JPS5982944A - Catalystic medium for eliminating fine particle in waste gas - Google Patents

Catalystic medium for eliminating fine particle in waste gas

Info

Publication number
JPS5982944A
JPS5982944A JP57191779A JP19177982A JPS5982944A JP S5982944 A JPS5982944 A JP S5982944A JP 57191779 A JP57191779 A JP 57191779A JP 19177982 A JP19177982 A JP 19177982A JP S5982944 A JPS5982944 A JP S5982944A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
exhaust gas
copper
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57191779A
Other languages
Japanese (ja)
Inventor
Hiroji Watabe
渡部 洋児
Tsutomu Yamada
力 山田
Koichi Irako
伊良子 光一
Yuichi Murakami
雄一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP57191779A priority Critical patent/JPS5982944A/en
Priority to DE8383100837T priority patent/DE3364798D1/en
Priority to EP19830100837 priority patent/EP0092023B1/en
Publication of JPS5982944A publication Critical patent/JPS5982944A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Abstract

PURPOSE:To obtain a catalytic medium which burns the captured fine particles at such a low temp. at which no thermal impact is applied on the capturing medium itself by combining a catalyst combined with copper, etc., an alkali metal compd., Mo, etc., and platinum, etc. with titania, etc. CONSTITUTION:A catalyst combined with at least one kind selected from copper and a copper compd., at least one kind selected from an alkali metal compd., at least one kind selected from Mo, V and their compd., and further at least one kind selected from platinum, Rh, Pd and their compd. according to need and at least one kind selected from titania, gamma-alumina and silica-alumina are combined. As a result, the captured fine particles are burned at such a low temp. at which no thermal impact is applied to the capturing medium itself, and the catalytic medium which is highly resistant to heat with less decrease in activity at an elevated temp. is obtd.

Description

【発明の詳細な説明】 本発明は、排ガス中の微粒子、例えばディーゼルエンジ
ン排ガス中のパーティキュレートの如き微粒子を燃焼せ
しめるだめの触媒体に関し、更に詳しくは微粒子の捕捉
体乃至浄化体に捕捉された微粒子を低温で接触燃焼させ
ることができる排ガス中の微粒子浄化用触媒体に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst body for combusting particulates in exhaust gas, for example, particulates in diesel engine exhaust gas, and more specifically, the present invention relates to a catalyst body for combusting particulates in exhaust gas, such as particulates in diesel engine exhaust gas, and more specifically, the present invention relates to a catalyst body for combusting particulates such as particulates in exhaust gas from a diesel engine. The present invention relates to a catalyst for purifying particulates in exhaust gas, which can catalytically burn particulates at low temperatures.

近年、排ガス中の微粒子、特にディーゼルエンジン排ガ
スよシ排出される微粒子(煤などの炭化物の微小粉体)
が、ペンツピレン等の発癌性物質を含むことが明らかに
なったことから公害上問題視され、その排出に対する規
制が行なわれようとしている。
In recent years, fine particles in exhaust gas, especially fine particles emitted from diesel engine exhaust gas (fine powder of carbides such as soot), have been increasing.
However, since it has been revealed that it contains carcinogenic substances such as pentsupyrene, it has been viewed as a pollution problem, and regulations are being put in place to control its emissions.

従来、かかる微粒子の捕捉のために、セラミックハニカ
ム、セラミックフオーム、金属ワイヤー充填系、アルミ
ナ等のペレット状担体充填系、セラミックファイバー系
などの耐熱性ある捕捉体の使用が提案されているが、た
とえこれらの捕捉体によって微粒子が効果的に捕捉でき
たとしても、その堆積によυ目づまシを起してしまうた
め、定期的にその堆積物の廃棄もしくは高温処理による
燃焼除去を行なう必要がある。
Conventionally, the use of heat-resistant trapping bodies such as ceramic honeycombs, ceramic foams, metal wire filling systems, pellet carrier filling systems such as alumina, and ceramic fiber systems have been proposed for trapping such fine particles. Even if fine particles can be effectively captured by these trapping bodies, the accumulation of particles can cause a blockage, so it is necessary to periodically dispose of the accumulated particles or burn them off using high-temperature treatment. .

しかしこれらの方法のうち、堆積物を廃棄することは煩
雑でまた効果的な除去は不可能であシ、かつ公害上問題
がある。また、高温での燃焼除去処理は700℃近い温
度に上昇させる必要があシ、またその燃焼によシ捕捉体
自身に対して好ましくない熱衝撃を与え、その劣化を促
進させるおそれがある。更に、不完全燃焼によシー酸化
炭素などの右前ガスを発生させる危険もある。このため
微粒子捕捉体乃至浄化体に捕捉された微粒子をより低温
度で効率よく燃焼させることが要望されてい/ヒ。
However, among these methods, disposing of the deposits is complicated, it is impossible to remove them effectively, and there are problems in terms of pollution. Further, in the combustion removal treatment at high temperature, it is necessary to raise the temperature to nearly 700° C., and the combustion may give an unfavorable thermal shock to the dust trap itself, accelerating its deterioration. Furthermore, there is a risk of generating gases such as carbon oxide due to incomplete combustion. Therefore, there is a demand for efficient combustion of the particulates captured by the particulate trap or purifier at a lower temperature.

