JPS5976486A - Manufacture of light emitting diode - Google Patents

Manufacture of light emitting diode

Info

Publication number
JPS5976486A
JPS5976486A JP57188482A JP18848282A JPS5976486A JP S5976486 A JPS5976486 A JP S5976486A JP 57188482 A JP57188482 A JP 57188482A JP 18848282 A JP18848282 A JP 18848282A JP S5976486 A JPS5976486 A JP S5976486A
Authority
JP
Japan
Prior art keywords
film
light emitting
substrate
cvd method
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57188482A
Other languages
Japanese (ja)
Inventor
Shunji Otani
大谷 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57188482A priority Critical patent/JPS5976486A/en
Publication of JPS5976486A publication Critical patent/JPS5976486A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain a diode of a large luminous output by a method wherein an Si3N4 film by plasma CVD method and an SiO2 film by CVD method are laminated and provided on the surface of a layer, and the Si3N4 film and the semiconductor layer are annealed at 500-700 deg.C, when Zn is diffused into a substrate having the semiconductor layer, whose main constituent is GaAs, on the surface. CONSTITUTION:Defect layers generated on the front and back surfaces of the N type GaAs substrate 1 are first removed by chemical etching, and the Si3N4 film 6 is produced by the plasma CVD method using NH3 and SiH4. Next, the SiO2 film 5 is adhered on the film 6 by the CVD method using SiH4 and O2, after heat treatment at 500-700 deg.C for over an hour in N2 gas. Thereafter, the Zn is diffused through the films 5 and 6 by normal method, thus forming a P type GaAs layer 2, the films 5 and 6 are removed, and then Au-Zn electrodes 3 are formed on one surface of the layer 2. In this manner, the adhesion force between the substrate 1 and the film 6 is decreased, therefore the diffusion of Zn is facilitated.

Description

【発明の詳細な説明】 本発明は発光ダイオードの製造方法に関し、特に砒化ガ
リウム(GaAs )を主成分とする半導体層にZnを
拡散する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a light emitting diode, and more particularly to a method for diffusing Zn into a semiconductor layer mainly composed of gallium arsenide (GaAs).

Ga ZnソースによりGaAsに対して低濃度の拡散
を行うときには、GaAs  表面に液相が生じないよ
うにS io、膜を形成しておく方法が一般的に用いら
れる。
When low-concentration diffusion is performed on GaAs using a GaZn source, a method is generally used in which a SiO film is formed to prevent a liquid phase from forming on the GaAs surface.

このような発光ダイオードの製造方法として、GaAs
  に二酸化シリコン膜(SiOz)を通してZnを拡
散する構造を有する発光ダイオードの実施例を用いて本
発明を説明する。
As a method of manufacturing such a light emitting diode, GaAs
The present invention will be explained using an example of a light emitting diode having a structure in which Zn is diffused through a silicon dioxide film (SiOz).

第1図はZn拡散型発光ダイオードの一例である。この
発光ダイオードの従来の製造方法を第2図を用いて説明
する。
FIG. 1 shows an example of a Zn diffused light emitting diode. A conventional method for manufacturing this light emitting diode will be explained with reference to FIG.

■n型GaAs基板表面の研磨により生じた欠陥層を化
学エツチングにより除去する。
(2) Defect layers generated by polishing the surface of the n-type GaAs substrate are removed by chemical etching.

■n型(〒aAs基板上にシラン(S 1I−Ia )
と酸素の雰囲気中で温度が350〜500°Cの範囲で
S io2膜を形成する。(第2図(a)) ■Ga/Znと共に石英アンプルに真空封入し、850
°Cで70時間拡散を行う。(第2図(b))■石英ア
ンプル内からとりだし、5i02  膜を1緩衝フツ酸
溶液によりエツチングし除去する。
■N-type (silane (S1I-Ia) on aAs substrate)
A Sio2 film is formed at a temperature in the range of 350 to 500°C in an atmosphere of oxygen and oxygen. (Figure 2 (a)) ■ Vacuum sealed in a quartz ampoule with Ga/Zn,
Diffusion is carried out for 70 hours at °C. (FIG. 2(b)) ② Take out the quartz ampoule and remove the 5i02 film by etching it with a 1-buffered hydrofluoric acid solution.

