JPH02144148A - Catalyst for purification of fine particles in exhaust gas - Google Patents

Catalyst for purification of fine particles in exhaust gas

Info

Publication number
JPH02144148A
JPH02144148A JP63296067A JP29606788A JPH02144148A JP H02144148 A JPH02144148 A JP H02144148A JP 63296067 A JP63296067 A JP 63296067A JP 29606788 A JP29606788 A JP 29606788A JP H02144148 A JPH02144148 A JP H02144148A
Authority
JP
Japan
Prior art keywords
catalyst
compounds
mmol
same manner
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63296067A
Other languages
Japanese (ja)
Inventor
Takahiro Kawamura
川村 高宏
Hiroteru Kamiyama
上山 宏輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP63296067A priority Critical patent/JPH02144148A/en
Publication of JPH02144148A publication Critical patent/JPH02144148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To prevent the lowering of the activity of a catalyst for purification of exhaust gas at high temp. by combining one or more among copper or a compd. thereof, an alkali metal or a compd. thereof and an iron family metal or a compd. thereof to form the catalyst. CONSTITUTION:An aq. soln. contg. one or more among copper or at least one kind of compd. thereof, an alkali metal or at least one kind of compd. thereof and an iron family metal or at least one kind of compd. thereof is dried and calcined to obtain a catalyst for purification of fine particles in exhaust gas. In the catalyst, the atomic ratio of the iron family metal to Cu is preferably regulated to 0.4-1.2. It is preferable that molybdenum or at least one kind of compd. thereof is further added to the aq. soln.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排ガス中の微粒子浄化用触媒に係わり、特に
ディーゼルエンジンの排出する微粒子を捕捉し効率よく
燃焼するための微粒子浄化用触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst for purifying particulates in exhaust gas, and particularly to a catalyst for purifying particulates that captures and efficiently burns particulates emitted by diesel engines.

〔従来の技術〕[Conventional technology]

近年、ディーゼルエンジンは、自動車、船舶、列車等の
運輸機関のみならず、発電寺の産業相エンジンとして多
数用いられている。ディーゼルエンジンは、燃料消費面
で優れている反面、排ガスから微粒子あるいはパティキ
ュレート等と呼ばれる粒子状物3![を排出するので、
環境への影響が懸念され、米国においては微粒子排出規
制、日本ではスモーク規制が実施されている。
In recent years, diesel engines have been widely used not only in transportation systems such as automobiles, ships, and trains, but also as industrial engines for power generation. Diesel engines are superior in terms of fuel consumption, but on the other hand, particulate matter called particulates or particulates is emitted from the exhaust gas3! [Since it emits
Due to concerns about the impact on the environment, particulate emission regulations have been implemented in the United States and smoke regulations have been implemented in Japan.

このような状況において、今までに公知の排ガス中の微
粒子を低減する技術としては、エンジン内部で低減する
燃焼改善システムと排気系に微粒子捕集装置を設ける後
処理システムの二種類に大別できるが、現状では、エン
ジン内部だけでの対応では排ガス中の微粒子低減を完全
に行なうことができず、排気系に後処理システムを備え
ることが必要でおる。
Under these circumstances, the technologies known to date to reduce particulates in exhaust gas can be roughly divided into two types: combustion improvement systems that reduce the amount inside the engine, and aftertreatment systems that install particulate collectors in the exhaust system. However, at present, it is not possible to completely reduce particulates in exhaust gas by taking measures inside the engine alone, and it is necessary to equip the exhaust system with an after-treatment system.

従来、排気系の後処理システムとして、金属や重質炭化
水素を含む微粒子をセラミックフオーム、セラミックハ
ニカムのような捕捉体を使用し捕集することが提案され
ているが、これらはめる程度微粒子を捕集すると圧力損
失が増加するので、足期的な捕捉体の交換および再生が
必要である。捕捉体の再生は、捕集物が着火しづらいた
め、約550〜650℃程度の高温処理をする必要があ
り、そのため捕捉体が劣化する等の難点がめった。また
、エンジン排気系にバーナを設置し、排気温度を上昇さ
せ、エンジン内部から排出される微粒子を燃焼させるこ
とも試みられているが、装置が複雑となり燃費も低下す
るので実用的ではない。
Conventionally, as an exhaust system after-treatment system, it has been proposed to collect fine particles containing metals and heavy hydrocarbons using a trapping body such as a ceramic foam or ceramic honeycomb. Collecting increases pressure loss and requires periodic replacement and regeneration of the trap. Regeneration of the trap requires high-temperature treatment at about 550 to 650° C. because the collected material is difficult to ignite, which often causes problems such as deterioration of the trap. Attempts have also been made to install a burner in the engine exhaust system to raise the temperature of the exhaust gas and burn the particulates emitted from inside the engine, but this is not practical as it would complicate the device and reduce fuel efficiency.

このような対策として、上記のような微粒子をセラミッ
ク7オーム、セラミックハニカム等に触媒を担持した捕
捉体で、エンジン排気温度近傍で燃焼可能とする方法が
提案されている。
As a countermeasure against this, a method has been proposed in which the above-mentioned fine particles can be combusted near the engine exhaust temperature using a trapping body in which a catalyst is supported on a ceramic 7 ohm, ceramic honeycomb, or the like.