本発明は、上記要望に応えたもので、捕捉された微粒子
が捕捉体自身に熱衝撃を与えないような低温において燃
焼させることを可能とし、しかも高温における活性の低
下が少なく、優れた耐熱性を有する新規触媒を提供する
ものである。
The present invention meets the above-mentioned needs, and allows the captured particles to be combusted at a low temperature that does not cause a thermal shock to the capture body itself, and has excellent heat resistance with little loss of activity at high temperatures. The present invention provides a novel catalyst having the following properties.

即ち、本発明は上記目的を達成するため、銅及び銅化合
物から選はれる少なくとも1つと、アルカリ金属化合物
から選ばれる少なくとも1つと、モリブデン、バナジウ
ム及びこれらの化合物から選ばれる少なくとも1つと、
更に所望にょシ白金、ノやラジウム、ロジウム及びこれ
らの化合物から選ばれる少なくとも1つとを組合せてな
る触媒をチタニア、γ−アルミナ及びシリカ−アルミナ
から選ばれる少なくとも1つと組合せることにより、排
ガス中の微粒子浄化用の触媒体としたものである。
That is, in order to achieve the above object, the present invention includes at least one selected from copper and copper compounds, at least one selected from alkali metal compounds, and at least one selected from molybdenum, vanadium, and their compounds.
Furthermore, by combining a desired catalyst comprising at least one selected from platinum, radium, rhodium, and their compounds with at least one selected from titania, γ-alumina, and silica-alumina, the It is used as a catalyst for purifying particulates.

従来、ガソリンエンジン排ガスの接触酸化により、有害
とされているNOx、−酸化炭素、炭化水素類等のガス
体を無害なものに転化さぜるための触媒、特に貴金属触
媒(白金、パラジウムなど)は知られている。しかし、
この種の触媒の作用機構は本発明に係る微粒子浄化用触
媒の作用とは全く異なるものであり、例えばガソリンエ
ンジン排ガス浄化用触媒として最も有効であることが知
られた白金触媒を使用しても微粒子を効果的に燃焼処理
し得ない。
Catalysts, especially precious metal catalysts (platinum, palladium, etc.), for converting gases such as NOx, carbon oxides, and hydrocarbons, which are conventionally considered harmful, into harmless substances through catalytic oxidation of gasoline engine exhaust gas. is known. but,
The mechanism of action of this type of catalyst is completely different from that of the particulate purification catalyst according to the present invention. For example, even if a platinum catalyst, which is known to be the most effective catalyst for gasoline engine exhaust gas purification, is used, Particulates cannot be effectively burned.

本発明に係る微粒子浄化用触媒体は、上述したように微
粒子を低温度で燃焼させ得るので、セラミックハニカム
やセラミック多孔体等よ、#)なる微粒子捕捉体乃至浄
化体に担持させることによシ、排ガス中の微粒子を確実
に捕捉すると共に、よシ低温で微粒子を触媒燃焼(再生
)することができ、このため燃焼のエネルギーも少くて
すみ、かつ捕捉体乃至浄化体の寿命を伸ばすことができ
る。−また場合によっては微粒子の燃焼温度を排ガス温
度まで下げることができるので、排ガス中の微粒子を捕
捉すると同時に燃焼させることもでき、これによシ捕捉
体乃至浄化体の目づまシをなくして再生操作を不要にし
、少なくともひんばんに再生操作を行なう必要勿なくす
ことができる。更に、微粒子の燃焼の際に一酸化炭素等
の有毒ガスが発生するのを1515止することも可能と
なる。
As described above, the catalyst for particulate purification according to the present invention can burn particulates at low temperatures, so it can be carried on a particulate trapping or purifying body such as a ceramic honeycomb or a ceramic porous body. In addition to reliably trapping particulates in exhaust gas, it is also possible to catalytically burn (regenerate) the particulates at a much lower temperature, thus requiring less energy for combustion and extending the life of the trapping body or purifying body. can. - Also, in some cases, the combustion temperature of particulates can be lowered to the exhaust gas temperature, so particulates in the exhaust gas can be captured and combusted at the same time, thereby eliminating clogging of the trapping body or purifying body and regenerating them. This eliminates the need for any operations, or at least eliminates the need for frequent playback operations. Furthermore, it is also possible to prevent the generation of toxic gases such as carbon monoxide during combustion of particulates.