(第2図(C)) ■基板の表面にAu−Znの真空蒸着とフォトエツチン
グ技術を用いて電極バクーンを形成する。
(FIG. 2(C)) (2) Form an electrode backing on the surface of the substrate by vacuum evaporation of Au-Zn and photoetching technology.

(第2図(C)) ■フォトエツチング技術と化学エツチングによリメサを
形成する。(第2図(d)) ■基板の裏面の拡散層を化学エツチングにより除去し、
Au−Ge−Ni  を真空蒸着し、470°Cで5分
間の熱処理を行い、オーミyり電極とする。
(Fig. 2 (C)) ■ Form a remesa by photo-etching technology and chemical etching. (Figure 2(d)) ■Remove the diffusion layer on the back side of the substrate by chemical etching,
Au-Ge-Ni is vacuum deposited and heat treated at 470°C for 5 minutes to form an ohmic electrode.

(第2図(e)、第2図(f)) 従来のZn拡散型発光ダイオードは、エビクキジートル
成長によりP−N接合が形成された構造の発光ダイオー
ドと比較すると、発光出力が小さく発光出力の経年減少
率が大きいという欠点を有している。
(Fig. 2(e), Fig. 2(f)) Conventional Zn diffused light emitting diodes have a lower light emitting output than light emitting diodes with a structure in which a P-N junction is formed by Ebikuzyetl growth. It has the disadvantage of a high rate of decline over time.

この原因の一つは、Ga Znソースを用いたZn拡散
のときに用いるGaAs上の5in2膜の形成の1祭に
(第2図(a))、GaAs  が300〜500°C
の温度で要素にさらされるためにGaAsが酸化され、
その後たとえば850°Cに加熱されるので(第2図(
1)) )酸化により発生した欠陥が結晶内部に進んで
いくことである。もう一つの原因は5in2がGaのマ
スク効果がないために、Zn拡散中(第2図(b))に
結晶からQaが5i02中へ抜けていって結晶欠これら
の欠陥が非発光中心して働き、発光出力の減少となる。
One of the reasons for this is that during the formation of a 5in2 film on GaAs used for Zn diffusion using a GaZn source (Fig. 2(a)), GaAs was heated at 300 to 500°C.
GaAs is oxidized due to exposure to the elements at temperatures of
It is then heated to, for example, 850°C (see Figure 2).
1))) Defects generated by oxidation progress into the interior of the crystal. Another reason is that 5in2 does not have a Ga masking effect, so Qa escapes from the crystal into 5i02 during Zn diffusion (Fig. 2 (b)), and these defects act as non-emissive centers. , resulting in a decrease in light output.

また結晶内部に多くの欠陥が導入されているので、発光
出力は長期通電により減少しやすくなっている。
Furthermore, since many defects are introduced inside the crystal, the light emission output tends to decrease due to long-term energization.

本発明の目的はGa−Znを用いてQaAsを主成分と
する半導体層に&nを拡散するに際して、結晶欠陥の発
生を少くし、出力が高く、寿命の長℃1発光ダイオード
の新規な製造方法を提供することである。
The purpose of the present invention is to provide a novel manufacturing method for a C1 light emitting diode with high output and long life by reducing the occurrence of crystal defects when diffusing &n into a semiconductor layer mainly composed of QaAs using Ga-Zn. The goal is to provide the following.

本発明は、GaAsの表面にS + 02を直接つける
ことをさけ、5102膜とGaAsの間にSi3N4膜
をつけることにより前出の問題点をのがれることを可能
にする。通常S+3N4膜はZn拡散のマスクとなり、
Si3N4膜は使用できないわけであるが、GaAs 
 についたプラズマCVDにより形成されたS + 3
 N4膜をたとえばN2中で500〜700’Cの温度
範囲で1〜IO時間アニールするとS i 3N4膜と
Gaksとの密着力が低下していくと同時にZn  に
対するマスク効果が減少し、GaAsにZnが拡散でき
るようになる。このとき5i02膜はS i 3N4膜
のはがれを防止するのに役立つ。
The present invention makes it possible to avoid the above-mentioned problems by avoiding directly attaching S + 02 to the surface of GaAs and attaching a Si3N4 film between the 5102 film and GaAs. Normally, the S+3N4 film serves as a mask for Zn diffusion,
Si3N4 film cannot be used, but GaAs
S + 3 formed by plasma CVD on
For example, when an N4 film is annealed in N2 at a temperature range of 500 to 700'C for 1 to 10 hours, the adhesion between the Si3N4 film and Gaks decreases, and at the same time, the masking effect for Zn decreases. becomes able to spread. At this time, the 5i02 film serves to prevent the S i 3N4 film from peeling off.

