JPS5981516A - Micro flow sensor - Google Patents

Micro flow sensor

Info

Publication number
JPS5981516A
JPS5981516A JP57191701A JP19170182A JPS5981516A JP S5981516 A JPS5981516 A JP S5981516A JP 57191701 A JP57191701 A JP 57191701A JP 19170182 A JP19170182 A JP 19170182A JP S5981516 A JPS5981516 A JP S5981516A
Authority
JP
Japan
Prior art keywords
gas
junctions
measured
temperature
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57191701A
Other languages
Japanese (ja)
Other versions
JPH0146010B2 (en
Inventor
Haruo Kotani
小谷 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP57191701A priority Critical patent/JPS5981516A/en
Publication of JPS5981516A publication Critical patent/JPS5981516A/en
Publication of JPH0146010B2 publication Critical patent/JPH0146010B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve homogeneity, reliability, and productivity by providing >=2 P-N junctions in a resistive base board, feeding a current to the base board and heating them, and bringing this base board into contact with gas to be measured and measuring the flow rate of the gas from the difference between voltages developed at the two P-N junctions. CONSTITUTION:When the current I is fed to the base board 14, the board is heated up to T deg.K and two P-N junctions 20 and 21 are also heated. Further, a forward current If is flowed to those P-N junctions 20 and 21 from terminals 18c-18f to develop voltages proportional to absolute temperature T deg.K between the terminals 18c and 18d, and 18e and 18f. When the gas to be measured is flowed through a capilary 13, heat is absorbed by the gas greatly at an upstream point A of the base board to heat the gas, and a relatively small amount of heat corresponding to the difference between the temperature of the heated gas and the temperature of the board 14 at a downstream point B is absorbed at the point B. The difference in temperature between the points A and B of the board varies depending upon the flow rate, so the voltage Vd of both P-N junctions which reflects the temperature is measured to measure the gas flow rate.

Description

【発明の詳細な説明】 本発明は気体(以下被測定ガスという。)の流液を測定
するために用いられるマイクロフローセンサーに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microflow sensor used to measure a flowing liquid of gas (hereinafter referred to as a gas to be measured).

ニクロム線や白金線等の抵抗体に電流を通じ発熱させた
状態でこれらを被測定ガスに触れさせると抵抗体が冷や
され、抵抗値を減する。この場合、抵抗体と接触する前
の被測定ガスの温度を一定とし、壕だ流量以外の諸条件
を一定としておけば、抵抗体の抵抗値の変化は被測定ガ
スの流量と対応する。従って、抵抗値の変化を検出する
ことによって被測定ガスの流量を間接的に測定できる。
When a resistor such as a nichrome wire or a platinum wire is heated by passing an electric current through it and is brought into contact with the gas to be measured, the resistor is cooled and its resistance value is reduced. In this case, if the temperature of the gas to be measured before it comes into contact with the resistor is constant, and the various conditions other than the trench flow rate are constant, the change in the resistance value of the resistor corresponds to the flow rate of the gas to be measured. Therefore, the flow rate of the gas to be measured can be indirectly measured by detecting the change in resistance value.

現行のマイクロフローセンサーはこのような原理に基づ
いている。実際の測定に供されるマイクロフローセンサ
ーは、性能よく製造する点を考慮して第1図に示すよう
に被測定ガスを流す細管1の周面に白金線等の抵抗線2
を巻き付けるか、或いは電気メッキ若しくは蒸着法で抵
抗線2を被着して構成されている。尚、抵抗線2に引出
線3・・が3本設けであるのは、抵抗体の抵抗変化をよ
り正確に計測するためにブリッジ回路に接続できるよう
にするためである。
Current microflow sensors are based on this principle. In order to manufacture the microflow sensor used for actual measurements with good performance, as shown in Figure 1, a resistance wire such as a platinum wire is attached to the circumferential surface of a thin tube 1 through which the gas to be measured flows.
The resistance wire 2 is formed by winding the resistance wire 2 or by depositing the resistance wire 2 by electroplating or vapor deposition. Note that the reason why three lead wires 3 are provided on the resistance wire 2 is to enable connection to a bridge circuit in order to more accurately measure the resistance change of the resistor.