また、本発明に係る微粒子浄化用触媒体は、優れた側熱
性を有し、高温での活性の低下が少ないものである。即
ち、本発明者らの検討によれば、捕捉体上に担持された
触媒にはしばしば排ガスに基ずく高温が加えられる場合
がオシ、触媒がこのような高温に曝らされると、触媒が
容易に失活する現象が生じることを観察した。このため
、低温で微粒子を確実に燃焼し得ると共に、高温下に曝
らされても失活することがすく、元の活性を維持する触
媒が望まれるものであるが、本発明の微粒子浄化用触媒
体は上述したように微粒子の低温燃焼性に関して高活性
を有すると共に、高温における失活が少なく、高温に曝
らされても高活性を維持し、非常に良好な耐熱性を有す
るものである。即ち、銅及び銅化合物から選ばれる少な
くとも1つと、アルカリ金属化合物から選ばれる少なく
とも1つと、モリブデン、バナジウム及びこれらの化合
物から選ばれる少なくとも1つと、更に場合により白金
、ロジウム、・9ラジウム及びこれらの化合物から選ば
れる少なくとも1つとを組合せてなる触媒は、微粒子を
低温で燃焼させる優れた効果を有していると共に、それ
自体耐熱性が高いものであるが、この触媒をチタニア、
γ−アルミナ及びシリカ−アルミナから選ばれる少なく
とも1つと組合せることにより、更に非常に高い耐熱性
が付与されるものである。
Further, the catalyst for purifying particulates according to the present invention has excellent side heating properties and exhibits little decrease in activity at high temperatures. That is, according to the studies of the present inventors, high temperatures based on exhaust gas are often applied to the catalyst supported on the capture body, and when the catalyst is exposed to such high temperatures, the catalyst deteriorates. It was observed that a phenomenon of easy deactivation occurred. Therefore, it is desirable to have a catalyst that can reliably burn particulates at low temperatures, is less likely to deactivate even when exposed to high temperatures, and maintains its original activity. As mentioned above, the catalyst has high activity regarding the low temperature combustibility of fine particles, has little deactivation at high temperatures, maintains high activity even when exposed to high temperatures, and has very good heat resistance. . That is, at least one selected from copper and copper compounds, at least one selected from alkali metal compounds, at least one selected from molybdenum, vanadium, and their compounds, and optionally platinum, rhodium, .9radium, and these. A catalyst formed by combining at least one compound selected from compounds has an excellent effect of burning fine particles at a low temperature and has high heat resistance itself.
By combining it with at least one selected from γ-alumina and silica-alumina, extremely high heat resistance is imparted.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明に係る排力゛ス中の微粒子浄化用触媒体は、(、
)  銅及び銅化合物から選ばれる少なくとも1つ、 (b)  アルカリ金属化合物から選ばれる少なくとも
1つ、並びに (c)  モリブデン、バナジウム、モリブデン化合物
及びバナジウム化合物から選ばれる少なくとも1つ、 ま/こ、上記(a) 、 (b) 、 (e)成分に加
え、更に必要により(d)  白金、パラジウム、ロジ
ウム及びこれらの化合物から選ばれる少なくとも1つ を組合せた触媒と、 (e)  チタニア、γ−アルミナ及びシリカ−アルミ
ナから選はれる少なくとも1つと を組合せてなるものである。
The catalyst body for purifying particulates in exhaust gas according to the present invention is (
) at least one selected from copper and copper compounds; (b) at least one selected from alkali metal compounds; and (c) at least one selected from molybdenum, vanadium, molybdenum compounds, and vanadium compounds. In addition to the components (a), (b), and (e), if necessary, (d) a catalyst that is a combination of at least one selected from platinum, palladium, rhodium, and compounds thereof, and (e) titania, γ-alumina. and at least one selected from silica and alumina.

ここで、(a)の銅化合物としては、銅の酸化物、硝酸
塩、塩化物や臭化物等のハロダン化物、カルボン酸塩、
亜硫酸塩、ja酸塩、リン酸塩等が挙げられるが、なか
でもハロダン化物、硝酸塩、酸化物などが好ましく用い
られる。なお、銅は一価でも二価でもよい。
Here, as the copper compound (a), copper oxides, nitrates, halodanes such as chlorides and bromides, carboxylates,
Examples include sulfites, jaates, phosphates, etc., among which halodides, nitrates, oxides, etc. are preferably used. Note that copper may be monovalent or divalent.

また、(b)成分のアルカリ金属化合物としては、リグ
−ラム、ナトリウム、カリウム、ルビジウム、セシウム
の化合物、例えば酸化物、硝酸塩、ハロダン化物、カル
ボン酸塩、亜硫酸塩、硫酸塩、リン酸塩等が挙げられる
。これらのうちでは、ナトリウム、カリウムの化合物が
好ましく、特にそのハロゲン化物、硝酸塩などが好適に
用いられ、最も好ましくは塩化カリウムが使用される。
In addition, as the alkali metal compound of component (b), compounds of ligram, sodium, potassium, rubidium, cesium, such as oxides, nitrates, halodides, carboxylates, sulfites, sulfates, phosphates, etc. can be mentioned. Among these, sodium and potassium compounds are preferred, and their halides and nitrates are particularly preferred, with potassium chloride being most preferred.