提案されている例として、例えば特開昭58−1859
45号公報には、バナジウムもしくはモリブデン、アル
カリ金属及び銅からなる三元系の触媒を捕捉体に担持し
て微粒子を燃焼することが開示されているが、この技術
では燃焼温度が高く、ディーゼルエンジンの低負荷特等
排気温度が低い場合には、微粒子が燃焼せず捕捉体に捕
集され、捕捉体の圧力損失増大の原因となったり、−万
、再燃焼時においても燃焼熱による捕捉体の耐久性、そ
れに伴う交換頻度等が懸念される。
For example, Japanese Patent Application Laid-Open No. 58-1859
Publication No. 45 discloses burning fine particles by supporting a ternary catalyst consisting of vanadium or molybdenum, an alkali metal, and copper on a trapping body, but this technology has a high combustion temperature and cannot be used in diesel engines. If the low-load special exhaust temperature is low, particulates may not burn and be trapped in the trap, causing increased pressure loss in the trap, or even during re-burning, combustion heat may cause the trap to evaporate. There are concerns about durability and the associated frequency of replacement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

微粒子の燃焼をエンジン排気温度近くの低温で行なう技
術が開発されれば、燃焼熱を低く抑え、捕捉体の寿命を
延ばし、常に触媒を担示した捕捉体を清浄に保つことが
可能とな夛、交換頻度の減少、ある場合においては再生
操作も不要となるが、前記したように従来の技術では、
微粒子の再燃焼に有効な触媒の選定1.再燃焼したとき
の触媒及び捕捉体の耐久性が問題であった。
If technology were developed to burn particulates at a low temperature close to the engine exhaust temperature, it would be possible to keep the heat of combustion low, extend the life of the trap, and keep the trap carrying the catalyst clean at all times. , the frequency of replacement is reduced, and in some cases, regeneration operations are no longer necessary, but as mentioned above, with the conventional technology,
Selection of catalyst effective for re-combustion of particulates 1. The durability of the catalyst and trap when reburned was a problem.

本発明は、上記問題点に亀み、排ガス中の微粒子がより
低い温度で燃焼を開始し、かつ燃焼を完了すること全可
能とし、しかも高温にさらされても活性低下を起こしに
くく、耐熱性に優れた排ガス中の微粒子浄化用触媒を提
供することを目的とする。
The present invention addresses the above-mentioned problems and makes it possible for fine particles in exhaust gas to start and complete combustion at a lower temperature, and is less likely to lose activity even when exposed to high temperatures, and is heat resistant. The purpose of the present invention is to provide a catalyst for purifying particulates in exhaust gas that has excellent properties.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、排ガス中の微粒子の低温燃焼を可能とし
、耐熱性に優れた微粒子浄化用触媒を開発すべく、種々
の金属およびその化合物の組み合せからなる多数の触媒
に関し鋭意研究した結果、銅成分とアルカリ全損成分に
鉄族金用成分を、さらにはモリブデン成分を組み合せる
ことにより、各成分が相乗的に作用して燃焼温度の低温
化および耐熱性に寄与することを見出し、本発明を完成
するに至った。
In order to develop a particulate purification catalyst that enables low-temperature combustion of particulates in exhaust gas and has excellent heat resistance, the present inventors conducted intensive research on a large number of catalysts made of combinations of various metals and their compounds. We discovered that by combining the copper component and the alkali total loss component with the iron group metal component and furthermore with the molybdenum component, each component acts synergistically and contributes to lower combustion temperatures and heat resistance. The invention was completed.

すなわち、本発明は、銅及びその化合物から選ばれる少
なくとも1つと、アルカリ金属及びその化合物から選ば
れる少なくとも1つと、鉄族金属及びその化合物から選
ばれる少なくとも1つとを組み合せた組成を有すること
を特徴とする排気ガス中の微粒子浄化用触媒でめる。
That is, the present invention is characterized by having a composition that combines at least one selected from copper and its compounds, at least one selected from alkali metals and their compounds, and at least one selected from iron group metals and their compounds. It is a catalyst for purifying particulates in exhaust gas.

また、本発明は、鋼及びその化合物から選ばれる少なく
とも1つと、アルカリ金属及びその化合物から選ばれる
少なくとも1つと、鉄族金属及びその化合物から選ばれ
る少なくとも1つと、更にモリブデン及びその化合物か
ら遺ばれる少なくとも1つとを組み合せた組成を有する
ことを特徴とする排気ガス中の微粒子浄化用触媒である
The present invention also provides at least one selected from steel and its compounds, at least one selected from alkali metals and their compounds, at least one selected from iron group metals and their compounds, and molybdenum and its compounds. A catalyst for purifying particulates in exhaust gas, characterized by having a composition combining at least one of the following.

以下に不発#!Aを詳細に説明する。Misfire # below! A will be explained in detail.

本発明で用いられる銅および銅化合物としては、銅、銅
の酸化物、硝酸塩、塩化物や臭化物のようなハロゲン化
合物等が使用され、具体例をあげれば、酸化鋼、硝酸鋼
、塩化銅、臭化銅等をめげることができる。
Copper and copper compounds used in the present invention include copper, copper oxides, nitrates, halogen compounds such as chlorides and bromides, and specific examples include oxidized steel, nitrate steel, copper chloride, Can be used to remove copper bromide, etc.

アルカリ金属としては、リチウム、ナトリウム、カリウ
ム、ルビジウムおよびセシウムがめげられ、それらの化
合物としては、フッ化物、塩化物、臭化物、ヨウ化物等
のハロゲン化物、硝酸塩、酸化物、リン酸塩、炭酸化物
、酢酸化物、シアン化物、アンド、水素化物等がめげら
れるが、特に塩化物、硝酸塩、酸化物が好ましく、塩化
カリウム、塩化リチウム等が好適に使用される。
Alkali metals include lithium, sodium, potassium, rubidium, and cesium, and their compounds include halides such as fluoride, chloride, bromide, and iodide, nitrates, oxides, phosphates, and carbonates. Examples include acetates, cyanides, ands, hydrides, etc., but chlorides, nitrates, and oxides are particularly preferred, and potassium chloride, lithium chloride, etc. are preferably used.