ところで、現行のマイクロフローセンサーは前述した如
く製造面において工夫されているにもかかわらず次のよ
うな欠点がある。即ち、抵抗線は10〜50μmの非常
に細かい線であるために均一に巻くことが非常に難しく
、そのため密着度の異なりから発熱の状況が異なって均
質性に欠け、かつ素子間のバラツキが大きく製品信頼性
に欠ける。
By the way, although the current micro flow sensor has been devised in terms of manufacturing as described above, it has the following drawbacks. In other words, since resistance wire is a very fine wire of 10 to 50 μm, it is very difficult to wind it evenly, and as a result, the heat generation conditions differ due to the difference in the degree of adhesion, resulting in lack of homogeneity and large variations between elements. Product reliability is lacking.

壕だ、このように極細線であるために自動化が難しく、
今日でも労働集約的であり、かつ熟練者によらねばなら
ない(生産性に欠ける。)。このような欠点のため、広
範囲な用途(ガス流量の混合装置、半導体製造分野、内
燃機関の流量制御etc)があるにも拘らず、十分に利
用されていないのが現状である。
It's a trench, it's difficult to automate because it's such a thin wire.
Even today, it is labor-intensive and must be carried out by skilled personnel (lack of productivity). Due to these drawbacks, even though it has a wide range of applications (gas flow rate mixing devices, semiconductor manufacturing field, flow control of internal combustion engines, etc.), it is currently not fully utilized.

本発明は、このような現状にあって均質性、信頼性、生
産性の問題の全てを一挙に解決し得る極めて有用なマイ
クロフローセンサーを提供するものである。
The present invention provides an extremely useful microflow sensor that can solve all of the problems of homogeneity, reliability, and productivity at once in the current situation.

而して本発明に係るマイクロフローセンサーは、抵抗性
の基板上に或いは該基板中に2個以上のPN接合を設は
該基板に電流を通じて発熱させると共に、この基板を被
測定ガスと接触させ、もって、前記2つのPN接合に流
れる電流或いは発生する電圧の差から被測定ガスの流量
を測定するようにしたことを要旨としている。
The microflow sensor according to the present invention has two or more PN junctions on or in a resistive substrate, generates heat by passing an electric current through the substrate, and also brings the substrate into contact with a gas to be measured. , the gist is that the flow rate of the gas to be measured is measured from the difference between the current flowing or the voltage generated between the two PN junctions.

以下に本発明の実施例を図面に基づき説明する。Embodiments of the present invention will be described below based on the drawings.

第2図はマイクロフローセンサーの全体斜視図、第3図
は第2図の断面図を示す。図中、1oは液形ケーシング
で、その中にガラス又はセラミックスのように電気的、
熱的絶縁物質11が設けられている。この物質11の上
面中央には一本の細溝12が形成され、その両端に被測
定ガスを流入・流出させるだめの異形キャピラリ↓3,
13が挿入されている。
FIG. 2 is an overall perspective view of the micro flow sensor, and FIG. 3 is a sectional view of FIG. 2. In the figure, 1o is a liquid casing, inside which there is an electrical connection such as glass or ceramics.
A thermally insulating material 11 is provided. A single narrow groove 12 is formed in the center of the upper surface of this substance 11, and irregularly shaped capillaries ↓ 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 types of capillaries are formed at each end of the thin groove 12 to allow the gas to be measured to flow in and out.
13 has been inserted.

また細溝12の上部は本発明マイクロフローセンサーの
心臓ともいうべき基板14によって閉塞されていて、前
記異形径キャピラリ13がら導入された被測定ガスが基
板14と接触するようにしである。この基板14上は発
泡断熱材15等を充填して断熱処理され、ケーシング1
0の上部を蓋体16で閉塞して組立てられている。図中
17・・は基板14の各端子18・・とワイヤー19に
て接続された接続ピンである。
Further, the upper part of the narrow groove 12 is closed by a substrate 14, which can be called the heart of the microflow sensor of the present invention, so that the gas to be measured introduced through the irregular diameter capillary 13 comes into contact with the substrate 14. The top of this substrate 14 is filled with foamed heat insulating material 15 or the like to be heat-insulated, and the casing 1
0 is assembled by closing the upper part with a lid 16. 17 in the figure are connection pins connected to each terminal 18 of the board 14 by a wire 19.

前記基板14は抵抗性を有する材料、例えば比抵抗1.
5〜25 n−(HnのN形成いはP形半導体で構成さ
れ、両端には電流を通じるための電流端子18a。
The substrate 14 is made of a material having resistivity, for example, a resistivity of 1.
5 to 25 n- (constructed of N-type or P-type semiconductor of Hn, with current terminals 18a at both ends for passing current.