更に、(C)のモリブデン化合物、バナジウム化合物と
しては、モリブデン、バナジウムの酸化物、硝酸塩、ハ
ロゲン化物、カルボ/酸塩、亜硫酸塩、硫酸塩、リン酸
塩や複合塩等が挙げられる。具体的には、モリブデン化
合物として、三酸化モリブデン、モリブデン酸、モリブ
デン酸アンモニウム、頃化モリブデン、硫化モリブデン
、シーウ酸モリブデン、モリブデン酸ナトリウム、モリ
ブデン酸カリウムなどが挙げられる。また、バナジウム
化合物としては、バナジン酸アンモニウム、二塩化パナ
ノル、オキシ三塩化バナジウム、硫酸・9ナノル、五酸
化バナジウム、三酸化バナジウム、二塩化バナジウム、
三塩化バナジウム、四塩化バナジウム、パナ・シン酸リ
チウム、パナ・シン酸ナトリウム、パナゾン酸カリウム
、これらの酸化物、焼成物などが挙げられる。
Furthermore, examples of the molybdenum compound and vanadium compound (C) include molybdenum and vanadium oxides, nitrates, halides, carbo/acid salts, sulfites, sulfates, phosphates, and complex salts. Specifically, molybdenum compounds include molybdenum trioxide, molybdic acid, ammonium molybdate, molybdenum chloride, molybdenum sulfide, molybdenum sulfate, sodium molybdate, potassium molybdate, and the like. In addition, vanadium compounds include ammonium vanadate, pananol dichloride, vanadium oxytrichloride, 9nanol sulfuric acid, vanadium pentoxide, vanadium trioxide, vanadium dichloride,
Examples include vanadium trichloride, vanadium tetrachloride, lithium panasinate, sodium panasinate, potassium panazonate, and oxides and calcined products thereof.

なお、銅化合物、モリブデン化合物、バナジウム化合物
としてアルカリ金属との複塩や錯塩を用いた場合、同時
にアルカリ金属化合物を組合せているので、必ずしもア
ルカリ金属化合物を更に別個に力11えなくてもよい。
Note that when a double salt or complex salt with an alkali metal is used as the copper compound, molybdenum compound, or vanadium compound, the alkali metal compound is combined at the same time, so the alkali metal compound does not necessarily need to be added separately.

本発明の触媒は、上記(a) 、 (b) 、 (c)
の各成分を混合してなるものであシ、このように3者を
組合せたことによシ、ディーゼルエンジン排ガス等の排
ガス微粒子の低温燃焼触媒として優れた性能を示し、か
つ耐熱性を著しく優れたものとすることができるもので
あるが、例えば(a) p (b)成分を組合せるだけ
では低温燃焼触媒としての性能は満足17得るものの、
剛熱性の面でやや不満足である。
The catalyst of the present invention includes the above (a), (b), and (c).
By combining these three components, it exhibits excellent performance as a low-temperature combustion catalyst for exhaust gas particles such as diesel engine exhaust gas, and has extremely high heat resistance. However, for example, although the performance as a low-temperature combustion catalyst can be satisfied by just combining components (a), p, and (b),
It is somewhat unsatisfactory in terms of heat resistance.

本発明において、上記(a) 、 (b) 、 (c)
の成分を組合せる場合、その割合は特に制限されず、任
意の割合で組合せて用いることができるが、各成分とも
それぞれ触媒中5モルチ以上とすることが好ましい。こ
の範囲のモル比で非常に効率のよい微粒子の低温燃焼処
理が可能となシ、かつ耐熱性を高いものにすることがで
きる。
In the present invention, the above (a), (b), (c)
When these components are combined, their proportions are not particularly limited and can be used in combination in any proportion, but it is preferable that each component is contained in the catalyst in an amount of 5 mol or more. With a molar ratio within this range, very efficient low-temperature combustion treatment of fine particles can be performed, and high heat resistance can be achieved.

