抵抗に近接の膜間の
磁気的結合が、磁気抵抗から遠隔の勝間の磁気的結合よ
り小さいことを意味する。
For example, the layer LISM is arranged between the magnetic films LM and L3.2. Regarding the thickness of the magnetic films LM to L3.5, the farther from the magnetoresistive films 13 and MR14, the thicker the film, and regarding the thickness of the non-magnetic layer between various magnetic films, the farther from the magnetoresistive film the thicker the film. 4. Sashi. In other words, for example, the membrane L3. , is smaller than the thickness of the membrane L3.2, which is smaller than the thickness of the membrane L3.3, and so on. Insulating film LIS3. , is greater than the thickness of the membrane LIS3.2, which is greater than the thickness of the membrane LIS3.3,
The same applies hereafter. This means that the magnetic coupling between the films close to the magnetoresistor is smaller than the magnetic coupling between the films remote from the magnetoresistor.

例えば、膜LMとL3.2との間の磁気的結合は磁性膜
L3.4とL3.5との間の磁気結合より実質的に小さ
い。偏向遮蔽手段MDB4は偏向遮蔽手段MDB3と完
全に等しく、非磁性材料の絶縁薄膜LISM乃至LIS
Mによって互いから隔離された磁性薄膜L4.,乃至L
4.5を含む。
For example, the magnetic coupling between films LM and L3.2 is substantially less than the magnetic coupling between magnetic films L3.4 and L3.5. The deflection shielding means MDB4 is completely equal to the deflection shielding means MDB3, and is made of an insulating thin film LISM to LIS made of a non-magnetic material.
Magnetic thin films L4. ,~L
Contains 4.5.

手段MDBの場合同様、磁気抵抗に近接の磁性薄膜間の
磁気的結合は、磁気抵抗から遠隔の磁性薄膜間の磁気的
結合より小さい。第8b図は本発明の変換器TMR12
の作動を示す。第8b図は、磁気抵抗MR13内の電流
1の通過により生成された磁力線を示す。
As in the case of means MDB, the magnetic coupling between magnetic thin films close to the magnetoresistor is smaller than the magnetic coupling between magnetic thin films remote from the magnetoresistor. FIG. 8b shows the converter TMR12 of the present invention.
This shows the operation. FIG. 8b shows the magnetic field lines generated by the passage of current 1 in magnetoresistive MR 13. FIG.

該磁力線は磁気抵抗MR14を通り、該磁気抵抗を約4
5o分極し得る。変換器TM眼12は、磁気偏向遮蔽手
段MDB3が2部構成即ち遮蔽手段M旧3と偏向手段M
D3とから構成されているかの如くに作動する。
The magnetic field lines pass through magnetoresistive MR14, increasing the magnetoresistive force to about 4
Can be polarized 5o. The transducer TM eye 12 has a magnetic deflection shielding means MDB3 consisting of two parts, namely a shielding means Mold 3 and a deflection means M
It operates as if it were composed of D3.

従って、変換器TM旧12の作動は、第7b図に説明し
た変換器TMR12の作動と全く同じである。偏向手段
MD3が存在しないは又は作動しないと想定したときに
磁気抵抗MR13内の電流1の通過により生成された磁
力線日3を点線で示す。
The operation of the converter TMold 12 is therefore exactly the same as the operation of the converter TMR12 described in FIG. 7b. The magnetic field lines 3 generated by the passage of the current 1 in the magnetoresistive element MR13 when it is assumed that the deflection means MD3 are not present or activated are shown in dotted lines.

このときに磁場日3の作用を受ける遮蔽手段MB3の領
域をZとすると、Zは無視できない戻り磁場を生成する
。偏向手段MD3が存在し作動すると想定したときの磁
場HD3及び磁気抵抗MR14を通る磁力線を実線で示
す。
If the area of the shielding means MB3 that is affected by the magnetic field 3 at this time is Z, then Z generates a return magnetic field that cannot be ignored. The lines of magnetic force passing through the magnetic field HD3 and the magnetic resistance MR14 are shown by solid lines when it is assumed that the deflection means MD3 exists and operates.

このときに錫HD3の作用を受ける磁気遮蔽手段M旧3
の領域を乙で示す。この場合、戻り磁場Hrd3はHD
3に比較して極めて4・さく、事実上影響を与えない。
従って、約45oの分極角度の値を得るために電流1の
強度増加の必要がない。2個の磁気抵抗素子を含む本発
明の磁気抵抗変換器に関する記載が、1個又は2個より
多い磁気抵抗を含む磁気抵抗変換器にも有効であること
は明らかである。
At this time, magnetic shielding means M old 3 subjected to the action of tin HD3
The area is indicated by O. In this case, the return magnetic field Hrd3 is HD
It is extremely small compared to 3 and has virtually no effect.
Therefore, there is no need to increase the intensity of the current 1 to obtain a polarization angle value of approximately 45°. It is clear that the description of the magnetoresistive transducer of the invention comprising two magnetoresistive elements is also valid for magnetoresistive transducers comprising one or more than two magnetoresistive elements.