鉄族金属及びその化合物としては、鉄、コバルト、ニッ
ケルのハロゲン化物、硝酸塩、リン酸塩、酸化物やそれ
らの複合塩等が使用され、具体的には、塩化鉄、塩化コ
バルト、塩化ニッケル、硝酸鉄、硝酸コバルト、硝酸ニ
ッケル、リン酸鉄、リン酸コバルト、リン酸ニッケル、
酸化鉄、酸化コバルト、酸化ニッケル等をあげることが
できる。
Examples of iron group metals and their compounds include halides, nitrates, phosphates, oxides, and complex salts of iron, cobalt, and nickel. Specifically, iron chloride, cobalt chloride, nickel chloride, Iron nitrate, cobalt nitrate, nickel nitrate, iron phosphate, cobalt phosphate, nickel phosphate,
Examples include iron oxide, cobalt oxide, and nickel oxide.

本発明において、上記銅成分とアルカリ金属成分、鉄族
金属成分を組み合せて触媒を製造する時、その成分組み
合せの順序は特に制限されない。また触媒の成分割合は
、通常各成分とも触媒中に金属成分として約10 m0
1%以上存在する範囲で用いられるが、籍に銅およびそ
の化合物に対する鉄族金属およびその化合物の配合量が
、元素比で〔鉄族金属)/[Cu)が約α4〜1.2、
好ましくは約[L5〜1の範囲にするように各成分をa
lll裏することが好ましい。鋼成分とアルカリ金属成
分に鉄族金属成分を加えることにより、また〔鉄族金属
]/ICu)の元素比を約ct4〜1.2の範囲にする
ことにより、より−l−各成分の十分な相刺効果を得る
ことができ、銅成分とアルカリ金属2g分系に比べては
るかに低い温度で燃焼を可能とする。
In the present invention, when a catalyst is produced by combining the copper component, alkali metal component, and iron group metal component, the order of the component combinations is not particularly limited. In addition, the proportion of each component in the catalyst is usually about 10 m0 as a metal component in the catalyst.
It is used in the range of 1% or more, but the content of iron group metals and their compounds relative to copper and its compounds is such that the elemental ratio [iron group metals]/[Cu) is approximately α4 to 1.2,
Preferably, each component is adjusted to a range of about [L5 to 1].
It is preferable to turn it inside out. By adding an iron group metal component to the steel component and alkali metal component, and by setting the element ratio [iron group metal]/ICu) in the range of approximately ct4 to 1.2, the -l- sufficiency of each component can be improved. It is possible to obtain a mutually beneficial effect, and it is possible to burn at a much lower temperature than a system containing a copper component and 2g of alkali metal.

また、本発明では、触媒成分として鋼成分、アルカリ金
属成分、鉄族金属成分にさらにモリブデン成分を加え4
成分系とすることにより、前記の5成分系に比べ高温で
の活性低下が少なく、燃焼温度をより低温化することが
できる。
In addition, in the present invention, a molybdenum component is further added to the steel component, alkali metal component, and iron group metal component as catalyst components.
By using a component system, the activity decreases less at high temperatures than the five-component system described above, and the combustion temperature can be lowered.

本発明で用いられるモリブデンおよびモリブデン化合物
としては、モリブデン、モリブデンのアンモニウム塩、
酸化物、硝酸塩、ハロゲン化物、モリブデン酸、モリブ
デン酸塩等が使用され、具体的にはモリブデン酸アンモ
ニウム、二酸化モリブデン、三酸化モリブデン、五酸化
モリブデン、塩化モリブデン、シュウ酸モリブデン、モ
リブデン酸す) IJウム、モリブデン酸カリウム等を
めげることができる。
Molybdenum and molybdenum compounds used in the present invention include molybdenum, ammonium salts of molybdenum,
Oxides, nitrates, halides, molybdic acid, molybdates, etc. are used, specifically ammonium molybdate, molybdenum dioxide, molybdenum trioxide, molybdenum pentoxide, molybdenum chloride, molybdenum oxalate, molybdate) IJ um, potassium molybdate, etc.

上記触媒として、4成分を組み合せて製造するとき、そ
の成分組み合せ順序は特に制限されない。1次、成分割
合は通常各成分とも触媒中に金属成分として約10 m
oss以上存在する範囲で用いられるが、特に、モリブ
デンおよびその化合物に対する鉄族金属およびその化合
物の配合量は、元素比で〔鉄族金属] / (MO]が
約1.1〜1.9、好ましくは約1.2〜1.8の範囲
で、さらに銅およびその化合物に対する鉄族金属および
その化合物の、配合量は、元素比で〔鉄族金hAE/[
Cu]が約α4〜t 2、好ましくは約0.5〜1の範
囲にするように各成分t−調製することが好ましい。
When the above-mentioned catalyst is manufactured by combining four components, the order of combining the components is not particularly limited. The primary component ratio is usually about 10 m as a metal component in the catalyst for each component.
In particular, the content of iron group metals and their compounds relative to molybdenum and its compounds is such that the elemental ratio [iron group metals]/(MO) is approximately 1.1 to 1.9. Preferably in the range of about 1.2 to 1.8, and furthermore, the blending amount of iron group metal and its compound to copper and its compound is [iron group gold hAE/[
It is preferable to prepare each component so that the value of Cu] is in the range of about α4 to t2, preferably about 0.5 to 1.

銅成分とアルカリ金属成分に鉄族金属成分、モリブデン
成分を加えることにより、高温での活性低下が少なく、
燃焼温度をより低温化することができ、優れた低温燃焼
活性を示すが、〔鉄族金属]/(MO)および〔鉄族金
属]/[、Cu]の元素比を上記範囲内にすることによ
シ、鉄族金属成分、モリブデン成分の十分な相刺効来を
得ることができ、耐熱性および低温燃焼活性に優れた触
媒を得ることができる。
By adding an iron group metal component and a molybdenum component to the copper component and alkali metal component, there is little activity loss at high temperatures.
Although the combustion temperature can be lowered and exhibits excellent low-temperature combustion activity, the element ratio of [iron group metal]/(MO) and [iron group metal]/[,Cu] must be within the above range. It is possible to obtain a sufficient mutually beneficial effect of the molybdenum, iron group metal component, and molybdenum component, and to obtain a catalyst with excellent heat resistance and low-temperature combustion activity.

