JPS598350A - Semiconductor integrated circuit device - Google Patents
Semiconductor integrated circuit deviceInfo
- Publication number
- JPS598350A JPS598350A JP11752682A JP11752682A JPS598350A JP S598350 A JPS598350 A JP S598350A JP 11752682 A JP11752682 A JP 11752682A JP 11752682 A JP11752682 A JP 11752682A JP S598350 A JPS598350 A JP S598350A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- field oxide
- region
- film
- nitride film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76202—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
- H01L21/76213—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
- H01L21/76216—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は半導体集積回路装置に於ける素子分離手法に
かかり、とくにMOS型の半導体集積回路装置に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an element isolation method in a semiconductor integrated circuit device, and particularly relates to a MOS type semiconductor integrated circuit device.
従来の素子分離手法は特公昭50−7425号公報ある
いは特公昭52−9355号公報で公知の如く、基板主
表面上に基板と同一導電型の高濃度不純物層(ガードリ
ング不純物層)と該不純物層上に選択配化を用いて上記
不純物層と自己整合した厚い酸化膜(フィールド酸化膜
)を配したガートリング領域が用いられている。この手
法に於ては選択酸化時のフィールド酸化膜及びガードリ
ング不純物層の素子領域内へくい込みが生ずるため超高
密度集積回路装置に対しては不利である。例えばCCD
撮像素子に於ては、光電変換フォトダイオード部及び該
フォトダイオードで光電変換された信号電荷を検出回路
に転送するCODシフトレジスタ部(これらを合せてセ
ル部と呼ぶことにする)と該信号電荷を検出する周辺回
路部が配置されており、周辺回路部では前記埋設せるフ
ィールド酸化膜の形成時の素子領域の減少は、あらかじ
めその減少を見込んだパターン設計で対処可能であるが
、セル部については高集積化に対し、上記対処では、セ
ル数の増加に比例しチップサイズの増大が伴う。この状
況はDynam jc −I(andom −Acce
ss −Memory (D−RAM )に於ても同様
テ、6る。The conventional device isolation method is known from Japanese Patent Publication No. 50-7425 or No. 52-9355, in which a highly concentrated impurity layer (guard ring impurity layer) of the same conductivity type as the substrate is formed on the main surface of the substrate, and the impurity is A gartling region is used in which a thick oxide film (field oxide film) that is self-aligned with the impurity layer is disposed on the layer using selective placement. In this method, the field oxide film and the guard ring impurity layer dig into the device region during selective oxidation, which is disadvantageous for ultra-high density integrated circuit devices. For example, CCD
The image sensor includes a photoelectric conversion photodiode section, a COD shift register section that transfers the signal charge photoelectrically converted by the photodiode to a detection circuit (these will be collectively referred to as a cell section), and the signal charge. In the peripheral circuit section, the reduction in the element area during the formation of the buried field oxide film can be countered by pattern design that takes this reduction into account in advance. In response to high integration, the above measures involve an increase in chip size in proportion to the increase in the number of cells. This situation is similar to Dynam jc -I (andom -Acce
The same goes for ss-Memory (D-RAM).
かかる不利を解決する一手法としてフィールド酸化膜を
薄くすることが考えられるが、単にフィールド酸化膜を
チップ全体均一に薄くすれば周、迂回路部配線の基板と
の容量の増大及び、寄生MOSトランジスタの閾値の低
下を招く。One way to solve this disadvantage is to make the field oxide film thinner, but simply making the field oxide film thinner uniformly over the whole chip will increase the capacitance between the circumferential wiring and the detour wiring and the substrate, and reduce the parasitic MOS transistor. This results in a decrease in the threshold value.
本発明はかかる欠点を鑑み、所要の素子領域に応じて、
前記フィールド酸化膜厚を使い分けることによ多素子特
性の良好な尚@度集植回路装置を提供することにある。In view of such drawbacks, the present invention provides the following according to the required element area:
It is an object of the present invention to provide a highly integrated integrated circuit device with good multi-element characteristics by appropriately using the field oxide film thickness.