2個の磁気抵抗を持つ本発明の変換器の作動に関する前
記の説明と全く同様にして、1個又は2個より多い磁気
抵抗を含む変換器の作動を説明し得る。
In exactly the same way as the above description of the operation of the inventive transducer with two magnetoresistives, the operation of a transducer containing one or more than two magnetoresistors can be explained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、磁気異方性材料から成る1個の磁気抵抗を含
む基本磁気抵抗変換器の作動原理の説明図であり、第l
a図は磁気記録媒体の1個のトラックに対向して配置さ
れた磁気抵抗の斜視図、第lb図は記録トラックに収録
された情報の漏れ磁界に対する磁気抵抗の位置関係を示
す説明図、第2図は磁気抵抗の分極原理を十分に理解す
るために、磁気異方性材料から成る磁気抵抗の変化を、
磁化困難軸の方向に作用する磁場の関数として示すグラ
フ、第3図は平行な2個の磁気抵抗変換器と遮蔽手段と
を含む従来技術の磁気抵抗変換器の説明図であり、第3
a図は前記の如き磁気抵抗変換器の斜視図、第3b図は
側面図、第3c図は、磁気抵抗に対向している媒体の収
録トラックの磁区の方から見た2個の磁気抵抗の平面図
、第4図は、第1及び第2の磁気抵抗内の電流通過によ
り生じた各磁場の主磁力線を示す第3図の磁気抵抗変換
器の断面図、第5図は磁気抵抗の端子で集められた信号
が差動増幅器に供給される状態を示す説明図、第6図は
第6a図と第6b図とから成り、夫々従釆技術の磁気抵
抗変換器の欠点をより十分に理解するために磁気抵抗の
抵抗値の変化を作用磁場の関数として示すグラフであり
、第7図は本発明の磁気抵抗変換器の好ましい具体例を
示しており、第7a図は斜視図、第7b図は、本発明の
変換器の2個の磁気抵抗のう.ちの1個により生じた磁
場の主磁力線の1個に与えられた変形を示す側面図、第
8図は本発明の磁気抵抗変換器の第2具体例を示してお
り、第8a図は斜視図、第8b図は本発明の変換器の2
個の磁気抵抗のうちの1個により生じた磁場の主磁力線
の1個の変形を示す側面図である。 MR……磁気抵抗、TMRE・・・…磁気抵抗変換器、
SM・・・・・・磁気媒体、P・・・・・・トラック、
Hf・・・・・・漏れ磁界、TMRA・・・・・・磁気
抵抗変換器、MB・・・・・・磁気遮蔽手段、AM円D
IF・・・・・・差動増幅器、TMR1・・・・・・磁
気抵抗変換器、MR1・・・・・・磁気抵抗、MMD・
・・・・・磁気偏向手段、MDB・・・・・・偏向遮蔽
手段。 FIG.loFIG.lb FIG,2 FIG.3o FIG.3b FIG‐ヨ〔 FIG.ム FIG.5 FIG.6o F‘G.6b FIG.7o FIG.7b FIG.8o FIG.8b
FIG. 1 is an explanatory diagram of the operating principle of a basic magnetoresistive transducer including one magnetoresistive unit made of magnetically anisotropic material;
Fig. a is a perspective view of a magnetoresistive device arranged opposite to one track of a magnetic recording medium, Fig. lb is an explanatory diagram showing the positional relationship of the magnetic resistance with respect to a leakage magnetic field of information recorded on a recording track, and Fig. Figure 2 shows changes in magnetoresistance made of magnetically anisotropic materials in order to fully understand the polarization principle of magnetoresistance.
FIG. 3 is an illustration of a prior art magnetoresistive transducer comprising two parallel magnetoresistive transducers and shielding means;
Figure a is a perspective view of the above-mentioned magnetoresistive transducer, Figure 3b is a side view, and Figure 3c is a diagram of two magnetoresistive transducers viewed from the magnetic domain of the recording track of the medium facing the magnetoresistive elements. 4 is a plan view, and FIG. 4 is a cross-sectional view of the magnetoresistive transducer of FIG. 3 showing the main magnetic field lines of each magnetic field generated by the passage of current in the first and second magnetoresistors, and FIG. 5 is a sectional view of the magnetoresistive terminals. Figure 6 is an explanatory diagram showing how the signals collected in the differential amplifier are supplied to the differential amplifier. FIG. 7 shows a preferred embodiment of the magnetoresistive transducer of the present invention, FIG. 7a is a perspective view, and FIG. The figure shows two magnetoresistive cells of the transducer of the present invention. FIG. 8 shows a second specific example of the magnetoresistive transducer of the present invention, and FIG. 8a is a perspective view. , FIG. 8b shows two of the converters of the present invention.
FIG. 3 is a side view showing the deformation of one of the main magnetic field lines of the magnetic field caused by one of the magnetoresistances; MR... Magnetoresistive, TMRE... Magnetoresistive converter,
SM...magnetic medium, P...track,
Hf... Leakage magnetic field, TMRA... Magnetoresistive converter, MB... Magnetic shielding means, AM circle D
IF... Differential amplifier, TMR1... Magnetoresistive converter, MR1... Magnetoresistive, MMD.
...Magnetic deflection means, MDB...Deflection shielding means. FIG. loFIG. lb FIG, 2 FIG. 3o FIG. 3b FIG-Yo [FIG. MuFIG. 5 FIG. 6o F'G. 6b FIG. 7o FIG. 7b FIG. 8o FIG. 8b