本発明の触媒は、適宜の捕捉体、例えばセラミック7オ
ーム、セラミックハニカム、セラミックベレット、金属
メツシュ等の耐熱性フィルターに担持させて使用するこ
とができる。この場合、上記触媒を担持させる方法とし
ては、アルミナ、チタニア、ジルコニア、シリカ及びこ
れらの複合体から選ばれる酸化物を捕捉体の内部表面に
被覆しておきその上に触媒を担持させるか、あるいは、
本発明触媒を捕捉体に直接担持させてもよい。また、ア
ルミナ、チタニア、ジルコニア、シリカ及びこれらの複
合体を本発明各成分とららかじめ混合し、捕捉体に担持
することも可能である。担持後の触媒は、電気炉中で約
500〜900℃の@度で約1〜4時間焼成することが
好ましい。
The catalyst of the present invention can be used by being supported on a suitable trapping body, for example, a heat-resistant filter such as a ceramic 7 ohm filter, a ceramic honeycomb filter, a ceramic pellet, or a metal mesh filter. In this case, the method for supporting the catalyst is to coat the inner surface of the trapping body with an oxide selected from alumina, titania, zirconia, silica, and composites thereof, and to support the catalyst thereon. ,
The catalyst of the present invention may be directly supported on the capture body. It is also possible to mix alumina, titania, zirconia, silica, and composites thereof with the components of the present invention in advance and support them on the capture body. The supported catalyst is preferably calcined in an electric furnace at about 500 to 900° C. for about 1 to 4 hours.

上記捕捉体の好ましいものとしては、セラミックフオー
ムがめげられる。セラミック7オームは、例えば内部連
通空間が1インチ当′fcシ約10〜100個の割合で
形成されており、またそのかさ比重が約0.25〜1.
0の範囲にあるものでらる。これらのセラミックフオー
ムは、1つだけ望ましい大きさに配設することも可能で
あるが、触媒の担持方法を必要に応じて変化させ、複数
個のものを組合せて用いることもできる。例えば、内部
連通空間の粗なものから密に順次積層して構成すること
もできる。
Preferably, the trapping body is a ceramic foam. Ceramic 7 ohm, for example, has internal communication spaces formed at a ratio of about 10 to 100 fc/inch, and has a bulk specific gravity of about 0.25 to 1.
It is within the range of 0. Although it is possible to arrange only one of these ceramic foams in a desired size, it is also possible to use a combination of a plurality of them by changing the method of supporting the catalyst as necessary. For example, it is also possible to construct the structure by sequentially stacking the inner communication spaces starting from the ones with the coarsest ones and the ones with the densest ones.

また、本発明の触媒は、公知の触媒、例えばガソリンエ
ンジン排気ガス用の触媒と組合せることにより、排カス
中に含まれる炭化水素、窒素酸化物、−酸化炭素等を低
減することができ、よシー層効果的に使用することがで
きる。
In addition, the catalyst of the present invention can reduce hydrocarbons, nitrogen oxides, carbon oxides, etc. contained in exhaust gas by combining with a known catalyst, such as a catalyst for gasoline engine exhaust gas, Good sea layer can be used effectively.

〔実施例〕〔Example〕

以下、本発明を実施例によりさらに具体的に説明するが
、本発明はこれらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 ジと!ll蒸留水で石屑して混合水浴液とする。この混
合水溶液を蒸発皿に入れ、ホットプレート上で攪拌しな
がら約1時間程度かけて蒸発乾固する。次に、熱風乾燥
機中120℃で、約5時間乾燥した後、電気炉中600
℃で約5時間の焼成を行ない、粉砕し粉末上の6成分系
の触媒を得た。この触媒を用いて燃焼温度を測定し、そ
の結果を第1表に示す。
Example 1 Jito! Dilute the stone chips with distilled water to make a mixed water bath solution. This mixed aqueous solution is placed in an evaporating dish and evaporated to dryness over about 1 hour while stirring on a hot plate. Next, after drying in a hot air dryer at 120°C for about 5 hours, drying in an electric furnace at 600°C
The mixture was calcined at ℃ for about 5 hours and pulverized to obtain a six-component catalyst in the form of a powder. Combustion temperature was measured using this catalyst, and the results are shown in Table 1.

燃焼温度の測定は次のようにして行った。ディーゼルエ
ンジン排気ガスから採取した微粒子と触媒とを1:2の
重量比で均一混合したものを試料とし、熱分析測定装f
itを用いて以下に示す測定条件で燃焼m度を測定した
The combustion temperature was measured as follows. The sample was a homogeneous mixture of fine particles collected from diesel engine exhaust gas and catalyst at a weight ratio of 1:2, and a thermal analysis measurement device f
The degree of combustion was measured using it under the measurement conditions shown below.

測定方法は、試料部を空気気流中加熱昇温し、その時の
重量減少開始温度および重層減少停止温度を読みとり、
これらの温度をそれぞれ微粒子の燃焼開始温度および燃
焼完了温度として触媒活性指標とした。また燃焼の中間
点温度Tmは微粒子の完全燃焼の1つの目安を示すもの
である。熱分析測定柔性は試料量10rR9、空気流j
ii2004m1n 、昇温速度211 U/m1nと
した。
The measurement method is to heat the sample part in an air stream and read the weight loss start temperature and layer weight loss stop temperature.
These temperatures were used as the catalyst activity index as the combustion start temperature and combustion completion temperature of the fine particles, respectively. Further, the combustion midpoint temperature Tm indicates one measure of complete combustion of the particulates. Thermal analysis measurement flexibility is sample amount 10rR9, air flow j
ii2004 m1n, and the temperature increase rate was 211 U/m1n.