本発明においては、上記(a) # (b) 、 (e
)の成分に加えて、更に第4成分(d)として白金、パ
ラジウム、ロジウム及びこれらの化合物から選ばれる少
なくとも1つを配合することができ、(a)〜(c)成
分に(d)成分を組合せることによシ、更に排ガス中の
微オヴ子の低温燃焼活性を増大させることができる。こ
ノ場合、白金、パラジウム、ロジウムの化合物としては
、酸化物、ハロゲン化物、硝酸塩、カルボ/酸塩、リン
酸塩や複塩などが挙げられるが、特にハロダン化物、な
かでも塩化物が好ましく用いられる。
In the present invention, the above (a) # (b), (e
In addition to the components (d), at least one selected from platinum, palladium, rhodium, and these compounds can be further blended as a fourth component (d), and the (d) component can be added to the components (a) to (c). By combining these, it is possible to further increase the low-temperature combustion activity of small particles in the exhaust gas. In this case, compounds of platinum, palladium, and rhodium include oxides, halides, nitrates, carbo/acid salts, phosphates, and double salts, but halodides, especially chlorides, are preferably used. It will be done.

なお、(d)成分を組合せる場合、その割合は特に制限
されないが、」二記(a) t (b) 、 (C)成
分の合計M量に対し0.01重−を俤〜100重量係と
することが好適である。
In addition, when combining component (d), the ratio is not particularly limited, but 0.01 weight to 100 weight based on the total M amount of component (a), (b), and (C). It is preferable to have a person in charge.

上述した触媒は、チクニア、γ−アルミナ、シリカ−ア
ルミナから選ばれる少なくとも1つの酸化物と組合せて
触媒体とするものであシ、これらを組合ぜることによシ
催れた耐熱性を有する触媒体を得ることができる。ここ
で、上記酸化物の量は必ずしも制限されないが、(a)
 、 C’;) 、 (C)成分の合計重量に対し10
重it %以上とすることが好ましい。なお、本発明に
おいて、上述した酸化物は複塩の形をとるもの、例えば
チタン酸カリ、チタン酸ナトリウムなどをも包含するも
のである。
The above-mentioned catalyst is used in combination with at least one oxide selected from chikunia, γ-alumina, and silica-alumina to form a catalyst body, and the combination thereof provides improved heat resistance. A catalyst body can be obtained. Here, the amount of the oxide is not necessarily limited, but (a)
, C';) , 10 for the total weight of component (C)
It is preferable that the weight is at least % by weight. In the present invention, the above-mentioned oxides also include those in the form of double salts, such as potassium titanate and sodium titanate.

本発明の触に111一体は、適宜の担体、捕捉体、例え
ばセラミックフオーム、セラミ45.クハニカム、金属
ワイヤー充」4系、アルミナ等の担体ペレット充填系な
どの捕捉体上にハゼを形成することにより使用すること
ができる。この場合、上記触媒成分及びチクニア、γ−
アルミナ、シリカ−アルミナから選ばれる1 +、、i
:化物を相持させる方法としては任意の手法が採用し得
るが、チタニア、γ−アルミナ、シリカ−アルミナから
選ばれる酸化物を上記の担体、捕捉体にコートシ、その
表面上に本発明触媒を担持させ、炉中で焼成した)、或
いは、本発明触媒にチタニア、γ−アルミナ、シリカ−
アルミナから選はれる酸化物を混合し、これを上記担体
、捕捉体表面に担持させる方法が好適に採用される。
In accordance with the present invention, 111 may be integrated with a suitable carrier, capture body, such as ceramic foam, ceramic 45. It can be used by forming a trap on a trapping body such as a honeycomb, a metal wire-filled system, a carrier pellet-filled system such as alumina, etc. In this case, the above catalyst components and chikunia, γ-
1 +, i selected from alumina, silica-alumina
: Any method can be used to make the compound compatible, but the above-mentioned carrier or trapping body is coated with an oxide selected from titania, γ-alumina, and silica-alumina, and the catalyst of the present invention is supported on the surface of the oxide. ), or the catalyst of the present invention is coated with titania, γ-alumina, or silica.
Preferably, a method is employed in which an oxide selected from alumina is mixed and the mixture is supported on the surface of the carrier or trapping body.

また、例えば、上記(d)成分を(a)〜(c)成分と
組合せる場合、(d)成分を(a)〜(c)成分と予じ
め混合して用いるようにしてもよく、最後に(d)成分
を含浸させるようにしてもよい。
Furthermore, for example, when the above component (d) is combined with the components (a) to (c), the component (d) may be mixed with the components (a) to (c) in advance. Finally, component (d) may be impregnated.

なお、好ましい捕捉体としてはセラミックフオームがあ
げられるが、その具体例をあげれば、内部連通空間が1
インチ長当96〜150個の割合で形成されておシ、ま
たその嵩比重が0.25−1.0の範囲にあ乞ものであ
る。これらのセラミックフオームは1つだけ望ましい大
きさのものを配設することも可能であるが、複数個のも
のを組合わせて用いることもできる。例えば、内部連通
空間の粗なものから密なものに順次積層し、構成するこ
ともできる。勿論、触媒の付着方法も、必要に応じ変化
きぜてもよい。
A preferable trapping body is a ceramic foam, but a specific example is one in which the internal communication space is 1
It is formed at a ratio of 96 to 150 pieces per inch length, and its bulk specific gravity is in the range of 0.25 to 1.0. Although it is possible to arrange only one of these ceramic foams of a desired size, a plurality of ceramic foams can also be used in combination. For example, it is also possible to construct the internal communication spaces by sequentially stacking them in order from coarser to denser internal communication spaces. Of course, the method of depositing the catalyst may also be changed as necessary.