Claims (1)

【特許請求の範囲】 1 磁気媒体の複数のトラツク内部に収録された情報の
読取りを行なうために、−情報の進行方向に垂直に配置
されており長手方向に電流を通過させる少くとも1個の
磁気抵抗素子と、−前記素子に対向するトラツクの情報
の周囲の情報群の磁束を捕集すべく前記素子の両側に配
置された第1及び第2の磁気遮蔽手段と、を含む磁気抵
抗変換器であり、前記変換器が、前記素子内を流れる電
流により生じた磁場の偏向手段を含んでおり、前記偏向
手段は、前記素子と第1遮蔽手段との間及び前記素子と
第2遮蔽手段との間に夫々配置されていることを特徴と
する磁気抵抗変換器。 2 互いに平行な2個の磁気抵抗素子と磁場偏向手段と
を含んでおり、前記磁場偏向手段は、第1素子と第1遮
蔽手段との間及び第2素子と第2遮蔽手段との間に夫々
配置されていることを特徴とする特許請求の範囲第1項
に記載の変換器。 3 偏向手段が、互いに平行な複数個の磁性薄膜から構
成されており、前記磁性薄膜は非磁性薄膜によつて互い
から隔てられており、前記磁性薄膜の厚みは、隣り合う
2個の磁性薄膜間の磁気的結合が比較的小なくなるよう
な厚みであることを特徴とする特許請求の範囲第1項又
は第2項に記載の磁気抵抗変換器。 4 非磁性膜によつて隔てられた磁性薄膜群から成り隣
り合う2個の磁性膜間の結合が比較的大きくなるように
構成された磁気遮蔽手段を含む磁気抵抗変換器であり、
偏向手段と遮蔽手段との磁性膜群及び非磁性膜群が同じ
寸法を有しており、従つて偏向手段と遮蔽手段とが単一
の偏向遮蔽アセンプリを構成しており、磁性薄膜群の厚
みに関しては、磁気抵抗から遠い磁性薄膜ほど厚みが大
きく、非磁性膜群の厚みに関しては、磁気抵抗から遠い
膜ほど厚みが小さく、従つて、磁気抵抗により近い磁性
膜間の磁気的結合が磁気抵抗からより遠い磁性膜間の磁
気的結合より小であるように構成されていることを特徴
とする特許請求の範囲第3項に記載の磁気抵抗変換器。 5 磁気抵抗と偏向手段の磁性薄膜と遮蔽手段の磁性薄
膜とが磁気異方性材料から製造されており、それらの磁
化容易軸及び磁化困難軸は夫々互いに平行であることを
特徴とする特許請求の範囲第1項乃至第4項のいずれか
に記載の磁気抵抗変換器。
[Scope of Claims] 1. In order to read information recorded inside a plurality of tracks of a magnetic medium, - at least one magnetic medium is arranged perpendicularly to the direction of travel of the information and allows a current to pass in the longitudinal direction; A magnetoresistive transducer comprising: a magnetoresistive element; - first and second magnetic shielding means disposed on opposite sides of the element to collect magnetic flux of a group of information surrounding information on a track facing the element; wherein the transducer includes means for deflecting a magnetic field generated by a current flowing in the element, the deflection means being between the element and a first shielding means and between the element and a second shielding means. A magnetoresistive transducer characterized in that the magnetoresistive transducer is disposed between the two. 2. The magnetic field deflecting means includes two magnetoresistive elements parallel to each other and a magnetic field deflecting means, and the magnetic field deflecting means is arranged between the first element and the first shielding means and between the second element and the second shielding means. A transducer according to claim 1, characterized in that the transducers are arranged respectively. 3. The deflection means is composed of a plurality of magnetic thin films parallel to each other, the magnetic thin films are separated from each other by a non-magnetic thin film, and the thickness of the magnetic thin film is equal to that of two adjacent magnetic thin films. 3. A magnetoresistive transducer according to claim 1, wherein the magnetoresistive transducer has a thickness such that magnetic coupling between the magnetoresistive transducers is relatively small. 4. A magnetoresistive transducer including a magnetic shielding means consisting of a group of magnetic thin films separated by a non-magnetic film and configured such that the coupling between two adjacent magnetic films is relatively large;
The magnetic film group and the non-magnetic film group of the deflection means and the shielding means have the same dimensions, so that the deflection means and the shielding means constitute a single deflection shielding assembly, and the thickness of the magnetic thin film group Regarding the thickness of the non-magnetic film group, the farther away from the magnetoresistive layer the thinner the magnetic film is, the thinner the film is. 4. The magnetoresistive transducer according to claim 3, wherein the magnetic coupling is smaller than the magnetic coupling between the magnetic films further away from the magnetoresistive transducer. 5. A patent claim characterized in that the magnetic thin film of the magnetoresistive and deflection means and the magnetic thin film of the shielding means are manufactured from magnetically anisotropic materials, and their easy and hard axes of magnetization are respectively parallel to each other. A magnetoresistive transducer according to any one of items 1 to 4 in the range 1 to 4.
JP56167828A 1980-10-29 1981-10-20 magnetoresistive transducer Expired JPS6035731B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8023102A FR2493015A1 (en) 1980-10-29 1980-10-29 MAGNETORESISTANT TRANSDUCER
FR8023102 1980-10-29