実施例2 塩化第二fA37.7 mmol、塩化カリウム42.
5mmo1、塩化ニッケ# 21h 8 mmol f
c%施例1と同様の方法で調製し、実施例1と同様の方
法で燃焼温度全測定した。その結果は第1表に示す。
Example 2 Ferric chloride fA 37.7 mmol, potassium chloride 42.
5 mmol1, nickel chloride #21h 8 mmol f
c% It was prepared in the same manner as in Example 1, and the combustion temperature was completely measured in the same manner as in Example 1. The results are shown in Table 1.

実施例5 塩化第二銅5 (L 5 mmol、塩化リチウム13
i9mmo1、塩化ニッケル2&8mmoli実施例1
と同様の方法で真実し、実施例1と同様の方法で燃焼温
度を測定した。その結果は第1表に示す。
Example 5 Cupric chloride 5 (L 5 mmol, lithium chloride 13
i9mmo1, nickel chloride 2&8mmoli Example 1
The combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 1.

実施例4 塩化第二銅25.1 mmol、塩化リチウム13五9
mmo1、硝酸第二鉄2 a Ommolを実施例1と
同様の方法で調製し、実施例1と同様の方法で燃焼温度
を測定した。その結果は第1表に示す。
Example 4 Cupric chloride 25.1 mmol, lithium chloride 13.59
1 mmol and 2 a Ommol of ferric nitrate were prepared in the same manner as in Example 1, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 1.

実施例5 塩化第二銅65.4 mmol、塩化カリウム42.5
mmo1.、塩化コバルト18.7 mmolを実施例
1と同様の方法で調製し、実施例1と同様の方法で燃焼
温度を測足した。その結果は第1表に示す。
Example 5 Cupric chloride 65.4 mmol, potassium chloride 42.5
mmo1. , 18.7 mmol of cobalt chloride was prepared in the same manner as in Example 1, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 1.

実施例6 塩化第二銅27.7 mmol 、塩化リチウム13五
9mmol、塩化ニッケル5 a 9 mmolを実施
例1と同様の方法で′rA夷し、実施例1と同様の方法
で燃焼温度を測足した。その結果は第1表に示す。
Example 6 27.7 mmol of cupric chloride, 13.59 mmol of lithium chloride, and 5.9 mmol of nickel chloride were heated in the same manner as in Example 1, and the combustion temperature was measured in the same manner as in Example 1. added. The results are shown in Table 1.

比較例1 塩化第二@ 5 CL 5 mmol、塩化カリウム4
2.5mmol  を実施例1と同様の方法で調表し、
実施例1と同様の方法で燃焼温度を測定した。その結果
は第1表に示す。
Comparative example 1 2 chloride @ 5 CL 5 mmol, potassium chloride 4
2.5 mmol was prepared in the same manner as in Example 1,
Combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 1.

第1表Vi、%実施例1に記載の同一の触媒調整条件で
成分のみを変化し次結果であり、実施例1〜6は、鋼成
分、アルカリ金属成分、鉄族金属成分の5成分からなる
触媒を示し、比較例1は銅成分とアルカリ金属成分の2
成分触媒を示すものである。
Table 1 Vi, % The following results are obtained by changing only the components under the same catalyst preparation conditions as described in Example 1. Comparative Example 1 shows a catalyst consisting of a copper component and an alkali metal component.
It shows the component catalyst.

実施例7 塩化第二銅5α5mmol、塩化カリウム42.5mm
ol、及び硝酸第二鉄2 !t l mmolを同一ビ
ー力に計りとり蒸留水で溶解して水溶液にして、別途ビ
ー力にモリブデン酸アンモニウム2.Ommox を蒸
留水で溶解した水溶液と混ぜて混合水溶液とする。この
混合水溶液を、以後実施例1と同様の方法で11il製
し、実施例1と同様の方法で燃焼温度を測定した。その
結果は8g2表に示す。
Example 7 Cupric chloride 5α5 mmol, potassium chloride 42.5 mm
ol, and ferric nitrate 2! Measure out t l mmol into the same beer, dissolve it in distilled water to make an aqueous solution, and add 2.0 mmol of ammonium molybdate to the beer separately. Mix with an aqueous solution of Ommox dissolved in distilled water to obtain a mixed aqueous solution. Thereafter, 11 il of this mixed aqueous solution was prepared in the same manner as in Example 1, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 8g2.

実施例8 塩化第二銅57.7 mmol、塩化カリウム6五7m
mol、硝酸第二鉄25.1 mmolおよび塩化モリ
ブデン14.0 mmol f:実施例7と同様の方法
で磨製し、実施例1と同様の方法で燃焼温度を測定した
。その結果は第2表に示す。
Example 8 Cupric chloride 57.7 mmol, potassium chloride 657 m
mol, 25.1 mmol of ferric nitrate and 14.0 mmol of molybdenum chloride f: Polished in the same manner as in Example 7, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 2.

実施例9 塩化第二銅51.4 mmol、塩化カリウム5五1m
mol、硝酸第二鉄51.5 mmolおよびモリブデ
ン酸アンモニウム2.5 mmol  を実施例7と同
様の方法で調製し、実施例1と同様の方法で燃焼温度を
測定した。その結果は第2表に示す。
Example 9 Cupric chloride 51.4 mmol, potassium chloride 551 m
51.5 mmol of ferric nitrate and 2.5 mmol of ammonium molybdate were prepared in the same manner as in Example 7, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 2.