18bが設けられ、また内部には第4図に示すようにホ
ーリングによって2個のPN接合20 、21が形成さ
れている。各PN接合20 、21のP領域・N領域に
はリード端子18c〜18fが設けられている。
18b, and two PN junctions 20 and 21 are formed inside by hole holes as shown in FIG. Lead terminals 18c to 18f are provided in the P and N regions of each PN junction 20 and 21, respectively.

図中22は5in2又はS i 02+ S i3N4
等の電気絶縁及び防湿被膜、23はアルミ又は金等のメ
タルコンダクト部である1 而して、この基板14に電流端子18a 、 181)
を通じてMtJji’、Iを通じると、基板14は自己
のもつ抵抗I<aによってl(a丁20ジュール熱を発
生し、これによって′白くに加熱される。またこの温度
によって2個のPN接合2(1、21も加熱される。そ
こで各PN接合20 、21に、4:、jA子18C〜
1.8fから順次方向電流■fを流しておくと端子18
c 、 18d間及び188.18f間に次式で示すよ
うな絶対温度1” ’ Kに比例した電圧VJを生じる
22 in the figure is 5in2 or S i 02+ S i3N4
23 is a metal conductor made of aluminum or gold, etc., and current terminals 18a, 181) are attached to this board 14.
When passing through MtJji', I, the substrate 14 generates 20 joules of heat due to its own resistance I<a, and is heated to a white temperature. (1, 21 are also heated. Therefore, each PN junction 20, 21, 4:, jA child 18C~
If a directional current ■f is passed sequentially from 1.8f, terminal 18
A voltage VJ proportional to the absolute temperature 1'' K is generated between 188.c and 18d and 188.18f as shown in the following equation.

■ま=c(xβx T 但し、Jはボルツマン定数にと電子の電気量qとの比(
l/q)、βは順方向電流Ifと逆方向電流Irの和の
自然対数zn (if+ Jr )である。
■Ma=c(xβx T However, J is the ratio of the Boltzmann constant to the electric charge q of the electron (
l/q), β is the natural logarithm zn (if+Jr) of the sum of the forward current If and the reverse current Ir.

ところで、今、キャピラリ13 、13を通じて被測定
ガスを流しだとすると、上流側に位置する基板のA点で
は被測定ガスに大きく熱をうばわれてガスを加熱し、下
流側のB点では加熱されたガスの温度とB点における基
板14の温度との差に応じた比較的小量の熱をうばわれ
る。この場合、A点でうばわれる熱量を基準としてB点
でうばわれる熱量の相対的変化をみると、被測定ガスの
流量が少ないとB点でうはわれる熱量も少なく、ガス流
量が多いとB点でうばわれる熱量も多くなるという如く
ガス流量に依存して変化する。これは、ガス流量が少な
いとA点を通過する際にガスが基板の温度により近い温
度まで加熱されてしまうので13点でうばう熱量が少な
くなり、一方ガス流量が多いと、A点を通過する際に加
熱されても流量が多いためにガス全体としては温度があ
まり上がらず、そのためB点でも大きな熱量をうばって
しまうこととなるという理由によるものと考えられる。
By the way, if we assume that the gas to be measured flows through the capillaries 13 and 13, at point A of the substrate located on the upstream side, the gas to be measured receives a large amount of heat and heats the gas, and at point B on the downstream side, the gas is heated. A relatively small amount of heat corresponding to the difference between the temperature of the gas and the temperature of the substrate 14 at point B is absorbed. In this case, if we look at the relative change in the amount of heat transferred at point B based on the amount of heat transferred at point A, we can see that when the flow rate of the gas to be measured is low, the amount of heat transferred at point B is also small, and when the gas flow rate is large, the amount of heat transferred at point B is small. The amount of heat absorbed at a point also increases depending on the gas flow rate. This is because if the gas flow rate is low, the gas will be heated to a temperature closer to the substrate temperature when passing through point A, so the amount of heat lost at point 13 will be small, whereas if the gas flow rate is high, the gas will pass through point A. This is thought to be due to the fact that even when the gas is heated, the temperature of the gas as a whole does not rise much due to the large flow rate, and as a result, a large amount of heat is wasted even at point B.