本発明によれば、従来技術による、素子領域の減少及び
フィールド酸化時の結晶欠陥を極力押えたい領域には、
薄いフィールド酸化膜とし、電極配線の基板との容量を
小さく、寄生MO8)ランジスタの閾値を大きく、又M
OSトランジスタのソース、ドレイン及び配線となる基
板と逆導電型拡散層のジャンクシ四ン耐圧を大きくとる
心太がある領域には、厚いフィールド酸化膜を配するこ
とによシ、良好な素子特性を持たせ、かつ高集積化が可
能な素子が得られるものである。According to the present invention, in the area where it is desired to minimize the reduction of the element area and the crystal defects during field oxidation according to the prior art,
A thin field oxide film is used to reduce the capacitance between the electrode wiring and the substrate, increase the threshold of the parasitic MO8) transistor, and
By placing a thick field oxide film on the substrate and opposite conductivity type diffusion layer, which are the sources, drains, and interconnections of the OS transistor, in the areas where there is a thick core that increases the withstand voltage, good device characteristics can be achieved. This makes it possible to obtain an element that can be integrated easily and highly integrated.
例えは後述の実施例で説明する如く、セル部に関しては
、CCD撮像装置では、MO8型トランジスタのドレイ
ンに相当する基板と逆導電型の不純物拡散層はなく、又
り−RAM ではDigit −Lineを該拡散層で
配線しない場合にはその不純物濃度を低く形成してもよ
く、従ってガードリング不純物濃度を高くでき、十分な
寄生MO8)ランジスタ閾値が確保可能であるので、フ
ィールド酸化膜を薄くして素子領域の減少を押えられ、
かつ基板に埋設せよフィールド酸化膜が厚いとその酸化
膜エツジにストレスが加わシ結晶欠陥の発生又は大きな
酸化銹起積層欠陥(0,8,F、)の発生を引き起し、
漏れ電流の発生を伴うがフィールド酸化膜を薄くすると
、該結晶の発生が抑制され、セル部の電荷保持特性が改
善される。For example, as explained in the examples below, in the cell part, in the CCD imaging device, there is no impurity diffusion layer of the opposite conductivity type to the substrate corresponding to the drain of the MO8 transistor, and in the -RAM, there is no impurity diffusion layer of the opposite conductivity type to the substrate, which corresponds to the drain of the MO8 transistor. When wiring is not done in the diffusion layer, the impurity concentration can be formed at a low level. Therefore, the guard ring impurity concentration can be increased, and a sufficient parasitic MO8) transistor threshold can be secured, so the field oxide film can be made thinner. The reduction in element area can be suppressed,
If the field oxide film buried in the substrate is thick, stress will be applied to the edges of the oxide film, causing crystal defects or large oxidation rusting stacking faults (0,8,F,).
Although leakage current is generated, thinning the field oxide film suppresses the generation of crystals and improves the charge retention characteristics of the cell portion.
一方周辺回路部は厚いフィールド酸化膜を形成すること
に依り、配線容量が小さく、寄生MOSトランジスタの
閾値が高く、ジャンクシ四ン耐圧の茜い高集積回路装置
が得られるものである。On the other hand, by forming a thick field oxide film in the peripheral circuit section, a highly integrated circuit device with low wiring capacitance, high threshold voltage of parasitic MOS transistors, and high voltage resistance can be obtained.
次に本発明の一実施例を図を参照に説明する。Next, one embodiment of the present invention will be described with reference to the drawings.
第1図は、インターランCCDjl像装置のセル部を6
×9絵素に限定した素子での素子領域を規定するパター
ンの一平面図である。この図に於て斜線領域は素子領域
に相当し、点線で囲まれた内部が、セル部、その外側が
周辺回路部分を表わし、図中のA−A’断面に関して、
第2図〜第8図に本実施例に於ける各製造工程に於ける
LOCO8に依る2種類のフォールド酸化膜の形成方法
を説明する。Figure 1 shows the cell section of the interrun CCDjl imager.
FIG. 7 is a plan view of a pattern defining an element area in an element limited to ×9 picture elements. In this figure, the shaded area corresponds to the element area, the inside surrounded by the dotted line represents the cell part, and the outside represents the peripheral circuit part. Regarding the AA' cross section in the figure,
2 to 8, the method of forming two types of folded oxide films according to LOCO8 in each manufacturing process in this embodiment will be explained.