実施例8、実施例9は実施例7と比較し、各成分の配合
割合を変化させた時の例である。
Examples 8 and 9 are examples in which the proportions of each component were changed compared to Example 7.

実施例10 塩化第二銅5α3mm01、塩化カリウム42.5mm
olおよび塩化コバルト26.7 mmol、モリブデ
ン酸アンモニウム2.5 mmol、  を実施例7と
同様の方法で調製し、実施例1と同様の方法で燃焼温度
を測定した。その結果は第2我に示す。
Example 10 Cupric chloride 5α3mm01, potassium chloride 42.5mm
ol, 26.7 mmol of cobalt chloride, and 2.5 mmol of ammonium molybdate were prepared in the same manner as in Example 7, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Part 2.

実施例11 塩化第二銅5α5 mmol、塩化カリウム425mm
o1、塩化ニッケル2&8mmo1.塩化モリブデン1
7.5 mmol f:実施例7と同様の方法でW場裏
し、実施例1と同様の方法で燃焼温度を測定した。その
結果は第2表に示す。
Example 11 Cupric chloride 5α5 mmol, potassium chloride 425 mm
o1, nickel chloride 2 & 8 mmol. Molybdenum chloride 1
7.5 mmol f: W was added in the same manner as in Example 7, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 2.

実施例12 塩化第二銅515 mmol、塩化リチウAl15mm
ol、塩化ニッケル51.5 mmol、モリブデン酸
アンモニウムA5 mrnol  を実施例7と同様の
方法で調製し、実施例1と同様の方法で燃焼温度を測定
した。その結果は第2衣に示す。
Example 12 Cupric chloride 515 mmol, lithium chloride Al 15 mm
ol, 51.5 mmol of nickel chloride, and ammonium molybdate A5 mrnol were prepared in the same manner as in Example 7, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Figure 2.

実施例10、実施例11は鉄族金属成分として塩化コバ
ルト、塩化ニッケルを用いた例を示すものでるり、まf
c実施例12はアルカリ金属成分としてリチウムを用い
た例を示すものである。
Examples 10 and 11 show examples using cobalt chloride and nickel chloride as iron group metal components.
c Example 12 shows an example in which lithium was used as the alkali metal component.

実施例13 塩化第二銅5α3 mmol、塩化カリウム42.5m
mo1及び塩化第二鉄25. I mmolを同一ビー
力に計りとり、蒸留水で溶解して水浴液にして、別途と
一カにモリブデン酸アンモニウム2.Ommol  を
蒸留水で溶解し次水溶液と混ぜて混合水溶液とする。こ
の混合溶液をr−アルミナ24、5 mmol を計り
とつ次蒸発皿に入れ、ホットプレート上で攪拌しながら
FJ1時間かけて蒸発乾固する。次に、熱風乾燥機中1
20℃で約5時間乾燥した後、電気炉中600℃で5時
間の焼成を行ない4成分系の触媒を得た。燃焼温度は実
施例1と同様の方法で測定した。その結果は第2表に示
す。
Example 13 Cupric chloride 5α3 mmol, potassium chloride 42.5 m
mo1 and ferric chloride 25. Weigh out 1 mmol to the same beer strength, dissolve it in distilled water to make a water bath solution, and add 2.0 mmol of ammonium molybdate separately. Dissolve Ommol in distilled water and then mix with the aqueous solution to make a mixed aqueous solution. Weigh out 24.5 mmol of r-alumina from this mixed solution, put it in an evaporating dish, and evaporate to dryness over FJ 1 hour while stirring on a hot plate. Next, in the hot air dryer 1
After drying at 20° C. for about 5 hours, it was calcined at 600° C. for 5 hours in an electric furnace to obtain a four-component catalyst. The combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 2.

本実施例は、4成分にγ−アルミナを混合して触媒を調
製した例を示すものである。
This example shows an example in which a catalyst was prepared by mixing γ-alumina with four components.

実施例14 触媒の焼成温度を900℃で行なった以外、実施例5と
同様の方法で触媒fi−得て、実施例1と同様の方法で
燃焼温度を測定した。その結果は第2表に示す。
Example 14 A catalyst fi was obtained in the same manner as in Example 5, except that the firing temperature of the catalyst was 900° C., and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 2.

実施例15 触媒の焼成温度を900℃で行なった以外、実施例10
と同様の方法で触媒を痔て、実1Mクリ1と同様の方法
で燃焼温度を測定した。その結果は第2表に示す。
Example 15 Example 10 except that the catalyst was fired at a temperature of 900°C.
The catalyst was prepared in the same manner as above, and the combustion temperature was measured in the same manner as for the actual 1M chestnut 1. The results are shown in Table 2.

実施例16 触媒の焼成温度を900℃で行なった以外、実施例11
と同様の方法で触媒を得て、実施例1と同様の方法で燃
焼温度を測定した。その結果は第2表に示す。実施例1
2〜14は、触媒の焼成温度を900℃で行なった時の
例でるり、本発明による触媒が高温にさらされても活性
低下が起こ夛にくいことを示すものである。
Example 16 Example 11 except that the catalyst was fired at a temperature of 900°C.
A catalyst was obtained in the same manner as in Example 1, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 2. Example 1
Nos. 2 to 14 are examples in which the catalyst was fired at a temperature of 900° C., which shows that the catalyst of the present invention is unlikely to suffer from a decrease in activity even when exposed to high temperatures.

実施例17 塩化第二鋼6α4 mmol、塩化カリウム42.5m
mo1、モリブデン酸アンモニウム五〇 mmol、硝
酸第二鉄21.4 mmol  を実施例7と同様の方
法で調製し、実施例1と同様の方法で燃焼温度を測定し
た。その結果は第3表に示す。
Example 17 Second steel chloride 6α4 mmol, potassium chloride 42.5 m
mol, 50 mmol of ammonium molybdate, and 21.4 mmol of ferric nitrate were prepared in the same manner as in Example 7, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 3.