この結果、基板のA点とB点の温度の差は流量に依存し
て変化するため、その温度を反映した両PN接合の電圧
vJを計測することによりガス流量を測定することがで
きるのである。但し、この電圧にかえて、電流を計測す
ることによっても同様にガス流量の測定ができる。
As a result, the temperature difference between points A and B of the substrate changes depending on the flow rate, so the gas flow rate can be measured by measuring the voltage vJ across both PN junctions that reflects this temperature. . However, the gas flow rate can be similarly measured by measuring current instead of this voltage.

ガス流量を測定する回路、即ち、基板14の各端子18
C〜1.8 fの出力電圧■dを処理する外部回路は第
7図に示すように、端子isc 、 18(1間の出力
電圧Vdiを増幅するアンプA1、端子18’9 、1
8f間の出力電圧Vdzを増幅するアンプA2、及び両
アンプAI+ A2の出力の差をとる差動増幅器A3で
構成される。図中、)ilは基板14に電流を流すため
の電源電圧、E2はPN接合20 、21に順方向電流
Ifを流すだめの電源電圧、Tr、、Tr2は定電流回
路である。
A circuit for measuring gas flow rate, that is, each terminal 18 of the substrate 14
As shown in FIG. 7, the external circuit that processes the output voltage ■d of C~1.8
It is composed of an amplifier A2 that amplifies the output voltage Vdz between 8f and a differential amplifier A3 that takes the difference between the outputs of both amplifiers AI+A2. In the figure, )il is a power supply voltage for passing a current through the substrate 14, E2 is a power supply voltage for passing a forward current If through the PN junctions 20 and 21, and Tr, Tr2 are constant current circuits.

尚、上記実施例では基板14の中にPN接合を2個しか
形成していないが、3個以上形成しても良いことは勿論
である。また前記実施例ではPN接合20 、21を基
板14の中に形成しているが、第5図に示すように基板
14の上にマウントしてもよい。
In the above embodiment, only two PN junctions are formed in the substrate 14, but it goes without saying that three or more PN junctions may be formed. Further, in the embodiment described above, the PN junctions 20 and 21 are formed in the substrate 14, but they may be mounted on the substrate 14 as shown in FIG.

或いは第6図に示すように基板14をP型半導体14a
とN型半導体14bとを複数個縦続接続した構成とし、
その中の2対のP型半導体とN型半導体との接合をPN
接合20 、21として用いることもできる。
Alternatively, as shown in FIG. 6, the substrate 14 is a P-type semiconductor 14a.
and N-type semiconductor 14b are connected in series,
The junction between two pairs of P-type semiconductors and N-type semiconductors is PN.
It can also be used as the junctions 20 and 21.

この場合は、PN接合20 、21に流す順方向電流I
fと基板14を加熱するだめの電流とを兼用でき、従っ
て基板14の各端子18a〜18aに接続すべき外部回
路も第8図に示すように簡素化できる利点がある。
In this case, the forward current I flowing through the PN junctions 20 and 21 is
There is an advantage that the current f and the current for heating the substrate 14 can be used together, and that the external circuits to be connected to the respective terminals 18a to 18a of the substrate 14 can also be simplified as shown in FIG.

本発明に係るマイクロフローセンサーは以上説明した如
く構成したため次のような効果がある。
Since the microflow sensor according to the present invention is constructed as described above, it has the following effects.

即ち、2個以上のPN接合20 、21は基板14の中
にホーリングによって、或いは基板上にマウントするこ
とによってという如く半導体プロセスで形成することが
できるだめ、現在の半導体技術によることによって均質
で信頼性の高い素子を製造でき、かつ生産性も従来のも
のに比べて格別に向上する。
That is, the two or more PN junctions 20, 21 can be formed in a semiconductor process, such as by holes in the substrate 14 or by mounting on the substrate, so that they can be formed uniformly and reliably by current semiconductor technology. It is possible to manufacture elements with high performance, and productivity is also significantly improved compared to conventional methods.

従って、半導体装置、ガス1M量の混合装置、内燃機関
の流量制御等々広範な分野での利用を可能ならしめるも
のであ−る。
Therefore, it can be used in a wide range of fields such as semiconductor devices, 1M gas mixing devices, and flow rate control for internal combustion engines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマイクロスローセンサーを示す図、第2
図は本発明の一実施例としてのマイクロフローセンサー
の全体斜視図、第3図は第2図の断面図、第4図は基板
及びそれに形成されたPN接合を示す断面図、第5図、
第6図は夫々、基板及びそれに形成しだPN接合の他の
実施秒11を示す断面図、第7図、第8図は、第4,5
図又は第6図に示した基板に接続すべき外部回路をシ亡
す図である0 14・・・基板、20 、21・・・PN接合。
Figure 1 shows a conventional micro slow sensor, Figure 2 shows a conventional micro slow sensor.
The figure is an overall perspective view of a micro flow sensor as an embodiment of the present invention, FIG. 3 is a sectional view of FIG. 2, FIG. 4 is a sectional view showing a substrate and a PN junction formed thereon, FIG.
FIG. 6 is a cross-sectional view showing another embodiment of the substrate and the PN junction formed thereon, and FIGS.
014...board, 20, 21...PN junction.