第2図に示す如く、比抵抗10〜15Ω・口のP型シリ
コン基板lの一主表面上に酸化wX2を50OA成長さ
せ、選択酸化の窒化膜3を1500大気相成長させた後
、気相成長酸化膜4を200OA堆積させた後、素子領
域を規定するフォトレジストパターン5を写真蝕刻法で
形成する。しかる後膣フォト・レジスト材をマスクとし
て弗酸系又は反応スパッタ装置を用いて露出された気相
成長酸化膜をエツチングした後、マスク材のフォト・レ
ジストを除去し第3図に示す酸化膜4のパターン4a、
4bの構造を得る。As shown in FIG. 2, 50 OA of oxide wX2 was grown on one main surface of a P-type silicon substrate 1 with a specific resistance of 10 to 15 Ω, and a nitride film 3 of selective oxidation was grown in an atmospheric phase for 1500 Ω, and then After the grown oxide film 4 is deposited to a thickness of 200 OA, a photoresist pattern 5 defining an element region is formed by photolithography. Thereafter, the exposed vapor-grown oxide film is etched using a hydrofluoric acid-based or reactive sputtering device using the vagina photoresist material as a mask, and the photoresist mask material is removed to form the oxide film 4 shown in FIG. Pattern 4a,
Obtain the structure of 4b.
次に第4図に示す如くセル部領域を覆うフォトレジスト
パターン6を形成する。該フォトレジストパターンは第
1図の点線の囲まれたセル部領域の無光された窒化膜を
覆うパターンであシ、該フォト・レジスト材と気相成長
酸化膜4bをマスク材とし、プラズマエツチング装置を
用いて産出された窒化膜全エツチングし、第1のガード
リング不純物層7を50KeV 2 X 101si
on/Cr/lテボロンをイオン注入して形成する。し
かる後フォトレジスト材を除去し選択酸化法で、周辺回
路部のフィールド酸化膜となる厚い第1のフィールド酸
化膜8を1μm成長させ第5図の構造を得る。Next, as shown in FIG. 4, a photoresist pattern 6 covering the cell area is formed. The photoresist pattern is a pattern that covers the irradiated nitride film in the cell area surrounded by the dotted line in FIG. The entire produced nitride film is etched using a device, and the first guard ring impurity layer 7 is etched at 50KeV 2 × 101si.
It is formed by ion implantation of on/Cr/l teboron. Thereafter, the photoresist material is removed, and by selective oxidation, a thick first field oxide film 8, which will become a field oxide film in the peripheral circuit area, is grown to a thickness of 1 μm to obtain the structure shown in FIG.
次に気相成長酸化膜4a、4blマスク材として、露出
した窒化膜をプラズマ装置でエツチングした後、セル部
の第2のガードリング不純物層9を50KeV3X10
”ion/7でボロンをイオン注入で形成し第6図に示
す構造を得る。このボロンのイオン注入ドーズ量は所要
に応じ第1のガードリング層とは別に任意に設定可能で
あることは言うまでもない。Next, after etching the exposed nitride film using a plasma device as a mask material for the vapor grown oxide films 4a and 4bl, the second guard ring impurity layer 9 in the cell area is etched at 50KeV3X10.
The structure shown in FIG. 6 is obtained by ion-implanting boron with ion/7. It goes without saying that the boron ion-implanting dose can be set arbitrarily as required, separately from the first guard ring layer. stomach.
第7図に示す如く、マスク材4a、41)を弗酸系エツ
チング液で除去した後、選択酸化法でセル部ノフィール
ド酸化膜となる薄い第2のフィールド酸化膜】0を20
0OA成長させ拶′、選択酸化に用いたマスク材の窒化
膜を熱リン酸エツチング液で除去する。As shown in FIG. 7, after removing the mask materials 4a and 41) with a hydrofluoric acid-based etching solution, a thin second field oxide film, which becomes a cell area no-field oxide film, is formed using a selective oxidation method.
After 0OA growth, the nitride film of the mask material used for selective oxidation is removed with hot phosphoric acid etching solution.
しかる後第8図に示す如く、マスク窒化膜のパッド酸化
膜として用いた酸化膜2をリフレッシュ・エッチし素子
領域1となる基板表面を鼻、咋出せ、ゲート酸化膜を杉
がシした後公知のシリコンゲートMO8型半梼、体製炸
1プロセスにケっでCCDCD撮像金子る。Thereafter, as shown in FIG. 8, the oxide film 2 used as the pad oxide film of the mask nitride film is refreshed and etched to expose the substrate surface that will become the element region 1, and the gate oxide film is etched. The silicon gate MO8 type half-layer, CCDCD imaging is carried out in one process.