−まだ、本光ツ]の触媒体は、公知の触媒、例えばガソ
リンエンジン排ガス用の触媒(貴金属などを官有するも
のもしくはしないもの)と組合わせて一層効果的に使用
することもできる。
The catalyst body of the present invention can be used more effectively in combination with a known catalyst, such as a catalyst for gasoline engine exhaust gas (with or without precious metals).

本発明の触媒体が担持された捕捉体は、エンジン等の排
ガスの所定の流路に配置して使用するもので、エンジン
等からの排ガスはその流路の途上に配置された捕捉体乃
至浄化体の排ガを流路を通過し、その通過の間において
排ガス中の煤やペンツピレン等の微粒子が良好に捕捉さ
れると共に、捕捉された微わl子は本発明触媒体、ノ作
用により、触媒を用いない場合よシも200〜300℃
程度低い温度で完全燃焼する。
The trapping body supporting the catalyst of the present invention is used by being placed in a predetermined flow path for exhaust gas from an engine, etc., and the exhaust gas from the engine, etc. is purified by the trapping body or purifying body placed in the middle of the flow path. Exhaust gas from the body passes through the flow path, and during the passage, particulates such as soot and pentupyrene in the exhaust gas are well captured, and the captured particles are absorbed by the catalyst of the present invention. 200 to 300°C if no catalyst is used.
Complete combustion occurs at a moderately low temperature.

なお、本発明の触媒体は、自動車用エンジンの排ガスの
みならず、耕うん機、船舶、列車等の運輸機関のエンジ
ン、産業用エンジン、更に燃焼炉、ダイラーなどの排ガ
ス中の微粒子除去用として使用することができる。
The catalyst of the present invention can be used not only for the removal of particulates from the exhaust gas of automobile engines, but also from the engines of transportation systems such as tillers, ships, and trains, industrial engines, and the exhaust gas of combustion furnaces and dylers. can do.

以下、実施例と比較例を示し、本発明を更に具体的に説
明する。
EXAMPLES Hereinafter, the present invention will be explained in more detail by showing Examples and Comparative Examples.

〔実施例1、比較例1〜3〕 塩化銅1.5 m mot及び塩化カリウム1.5 m
 mobを10m1ビーカーに入れ、蒸留水に溶解し、
別途調製したモリブデン酸アンモニウム0.73 m 
motの水溶液を力0えて混合し、これにチタニア0.
5Fを加え、攪拌しながらホットプレート上で約10分
間位かけて乾固させた。次に、この試料を200℃の真
空乾燥機で120分間乾燥させ、引続き電気炉中で70
0℃にて30分間焼成し、触媒体を得た。
[Example 1, Comparative Examples 1 to 3] Copper chloride 1.5 m mot and potassium chloride 1.5 m mot
Put the mob in a 10ml beaker and dissolve it in distilled water.
Ammonium molybdate prepared separately 0.73 m
Mix the aqueous solution of mot, and add 0.0% titania to this.
5F was added and dried on a hot plate for about 10 minutes while stirring. Next, this sample was dried in a vacuum dryer at 200°C for 120 minutes, and then in an electric furnace for 70 minutes.
A catalyst body was obtained by firing at 0°C for 30 minutes.

才だ、同様の手順で900℃で30分間焼成して触媒体
を得た。
A catalyst body was obtained by calcining at 900°C for 30 minutes using the same procedure.

次に)これらの触媒体(実施例1 r Cu−に−Mo
 )の各々と、予じめディーゼルエンジンよシ捕集した
微粒子とを重量比で1;1の割合にて混合し、熱血量測
定装置を用いてディーゼル排ガス微粒子の燃焼温度を測
定した。この場合、試験条件は、試料重量が40mg、
空気の供itが0.5 t/mi n 、昇渦速度が2
0℃/+ninであり、重量減少曲線から・・燃焼の中
間点(Tm、℃)を求めた。なお、この中間点−の値は
イ:’!1.21′7.子の完全燃焼の1つの目安を示
すものである。
Next) These catalyst bodies (Example 1 r Cu- to-Mo
) and particulates collected in advance from a diesel engine were mixed at a weight ratio of 1:1, and the combustion temperature of the diesel exhaust gas particulates was measured using a hot blood amount measuring device. In this case, the test conditions are: sample weight is 40 mg;
Air supply is 0.5 t/min, vortex rising speed is 2
0°C/+nin, and the midpoint of combustion (Tm,°C) was determined from the weight loss curve. In addition, the value of this midpoint - is a:'! 1.21'7. This shows one indication of complete combustion of the particles.