以下に本発明による実施例を第3図を用いて説明する。An embodiment according to the present invention will be described below with reference to FIG.

■n型GaAs基板表面の研磨により生じた欠陥を含む
層を化学エツチングにより除去する。
(2) A layer containing defects caused by polishing the surface of the n-type GaAs substrate is removed by chemical etching.

■前記基板上にアンモニアガス(NH8)とシランガス
(Sir(+)によるプラズマCVD法によりSi3N
4膜を成長させる。(第3図(a))■N2  中で5
00〜700°Cの温度で1時間以上アニールする。(
第3図(a)) ■シランガスと酸素によるCVD法によりSi3N4上
にSiO2を形成する。(第3図(b))■以下Zn拡
散以後のプロセスは従来の方法(第2図)と同じ。(第
3図(C)〜第3図(g>は第2図(l〕)〜第2図(
f)に対応する。)本発明によれば、GaAs表面はC
VDの1祭シζ直接酸素にさらされることはなく(第8
図(b))、またSi、N、膜はGaに対してバリアと
なる効果を有しているので結晶中に欠陥が導入される原
因はとり除かれる。したがって従来の方法によるよりも
発光出力が向上し、発光出力の経年変化も少しへ発光ダ
イオードが製造できる。実際、本発明をてより発光出力
は従来の2〜3倍に増加し、寿命によ2イ音に増加して
いる。
■Si3N was deposited on the substrate by plasma CVD using ammonia gas (NH8) and silane gas (Sir(+)).
4. Grow a film. (Figure 3 (a)) ■N2 inside 5
Anneal at a temperature of 00 to 700°C for at least 1 hour. (
FIG. 3(a)) 2) Form SiO2 on Si3N4 by CVD using silane gas and oxygen. (FIG. 3(b)) ② The process after Zn diffusion is the same as the conventional method (FIG. 2). (Fig. 3 (C) - Fig. 3 (g> is Fig. 2 (l)) - Fig. 2 (
Corresponds to f). ) According to the present invention, the GaAs surface is C
No direct exposure to oxygen (No. 8)
In addition, since the Si, N, and films have a barrier effect against Ga, the cause of introducing defects into the crystal is eliminated. Therefore, it is possible to manufacture a light emitting diode with improved light emitting output and little change in light emitting output over time than with conventional methods. In fact, by using the present invention, the light emitting output is increased by 2 to 3 times compared to the conventional one, and the light output increases to 2 A over the life span.

本発明はGaAsを用いて説明したが、QaAs  を
主成分とする半導体についても適用できること※よ明ら
かである。
Although the present invention has been explained using GaAs, it is obvious that it can also be applied to semiconductors whose main component is QaAs.

池の半導体としては、GaAlAs 、 GaAsPな
どがあげられる。
Examples of semiconductors include GaAlAs and GaAsP.

これらはGaAs基板上にエビクキジ−ル成長されてυ
・ることか多いが、池の材料であってもよV N 0
These are grown on a GaAs substrate by υ
・There are many things, but even if it is a pond material, V N 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図はZn拡散型発光ダイオードの一例の断面1造で
あり、第2図は、第1図の発光ダイオードの従来の製造
方法を示すための図であり、第3図は、本発明の発光ダ
イオードの製造方法を示すための図である。 1・・・・・・・・・n型QaAs基板2・・・・・・
・・P型GaAs 3・・・・・・・・Au−Zn電極 4・・・・・・・Au −(ie−IJi電臣5−・・
・・・・・・5i02膜 6・・・・・・Si3N4膜
FIG. 1 is a cross-sectional view of an example of a Zn diffused light emitting diode, FIG. 2 is a diagram showing a conventional manufacturing method of the light emitting diode shown in FIG. 1, and FIG. FIG. 2 is a diagram showing a method for manufacturing a light emitting diode. 1......n-type QaAs substrate 2...
...P-type GaAs 3...Au-Zn electrode 4...Au - (ie-IJi Denomi 5-...
...5i02 film 6...Si3N4 film