本実施例では第1図及び第2図に示した如く周辺回路部
とセル部の素子領域を1度の7オトレジストエ程で規定
したが、第2図に示した選択酸化用窒化膜のマスク拐と
しての気相成長酸化膜4を用いずに第4図に示す4bに
相3するフォトレジストハターンを6と同時に形成し第
1のフィールド酸化膜部を形成後、第5図に示す4aに
相当するパターンと、4bに相当する領域を完全に偉う
パターンとをフォト・レジスト材で形成し第2のフィー
ルド酸化膜部を形成する手法を用いてもよい。該手法を
用いれば前記実施例に比べ、周辺回路部の素子領域とセ
ル部素子領域の接合部分(第1図に於ける斜線領域の点
線が横切る部分)に目金にズレが生ずるが、第1、第2
のガードリング不純物層形成時のマスク材としてのフォ
ト・レジスト材が厚いのでボロンのイオン注入エネルギ
ーを高くできること、及び第6図に示す窒化膜マスク材
4a、41)の酸化膜除去工程がないので第1のフィー
ルド酸化膜の減少がない等の利点がある。In this example, as shown in FIGS. 1 and 2, the device regions of the peripheral circuit section and the cell section were defined by seven photoresist etchings at one time. After forming the first field oxide film portion by simultaneously forming a photoresist pattern 6 in 4b shown in FIG. 4 without using the vapor-grown oxide film 4 as shown in FIG. Alternatively, a method may be used in which a pattern that completely covers the area corresponding to 4b is formed using a photoresist material to form the second field oxide film portion. If this method is used, there will be a misalignment of the eyes at the junction between the peripheral circuit part element area and the cell part element area (the part crossed by the dotted line in the diagonal area in FIG. 1) compared to the above embodiment. 1. 2nd
Since the photoresist material used as a mask material when forming the guard ring impurity layer is thick, boron ion implantation energy can be increased, and there is no oxide film removal process for the nitride film mask materials 4a and 41) shown in FIG. There are advantages such as no reduction in the first field oxide film.
第1図は、本発明に依る一実施例のCCD撮像装置の素
子領域を規定するパターンの一平面図であって、第2図
乃至第8図は該平面図に於ける一切断面での実施例での
製造工程中の断面図を表わす。
図中に於て、1・・・・・・半導体基板、2・・・・・
・選択酸化用窒化膜のパッド酸化膜、3・・・・・・選
択酸化マスク窒化膜、4,4a、4b・・・・・・気相
成長酸化膜、5.6・・・・・・フォトレジスト材、7
.9・・・・・・それぞれ第1と第2のガードリング不
純物層、8.10・・・・・・それぞれ第1と第2のフ
ィールド酸化膜を表わす。
7 24−6”?1
.−、 y”/ Q ’7” 少 q矛、6
しJ
葎、8し]FIG. 1 is a plan view of a pattern defining an element area of a CCD imaging device according to an embodiment of the present invention, and FIGS. 2 to 8 are cross-sectional views of the pattern in this plan view. FIG. 4 shows a cross-sectional view during the manufacturing process in an example. In the figure, 1...semiconductor substrate, 2...