比較のため、塩化銅−塩化カリウムの組合せ(比較例1
 r Cu−K) 、モリブデン酸アンモニウム単独系
(比較例2.Mo)、及び塩化カリウノ、単独系(比較
例3 、 K )を用いて、同様にlyl!媒体を調製
しくいずれも触媒成分量は合計3.72m mot 、
チタニア0.5I使用)、これらを用いた場合のテ′イ
ーゼル排ガス微粒子のTmを求めた。
For comparison, a combination of copper chloride and potassium chloride (Comparative Example 1)
Similarly, lyl! When preparing the medium, the total amount of catalyst components was 3.72 m mot ,
(Titania 0.5I) was used, and the Tm of the easel exhaust gas particles was determined when these were used.

結果を第1表に示す。The results are shown in Table 1.

第  1  表 第1表から明らかなように、本発明になる触媒体は70
0℃焼成及び900℃焼成のいずれにおいても優れた燃
焼温度低減効果を示し、従って触媒体としての使用時に
高温の排ガスに曝らされても失活し難いこと、これに対
し比較例1のCu−に2表分系では700℃の焼成のも
のは優れた効果を示すが、900℃の焼成のものは失活
し、耐熱性が劣ること、更に比較例2,3の単独成分系
では触媒効果が十分でないことが知見された。
Table 1 As is clear from Table 1, the catalyst body of the present invention has 70
It shows an excellent combustion temperature reduction effect in both 0°C firing and 900°C firing, and therefore is difficult to deactivate even when exposed to high temperature exhaust gas when used as a catalyst. In contrast, Cu of Comparative Example 1 - In the two table systems, those fired at 700°C show excellent effects, but those fired at 900°C are deactivated and have poor heat resistance. It was found that the effect was not sufficient.

〔実施例2〜7、比較例4〜7〕 実施例1と同様にして、塩化銅−塩化力リウムーモリブ
デン酸アンモニウム(Cu−に−Mo)及び塩化銅−塩
化カリウム−バナジン酸アンモン(Cu −に−V)を
触媒属分とし、これらとチタニア、シリカ−アルミナ及
びr−アルミナのそれぞれとを組合せた触媒体をつ<シ
、実施例1と同条件下でディーゼル排ガス微粒子の燃焼
挙動を測定した。
[Examples 2 to 7, Comparative Examples 4 to 7] In the same manner as in Example 1, copper chloride-hydrium chloride-ammonium molybdate (Cu-ni-Mo) and copper chloride-potassium chloride-ammonium vanadate (Cu The combustion behavior of diesel exhaust gas particulates was evaluated under the same conditions as in Example 1 using a catalyst body in which V) was used as the catalyst element and titania, silica-alumina, and r-alumina were combined. It was measured.

また、上記触媒成分とコージライト、マグネシアとをそ
れぞれ組合せた触媒体をつくシ、同様に燃焼挙動を測定
した。
In addition, catalyst bodies were prepared in which the above catalyst components were combined with cordierite and magnesia, respectively, and the combustion behavior was similarly measured.

なお、触媒体作成時の焼成温度は900Cであった。Incidentally, the calcination temperature during the preparation of the catalyst body was 900C.

結果をN! 2表に示す。N for the result! It is shown in Table 2.

第2表から明らかなように、本発明になる三元系触媒は
チタニア、シリカ−アルミナ、γ−アルミナと組合せる
ことが好ましいものであることが認められた。
As is clear from Table 2, it was found that the ternary catalyst of the present invention is preferably combined with titania, silica-alumina, and γ-alumina.

出願人  プリデストンタイヤ林式会社代坤人 弁理士
 小 島 隆 司
Applicant: Pridestone Tire Hayashiki Company Representative Patent Attorney: Takashi Kojima

Claims (1)