実施例18 塩化第二銅5a8mmol、塩化カリウム6五7mmo
1.、塩化モリブデン17.0 mmol 、硝酸第二
鉄47.1 mmol  を実施例7と同様の方法で調
製し、5j!施例1と同様の方法で燃焼温度を測定した
。その結果は第5表に示す。
Example 18 Cupric chloride 5a8 mmol, potassium chloride 657 mmol
1. , 17.0 mmol of molybdenum chloride, and 47.1 mmol of ferric nitrate were prepared in the same manner as in Example 7, and 5j! Combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 5.

実施例19 塩化第二%455.8 mmol、塩化カリウム6五7
mmo1、モリブデン酸アンモニウム7、 Ommol
 。
Example 19 2% chloride 455.8 mmol, potassium chloride 657
mmol1, ammonium molybdate7, Ommol
.

塩化コパル) 47.1 mmol  全実施例7と同
様の方法でvI4製し、実施例1と同様の方法で燃焼温
度を測定した。その結果は第5衆に示す。
Copal chloride) 47.1 mmol vI4 was produced in the same manner as in Example 7, and the combustion temperature was measured in the same manner as in Example 1. The results will be shown to the fifth group.

実施例20 触媒の焼成温度ft900℃で行なった以外、実施例1
7と同様の方法で触媒を得て、実施例1と同様の方法で
燃焼温度を測定した。その結果は第5表に示す。
Example 20 Example 1 except that the firing temperature of the catalyst was ft900°C.
A catalyst was obtained in the same manner as in Example 7, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 5.

実施例14〜16%および実施例20は、触媒の焼成温
度を900℃で行なった時の例であり、本発明による触
媒が高温にさらされても活性低下が起こりにくいことを
示すものである。
Examples 14 to 16% and Example 20 are examples in which the catalyst was calcined at a temperature of 900°C, and show that the catalyst of the present invention is unlikely to lose activity even when exposed to high temperatures. .

比較例2 塩化第二銅75.4 mmol、塩化カリウムtZ5m
mo1、モリブデン酸アンモニウム2. Ommol 
f用い実施例7と同様の方法でvI4AL、5成分の触
媒を得て、実施例1と同様の方法で燃焼温度を測定した
。その結果は第5表に示す。
Comparative Example 2 Cupric chloride 75.4 mmol, potassium chloride tZ5m
mo1, ammonium molybdate2. Ommol
A five-component vI4AL catalyst was obtained in the same manner as in Example 7 using f, and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 5.

比較例3 触媒の焼成温度を900℃で行なった以外、比較例2と
同様の方法で触媒を得て、実施例1と同様の方法で燃焼
温度を測定した。その結果は第5表に示す。
Comparative Example 3 A catalyst was obtained in the same manner as in Comparative Example 2, except that the firing temperature of the catalyst was 900° C., and the combustion temperature was measured in the same manner as in Example 1. The results are shown in Table 5.

参考例 ディーゼルエンジン排気ガス中から採取した微粒子3〜
f!:実施例1と同様の方法で加温昇温し、燃焼温度を
測定した。その結果は第5衣に示す。
Reference example Particulates collected from diesel engine exhaust gas 3~
f! : The temperature was raised in the same manner as in Example 1, and the combustion temperature was measured. The results are shown in Figure 5.

本例は微粒子を無触媒状態で単独燃焼させた時の温度を
示すものである。
This example shows the temperature when fine particles are burnt alone without a catalyst.

第1衣、第2表、第3表から明らかのように、本発明に
よる触媒は、燃焼開始温度が低く、かつ燃焼完了温度も
400℃前後であり、完全燃焼の目安を示す燃焼の中間
点温度Tmは400℃以下である。また、高温焼成(9
00℃)においても600℃焼成での活性を保持してお
り、本発明触媒が高温にさらされても活性低下が起こり
にくいことがわかる。
As is clear from Table 1, Table 2, and Table 3, the catalyst according to the present invention has a low combustion start temperature and a combustion completion temperature of around 400°C, which is the midpoint of combustion that indicates complete combustion. The temperature Tm is 400°C or less. In addition, high temperature firing (9
00°C), the activity at 600°C calcination was maintained, indicating that the catalyst of the present invention is unlikely to lose its activity even when exposed to high temperatures.

〔発明の効果〕〔Effect of the invention〕

本発明の触媒を、担持された捕捉体として用いると、エ
ンジン排気系の所定流路に配置して使用でき、排気ガス
中の微粒子を確実に捕捉するとともに、よシ低い温度で
燃焼を開始し、かつ燃焼を完了することができる。
When the catalyst of the present invention is used as a supported trap, it can be placed in a predetermined flow path of an engine exhaust system, reliably traps particulates in exhaust gas, and starts combustion at a lower temperature. , and combustion can be completed.

このため、燃焼エネルギーも少なくてすみ捕捉体の寿命
を伸ばすことができ、かつ捕捉体の目づま!llをなく
して交換頻度の減少、また、ある場合においては再生操
作を不IDcすることができる。本発明の触媒は優れた
耐熱性を有するので、エンジンの運転状態等により高温
にさらされた場合等にも活性低下の少ないものである。
As a result, less combustion energy is required, extending the life of the trapping body, and preventing the trapping body from becoming clogged! By eliminating ll, the frequency of replacement can be reduced, and in some cases, regeneration operations can be eliminated. Since the catalyst of the present invention has excellent heat resistance, there is little decrease in activity even when exposed to high temperatures due to engine operating conditions.