- Pad oxide film of nitride film for selective oxidation, 3... Selective oxidation mask nitride film, 4, 4a, 4b... Vapor phase growth oxide film, 5.6... Photoresist material, 7
.. 9...Represents the first and second guard ring impurity layers, respectively; 8.10...Represents the first and second field oxide films, respectively. 7 24-6"?1 .-, y"/Q '7" small q spear, 6
shi J 葎, 8 shi]
Claims (1)
層と該不純物層上に選択酸化法によ、!7フイールド酸
化膜を配置し、該分離層間に所要の素子を形成して成る
半導体集積回路装置に於て、前記フィールド酸化膜が所
要の領域に応じ少くとも2稍以上の膜厚を具備したこと
を特徴とする半導体集積回路装置。A highly concentrated impurity layer for element isolation is formed on the surface of the semiconductor, and selective oxidation is applied to the impurity layer! 7. In a semiconductor integrated circuit device in which a field oxide film is arranged and required elements are formed between the isolation layers, the field oxide film has a film thickness of at least 2 mm or more depending on the required area. A semiconductor integrated circuit device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11752682A JPS598350A (en) | 1982-07-06 | 1982-07-06 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11752682A JPS598350A (en) | 1982-07-06 | 1982-07-06 | Semiconductor integrated circuit device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS598350A true JPS598350A (en) | 1984-01-17 |
Family
ID=14713963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11752682A Pending JPS598350A (en) | 1982-07-06 | 1982-07-06 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS598350A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63153A (en) * | 1986-05-26 | 1988-01-05 | Fujitsu Ltd | Charge transfer device |
JPH0256963A (en) * | 1988-08-20 | 1990-02-26 | Fuji Electric Co Ltd | Mis type semiconductor device |
JPH05182958A (en) * | 1991-02-25 | 1993-07-23 | Nikon Corp | Semiconductor device and method of manufacture that |
KR970023978A (en) * | 1995-10-04 | 1997-05-30 | 김주용 | Method for manufacturing planar device isolation film of semiconductor device |
US5946577A (en) * | 1996-07-26 | 1999-08-31 | Nec Corporation | Method of manufacturing semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575358A (en) * | 1980-06-13 | 1982-01-12 | Fujitsu Ltd | Semiconductor device and manufacture thereof |
JPS5756966A (en) * | 1980-09-20 | 1982-04-05 | Fujitsu Ltd | Manufacture of semiconductor device |
-
1982
- 1982-07-06 JP JP11752682A patent/JPS598350A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575358A (en) * | 1980-06-13 | 1982-01-12 | Fujitsu Ltd | Semiconductor device and manufacture thereof |
JPS5756966A (en) * | 1980-09-20 | 1982-04-05 | Fujitsu Ltd | Manufacture of semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63153A (en) * | 1986-05-26 | 1988-01-05 | Fujitsu Ltd | Charge transfer device |
JPH0256963A (en) * | 1988-08-20 | 1990-02-26 | Fuji Electric Co Ltd | Mis type semiconductor device |
JPH05182958A (en) * | 1991-02-25 | 1993-07-23 | Nikon Corp | Semiconductor device and method of manufacture that |
KR970023978A (en) * | 1995-10-04 | 1997-05-30 | 김주용 | Method for manufacturing planar device isolation film of semiconductor device |
US5946577A (en) * | 1996-07-26 | 1999-08-31 | Nec Corporation | Method of manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8629023B2 (en) | CMOS image sensor having double gate insulator therein and method for manufacturing the same | |
JP3326366B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS598350A (en) | Semiconductor integrated circuit device | |
JP3008163B2 (en) | Solid-state imaging device and method of manufacturing the same | |
US5559045A (en) | Method of fabricating vertical-type double diffused mosfet having a self-aligned field oxide film | |
JP2959504B2 (en) | Method for manufacturing solid-state imaging device | |
JP3239911B2 (en) | Method for manufacturing solid-state imaging device | |
JP2795241B2 (en) | Solid-state imaging device and method of manufacturing the same | |
JPH07176714A (en) | Manufacture of semiconductor device | |
JPH02304974A (en) | Manufacture of solid image-pickup element | |
JP2904068B2 (en) | Method for manufacturing semiconductor device | |
JPS6244862B2 (en) | ||
JPH06326183A (en) | Manufacture of semiconductor device | |
JPS62269355A (en) | Solid-state image sensing element | |
JP2002190587A (en) | Method of manufacturing solid-state image pickup device | |
JP3061892B2 (en) | Method for manufacturing semiconductor device | |
JPH06244398A (en) | Photosensor of solid-state image pick-up device and manufacture thereof | |
JP2943855B2 (en) | Method for manufacturing semiconductor device | |
JP2970376B2 (en) | Method of manufacturing complementary semiconductor device | |
JPS62193277A (en) | Solid-state image pickup device | |
JPS61232678A (en) | Manufacture of semiconductor integrated circuit | |
JPH04291965A (en) | Solid-state image sensor and manufacture thereof | |
JP2867469B2 (en) | Charge transfer device and method of manufacturing the same | |
JP2768452B2 (en) | Method for manufacturing solid-state imaging device | |
JPH07326660A (en) | Manufacture of semiconductor device |