Claims (1)

【特許請求の範囲】[Claims] (1)砒化ガリウムを主成分とする半導体層を表面に有
する基板にZnを拡散する際に、該半導体表面上にプラ
ズマCVD法による窒化シリコン膜と該プラズマCVD
膜上にCVD法による二酸化シリコン膜を有し、該窒化
シリコン膜形成後に該窒化シリコン膜と該半導体が50
0〜700’Cの範囲でアニールされていることを具励
する発光ダイオードの製造方法
(1) When diffusing Zn into a substrate having a semiconductor layer containing gallium arsenide as a main component on the surface, a silicon nitride film formed by plasma CVD and a silicon nitride film formed by the plasma CVD method are formed on the semiconductor surface.
A silicon dioxide film is formed on the film by a CVD method, and after the silicon nitride film is formed, the silicon nitride film and the semiconductor are
Method for manufacturing a light emitting diode that is annealed in the range of 0 to 700'C
JP57188482A 1982-10-26 1982-10-26 Manufacture of light emitting diode Pending JPS5976486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57188482A JPS5976486A (en) 1982-10-26 1982-10-26 Manufacture of light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57188482A JPS5976486A (en) 1982-10-26 1982-10-26 Manufacture of light emitting diode

Publications (1)

Publication Number Publication Date
JPS5976486A true JPS5976486A (en) 1984-05-01

Family

ID=16224498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57188482A Pending JPS5976486A (en) 1982-10-26 1982-10-26 Manufacture of light emitting diode

Country Status (1)

Country Link
JP (1) JPS5976486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235587A (en) * 1985-08-08 1987-02-16 Sanyo Electric Co Ltd Light emitting element
JPH01290270A (en) * 1988-05-18 1989-11-22 Sanyo Electric Co Ltd Compound semiconductor and treatment thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235587A (en) * 1985-08-08 1987-02-16 Sanyo Electric Co Ltd Light emitting element
JPH01290270A (en) * 1988-05-18 1989-11-22 Sanyo Electric Co Ltd Compound semiconductor and treatment thereof

Similar Documents

Publication Publication Date Title
US6248607B1 (en) Method for manufacturing semiconductor light emitting device
US4017881A (en) Light emitting semiconductor device and a method for making the same
JP3136672B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3325713B2 (en) Manufacturing method of semiconductor light emitting device
US3629018A (en) Process for the fabrication of light-emitting semiconductor diodes
US3861969A (en) Method for making III{14 V compound semiconductor devices
JPS5976486A (en) Manufacture of light emitting diode
JP2001156003A (en) Method of manufacturing p-type gallium nitride semiconductor, and light-emitting element using p-type gallium nitride semiconductor
JPH05234927A (en) Method of forming diffusion region of semiconductor device by solid-phase diffusion
JP2661420B2 (en) Method of manufacturing gallium nitride based compound semiconductor light emitting device
US3801384A (en) Fabrication of semiconductor devices
JP2003332237A (en) Method of manufacturing semiconductor thin film
JPS5816535A (en) Semiconductor device and its manufacture
JPH04163970A (en) Gallium nitride compound semiconductor light emitting element and manufacture thereof
JP3232654B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP2912780B2 (en) Method for manufacturing semiconductor light emitting device
JPS58223382A (en) Semiconductor light emitting device
JP3193980B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH04163969A (en) Light emitting element of gallium nitride compound semiconductor
JPH0766450A (en) Light emitting diode device and its manufacture
JPH05335621A (en) Gallium phosphide green light emitting diode
JPH11284227A (en) Manufacture of compound semiconductor
JPS6181679A (en) Manufacture of semiconductor light emitting element
JP2002314126A (en) InGaAlP-BASED OPTICAL SEMICONDUCTOR ELEMENT AND ITS MANUFACTURING METHOD
JPH03252178A (en) Light emitting element of gallium nitride compound semiconductor