【特許請求の範囲】 1、銅及び銅化合物から選ばれる少なくとも1つと、ア
ルカリ金属化合物から選ばれる少なくとも1つと、並び
にモリブデン、バナジウム及びこれらの化合物から選ば
れる少なくとも1つとを組合せてなる触媒をチタニア、
γ−アルミナ及びシリカ−アルミナから選ばれる少なく
とも1つと組合せたことを特徴とする排ガス中の微粒子
浄化用触媒体。 2、銅及び銅化合物から選ばれる少なくとも1つと、ア
ルカリ金属化合物から選ばれる少なくとも1つと、モリ
ブデン、バナジウム及びこれらの化合物から選ばれる少
なくとも1つと、並びに白金、ロジウム、パラジウム及
びこれらの化合物から選ばれる少なくとも1つとを組合
せてなる触媒をチタニア、γ−アルミナ及びシリカ−ア
ルミナから選ばれる少なくとも1つと組合せだことを特
徴とする排ガス中の微粒子浄化用触媒体。
[Claims] 1. A catalyst made of a combination of at least one selected from copper and copper compounds, at least one selected from alkali metal compounds, and at least one selected from molybdenum, vanadium, and these compounds. ,
A catalyst for purifying fine particles in exhaust gas, characterized in that it is combined with at least one selected from γ-alumina and silica-alumina. 2. At least one selected from copper and copper compounds, at least one selected from alkali metal compounds, at least one selected from molybdenum, vanadium and these compounds, and platinum, rhodium, palladium and these compounds A catalyst for purifying fine particles in exhaust gas, characterized in that the catalyst is a combination of at least one of titania, γ-alumina, and silica-alumina.
JP57191779A 1982-04-21 1982-11-02 Catalystic medium for eliminating fine particle in waste gas Pending JPS5982944A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57191779A JPS5982944A (en) 1982-11-02 1982-11-02 Catalystic medium for eliminating fine particle in waste gas
DE8383100837T DE3364798D1 (en) 1982-04-21 1983-01-28 Use of a catalyst for cleaning exhaust gas particulates
EP19830100837 EP0092023B1 (en) 1982-04-21 1983-01-28 Use of a catalyst for cleaning exhaust gas particulates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191779A JPS5982944A (en) 1982-11-02 1982-11-02 Catalystic medium for eliminating fine particle in waste gas

Publications (1)

Publication Number Publication Date
JPS5982944A true JPS5982944A (en) 1984-05-14

Family

ID=16280390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191779A Pending JPS5982944A (en) 1982-04-21 1982-11-02 Catalystic medium for eliminating fine particle in waste gas

Country Status (1)

Country Link
JP (1) JPS5982944A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108977A (en) * 1987-03-31 1992-04-28 Kabushiki Kaisha Riken Catalyst for cleaning exhaust gas
US5208203A (en) * 1991-01-07 1993-05-04 Nippon Shokubai Co., Ltd. Diesel engine exhaust gas-purifying catalyst
JP2002102704A (en) * 2000-10-02 2002-04-09 Matsushita Electric Ind Co Ltd Waste gas cleaning catalyst and waste gas cleaning material using the same
KR101154925B1 (en) 2005-12-16 2012-06-13 에스케이이노베이션 주식회사 Catalyst compsition for diesel particulate filter and device for reduction of soot and smoke using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108977A (en) * 1987-03-31 1992-04-28 Kabushiki Kaisha Riken Catalyst for cleaning exhaust gas
US5208203A (en) * 1991-01-07 1993-05-04 Nippon Shokubai Co., Ltd. Diesel engine exhaust gas-purifying catalyst
JP2002102704A (en) * 2000-10-02 2002-04-09 Matsushita Electric Ind Co Ltd Waste gas cleaning catalyst and waste gas cleaning material using the same
KR101154925B1 (en) 2005-12-16 2012-06-13 에스케이이노베이션 주식회사 Catalyst compsition for diesel particulate filter and device for reduction of soot and smoke using the same

Similar Documents

Publication Publication Date Title
JP2863567B2 (en) Exhaust gas purifying material and exhaust gas purifying method
EP0092023B1 (en) Use of a catalyst for cleaning exhaust gas particulates
JP4776869B2 (en) Exhaust gas purification catalyst, exhaust gas purification material using the same, and method for producing the same
JP4238500B2 (en) Exhaust gas purification catalyst
JPS58174236A (en) Catalyst for removing particulate matter in waste gas
JP2004290827A (en) Oxidation catalyst for burning light oil
JP4556716B2 (en) Exhaust gas purification catalyst, production method thereof, exhaust gas purification material, and exhaust gas purification system
JP4639455B2 (en) Exhaust gas purification material
JP4887550B2 (en) Exhaust gas purification material
JPS5982944A (en) Catalystic medium for eliminating fine particle in waste gas
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JP4848662B2 (en) How to use exhaust gas purification material
JP3749346B2 (en) Exhaust gas purification catalyst
JP4696392B2 (en) Exhaust gas purification catalyst and exhaust gas purification material using the same
JPS58143840A (en) Catalyst for purifying particulate
JPH0616817B2 (en) Exhaust gas purification method
JPH0342936B2 (en)
JP3799659B2 (en) Exhaust gas purification catalyst, exhaust gas purification filter using the same, and exhaust gas purification apparatus using the same
JPH02144148A (en) Catalyst for purification of fine particles in exhaust gas
JPS62193648A (en) Catalyst for purifying exhaust gas
JPH04354518A (en) Material and method for purifying exhaust gas
JPS61249542A (en) Catalyst for purifying exhaust gas
JP6296392B2 (en) Combustion catalyst and exhaust gas combustion filter using the same
JPH05184928A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPS627447A (en) Catalyst for purifying fine particles in exhaust gas