Claims (1)

【特許請求の範囲】[Claims] 抵抗性の基板上に或いは該基板中に2個以上のPN接合
を設は該基板に電流を通じて発熱させると共に、この基
板を被測定ガスと接触させ、もって、前記2つのPN接
合に流れる電流或いは発生する電圧の差から被測定ガス
の流量を測定するようにしたことを特徴とするマイクロ
フローセンサ0
When two or more PN junctions are provided on or in a resistive substrate, an electric current is passed through the substrate to generate heat, and the substrate is brought into contact with a gas to be measured, so that the current flowing through the two PN junctions or Microflow sensor 0 characterized in that the flow rate of a gas to be measured is measured from the difference in voltage generated.
JP57191701A 1982-10-30 1982-10-30 Micro flow sensor Granted JPS5981516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191701A JPS5981516A (en) 1982-10-30 1982-10-30 Micro flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191701A JPS5981516A (en) 1982-10-30 1982-10-30 Micro flow sensor

Publications (2)

Publication Number Publication Date
JPS5981516A true JPS5981516A (en) 1984-05-11
JPH0146010B2 JPH0146010B2 (en) 1989-10-05

Family

ID=16279034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191701A Granted JPS5981516A (en) 1982-10-30 1982-10-30 Micro flow sensor

Country Status (1)

Country Link
JP (1) JPS5981516A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0147831A2 (en) * 1983-12-27 1985-07-10 Honeywell Inc. Flow sensor
JPS61138168A (en) * 1984-12-10 1986-06-25 Tokyo Keiso Kk Thermoelectric current meter
US4744246A (en) * 1986-05-01 1988-05-17 Busta Heinz H Flow sensor on insulator
JP2003121226A (en) * 2001-10-19 2003-04-23 Yamatake Corp Flow sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0147831A2 (en) * 1983-12-27 1985-07-10 Honeywell Inc. Flow sensor
EP0147831A3 (en) * 1983-12-27 1985-12-04 Honeywell Inc. Flow sensor
JPS61138168A (en) * 1984-12-10 1986-06-25 Tokyo Keiso Kk Thermoelectric current meter
US4744246A (en) * 1986-05-01 1988-05-17 Busta Heinz H Flow sensor on insulator
JP2003121226A (en) * 2001-10-19 2003-04-23 Yamatake Corp Flow sensor

Also Published As

Publication number Publication date
JPH0146010B2 (en) 1989-10-05

Similar Documents

Publication Publication Date Title
US6508585B2 (en) Differential scanning calorimeter
US5827960A (en) Bi-directional mass air flow sensor having mutually-heated sensor elements
KR940000140B1 (en) Thermal flowmeter
JPH05508915A (en) Thin film air flow sensor using temperature biased resistive element
CN104482971B (en) A kind of thermal flow rate sensor based on MEMS technology
Huijsing et al. Monolithic integrated direction-sensitive flow sensor
US5142907A (en) Constant temperature gradient fluid mass flow transducer
JPS62211513A (en) Measuring sonde for measuring mass medium flow
US4561303A (en) Mass airflow sensor with backflow detection
JPS5981516A (en) Micro flow sensor
JPS61274222A (en) Flow quantity sensor
JPS59147221A (en) Semiconductor type flow rate detecting apparatus
JPH0472523A (en) Flow sensor
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
JP2619735B2 (en) Heat flow sensor
JP2002310762A (en) Flow sensor
JP3367827B2 (en) Micro flowmeter for vacuum
JPS6159252A (en) Measurement of humidity
US5361634A (en) Heat-sensitive flow rate sensor
JPS5819449Y2 (en) Flowmeter
JP2531968B2 (en) Flow velocity sensor and flow velocity measuring device using the same
JPH03261868A (en) Flow sensor
SU945796A1 (en) Hot-wire anemometer
JPH0222516A (en) Flow sensor
JPS63241313A (en) Flow sensor