Claims (1)

【特許請求の範囲】 1、銅およびその化合物から選ばれる少なくとも1つと
、アルカリ金属およびその化合物から選ばれる少なくと
も1つと、鉄族金属およびその化合物から選ばれる少な
くとも1つとを組み合せた組成を有することを特徴とす
る排気ガス中の微粒子浄化用触媒。 2、銅およびその化合物から選ばれる少なくとも1つと
、アルカリ金属およびその化合物から選ばれる少なくと
も1つと、鉄族金属およびその化合物から選ばれる少な
くとも1つとを組み合せた組成を有し、かつ前記銅およ
びその化合物に対する鉄族金属およびその化合物の配合
量が、元素比で〔鉄族金属〕/〔Cu〕=0.4〜1.
2であることを特徴とする排気ガス中の微粒子浄化用触
媒。 3、銅およびその化合物から選ばれる少なくとも1つと
、アルカリ金属およびその化合物から選ばれる少なくと
も1つと、鉄族金属およびその化合物から選ばれる少な
くとも1つと、さらにモリブデンおよびその化合物から
選ばれる少なくとも1つとを組み合せた組成を有するこ
とを特徴とする排気ガス中の微粒子浄化用触媒。 4、銅およびその化合物から選ばれる少なくとも1つと
、アルカリ金属およびその化合物から選ばれる少なくと
も1つと、鉄族金属およびその化合物から選ばれる少な
くとも1つと、さらにモリブデンおよびその化合物から
選ばれる少なくとも1つとを組み合せた組成を有し、か
つ前記銅およびその化合物に対する鉄族金属およびその
化合物の配合量、およびモリブデンおよびその化合物に
対する鉄族金属およびその化合物の配合量が、元素比で 〔鉄族金属〕/〔Cu〕=0.4〜1.2、〔鉄族金属
〕/〔Mo〕=1.1〜1.9であることを特徴とする
排気ガス中の微粒子浄化用触媒。
[Claims] 1. It has a composition that combines at least one selected from copper and its compounds, at least one selected from alkali metals and their compounds, and at least one selected from iron group metals and their compounds. A catalyst for purifying particulates in exhaust gas. 2. It has a composition that combines at least one selected from copper and its compounds, at least one selected from alkali metals and their compounds, and at least one selected from iron group metals and their compounds, and The blending amount of the iron group metal and its compound with respect to the compound is such that the element ratio [iron group metal]/[Cu]=0.4 to 1.
2. A catalyst for purifying particulates in exhaust gas. 3. At least one selected from copper and its compounds, at least one selected from alkali metals and their compounds, at least one selected from iron group metals and their compounds, and further at least one selected from molybdenum and its compounds. A catalyst for purifying particulates in exhaust gas, characterized by having a combination of compositions. 4. At least one selected from copper and its compounds, at least one selected from alkali metals and their compounds, at least one selected from iron group metals and their compounds, and further at least one selected from molybdenum and its compounds. and the blending amount of the iron group metal and its compound with respect to the copper and its compound, and the blending amount of the iron group metal and its compound with respect to molybdenum and its compound, in element ratio [iron group metal]/ A catalyst for purifying particulates in exhaust gas, characterized in that [Cu]=0.4 to 1.2 and [iron group metal]/[Mo]=1.1 to 1.9.
JP63296067A 1988-11-25 1988-11-25 Catalyst for purification of fine particles in exhaust gas Pending JPH02144148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296067A JPH02144148A (en) 1988-11-25 1988-11-25 Catalyst for purification of fine particles in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296067A JPH02144148A (en) 1988-11-25 1988-11-25 Catalyst for purification of fine particles in exhaust gas

Publications (1)

Publication Number Publication Date
JPH02144148A true JPH02144148A (en) 1990-06-01

Family

ID=17828680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296067A Pending JPH02144148A (en) 1988-11-25 1988-11-25 Catalyst for purification of fine particles in exhaust gas

Country Status (1)

Country Link
JP (1) JPH02144148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208040A (en) * 2008-03-06 2009-09-17 Toyota Central R&D Labs Inc Catalyst for removing particulate matter and method for removing particulate matter by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208040A (en) * 2008-03-06 2009-09-17 Toyota Central R&D Labs Inc Catalyst for removing particulate matter and method for removing particulate matter by using the same

Similar Documents

Publication Publication Date Title
JP3690070B2 (en) Exhaust gas purification catalyst, method for producing the same, exhaust gas purification filter, and exhaust gas purification device
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
JPH0760119A (en) Material for purification of waste gas and method thereof
US7713909B2 (en) Catalyzed diesel soot filter and process
JP2891609B2 (en) Diesel engine exhaust gas purification catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
EP0092023B1 (en) Use of a catalyst for cleaning exhaust gas particulates
JP4776869B2 (en) Exhaust gas purification catalyst, exhaust gas purification material using the same, and method for producing the same
JP5119508B2 (en) PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same
JP4238500B2 (en) Exhaust gas purification catalyst
JPS58174236A (en) Catalyst for removing particulate matter in waste gas
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
JP4639455B2 (en) Exhaust gas purification material
JPH02144148A (en) Catalyst for purification of fine particles in exhaust gas
JPH09271665A (en) Exhaust gas purifying catalyst
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JPS5982944A (en) Catalystic medium for eliminating fine particle in waste gas
JP3749346B2 (en) Exhaust gas purification catalyst
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JP2018051468A (en) Exhaust gas purification filter
JP4696392B2 (en) Exhaust gas purification catalyst and exhaust gas purification material using the same
JP4821251B2 (en) NOx / PM purification catalyst, NOx / PM purification material, and method for producing NOx / PM purification catalyst
WO2018055894A1 (en) Particulate matter combustion catalyst and particulate matter combustion catalyst filter
JP2019166498A (en) Exhaust gas purification catalyst
JP3799659B2 (en) Exhaust gas purification catalyst, exhaust gas purification filter using the same, and exhaust gas purification apparatus using the same