Publications (2)

Publication Number Publication Date
JPS57103119A JPS57103119A (en) 1982-06-26
JPS6035731B2 true JPS6035731B2 (en) 1985-08-16

Family

ID=9247446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167828A Expired JPS6035731B2 (en) 1980-10-29 1981-10-20 magnetoresistive transducer

Country Status (5)

Country Link
JP (1) JPS6035731B2 (en)
DE (1) DE3142752A1 (en)
FR (1) FR2493015A1 (en)
GB (1) GB2087625B (en)
IT (1) IT1139652B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589041A (en) * 1982-08-30 1986-05-13 International Business Machines Corporation Differential magnetoresistive sensor for vertical recording
JPS61295606A (en) * 1985-06-24 1986-12-26 Nec Corp Soft magnetic thin film core
US4698711A (en) * 1985-10-02 1987-10-06 International Business Machines Corporation Simplified, shielded twin-track read/write head structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881190A (en) * 1973-09-20 1975-04-29 Ibm Shielded magnetoresistive magnetic transducer and method of manufacture thereof

Also Published As

Publication number Publication date
IT8124615A0 (en) 1981-10-21
JPS57103119A (en) 1982-06-26
GB2087625A (en) 1982-05-26
FR2493015B1 (en) 1985-04-12
GB2087625B (en) 1985-10-02
DE3142752A1 (en) 1982-06-16
FR2493015A1 (en) 1982-04-30
IT1139652B (en) 1986-09-24

Similar Documents

Publication Publication Date Title
US4686472A (en) Magnetic sensor having closely spaced and electrically parallel magnetoresistive layers of different widths
US5898546A (en) Magnetoresistive head and magnetic recording apparatus
US5818685A (en) CIP GMR sensor coupled to biasing magnet with spacer therebetween
JP4433820B2 (en) Magnetic detection element, method of forming the same, magnetic sensor, and ammeter
US5218497A (en) Magnetic recording-reproducing apparatus and magnetoresistive head having two or more magnetoresistive films for use therewith
US6137662A (en) Magnetoresistive sensor with pinned SAL
US5859754A (en) Magnetoresistive transducer having a common magnetic bias using assertive and complementary signals
JP2866608B2 (en) Yoke type spin valve MR read head
US20010040777A1 (en) Magnetoresistive sensor, magnetic head and magnetic disk apparatus
US5406433A (en) Dual magnetoresistive head for reproducing very narrow track width short wavelength data
WO1991015012A2 (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
US4447839A (en) Magnetoresistant transducer
JPS6350768B2 (en)
JP2000512763A (en) Magnetic field sensor with Wheatstone bridge
KR0145034B1 (en) Peak enhanced magnetoresistive read transducer
JP2849354B2 (en) Magnetic transducer and thin-film magnetic head
JPS6035731B2 (en) magnetoresistive transducer
US5694275A (en) Magnetoresistive magnetic head
JP2668925B2 (en) Magnetoresistive magnetic head
US6028749A (en) Magnetic head having a multilayer structure and method of manufacturing the magnetic head
JPH08147631A (en) Magnetic recording and reproducing apparatus
JPH11203634A (en) Magneto-resistive head
JPH0442417A (en) Magneto-resistance effect element and magnetic head and magnetic recording and reproducing device using the same
JPS58220240A (en) Magneto-resistance effect type magnetic head
JPH10222817A (en) Magneto-resistive sensor