JPS5976486A - Manufacture of light emitting diode - Google Patents
Manufacture of light emitting diodeInfo
- Publication number
- JPS5976486A JPS5976486A JP57188482A JP18848282A JPS5976486A JP S5976486 A JPS5976486 A JP S5976486A JP 57188482 A JP57188482 A JP 57188482A JP 18848282 A JP18848282 A JP 18848282A JP S5976486 A JPS5976486 A JP S5976486A
- Authority
- JP
- Japan
- Prior art keywords
- film
- light emitting
- substrate
- cvd method
- gaas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 19
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims abstract description 6
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 17
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims 4
- 230000007547 defect Effects 0.000 abstract description 8
- 238000009792 diffusion process Methods 0.000 abstract description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 5
- 238000003486 chemical etching Methods 0.000 abstract description 5
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 239000000470 constituent Substances 0.000 abstract 1
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Formation Of Insulating Films (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は発光ダイオードの製造方法に関し、特に砒化ガ
リウム(GaAs )を主成分とする半導体層にZnを
拡散する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a light emitting diode, and more particularly to a method for diffusing Zn into a semiconductor layer mainly composed of gallium arsenide (GaAs).
Ga ZnソースによりGaAsに対して低濃度の拡散
を行うときには、GaAs 表面に液相が生じないよ
うにS io、膜を形成しておく方法が一般的に用いら
れる。When low-concentration diffusion is performed on GaAs using a GaZn source, a method is generally used in which a SiO film is formed to prevent a liquid phase from forming on the GaAs surface.
このような発光ダイオードの製造方法として、GaAs
に二酸化シリコン膜(SiOz)を通してZnを拡
散する構造を有する発光ダイオードの実施例を用いて本
発明を説明する。As a method of manufacturing such a light emitting diode, GaAs
The present invention will be explained using an example of a light emitting diode having a structure in which Zn is diffused through a silicon dioxide film (SiOz).
第1図はZn拡散型発光ダイオードの一例である。この
発光ダイオードの従来の製造方法を第2図を用いて説明
する。FIG. 1 shows an example of a Zn diffused light emitting diode. A conventional method for manufacturing this light emitting diode will be explained with reference to FIG.
■n型GaAs基板表面の研磨により生じた欠陥層を化
学エツチングにより除去する。(2) Defect layers generated by polishing the surface of the n-type GaAs substrate are removed by chemical etching.
■n型(〒aAs基板上にシラン(S 1I−Ia )
と酸素の雰囲気中で温度が350〜500°Cの範囲で
S io2膜を形成する。(第2図(a))
■Ga/Znと共に石英アンプルに真空封入し、850
°Cで70時間拡散を行う。(第2図(b))■石英ア
ンプル内からとりだし、5i02 膜を1緩衝フツ酸
溶液によりエツチングし除去する。■N-type (silane (S1I-Ia) on aAs substrate)
A Sio2 film is formed at a temperature in the range of 350 to 500°C in an atmosphere of oxygen and oxygen. (Figure 2 (a)) ■ Vacuum sealed in a quartz ampoule with Ga/Zn,
Diffusion is carried out for 70 hours at °C. (FIG. 2(b)) ② Take out the quartz ampoule and remove the 5i02 film by etching it with a 1-buffered hydrofluoric acid solution.
(第2図(C))
■基板の表面にAu−Znの真空蒸着とフォトエツチン
グ技術を用いて電極バクーンを形成する。(FIG. 2(C)) (2) Form an electrode backing on the surface of the substrate by vacuum evaporation of Au-Zn and photoetching technology.
(第2図(C))
■フォトエツチング技術と化学エツチングによリメサを
形成する。(第2図(d))
■基板の裏面の拡散層を化学エツチングにより除去し、
Au−Ge−Ni を真空蒸着し、470°Cで5分
間の熱処理を行い、オーミyり電極とする。(Fig. 2 (C)) ■ Form a remesa by photo-etching technology and chemical etching. (Figure 2(d)) ■Remove the diffusion layer on the back side of the substrate by chemical etching,
Au-Ge-Ni is vacuum deposited and heat treated at 470°C for 5 minutes to form an ohmic electrode.
(第2図(e)、第2図(f))
従来のZn拡散型発光ダイオードは、エビクキジートル
成長によりP−N接合が形成された構造の発光ダイオー
ドと比較すると、発光出力が小さく発光出力の経年減少
率が大きいという欠点を有している。(Fig. 2(e), Fig. 2(f)) Conventional Zn diffused light emitting diodes have a lower light emitting output than light emitting diodes with a structure in which a P-N junction is formed by Ebikuzyetl growth. It has the disadvantage of a high rate of decline over time.
この原因の一つは、Ga Znソースを用いたZn拡散
のときに用いるGaAs上の5in2膜の形成の1祭に
(第2図(a))、GaAs が300〜500°C
の温度で要素にさらされるためにGaAsが酸化され、
その後たとえば850°Cに加熱されるので(第2図(
1)) )酸化により発生した欠陥が結晶内部に進んで
いくことである。もう一つの原因は5in2がGaのマ
スク効果がないために、Zn拡散中(第2図(b))に
結晶からQaが5i02中へ抜けていって結晶欠これら
の欠陥が非発光中心して働き、発光出力の減少となる。One of the reasons for this is that during the formation of a 5in2 film on GaAs used for Zn diffusion using a GaZn source (Fig. 2(a)), GaAs was heated at 300 to 500°C.
GaAs is oxidized due to exposure to the elements at temperatures of
It is then heated to, for example, 850°C (see Figure 2).
1))) Defects generated by oxidation progress into the interior of the crystal. Another reason is that 5in2 does not have a Ga masking effect, so Qa escapes from the crystal into 5i02 during Zn diffusion (Fig. 2 (b)), and these defects act as non-emissive centers. , resulting in a decrease in light output.
また結晶内部に多くの欠陥が導入されているので、発光
出力は長期通電により減少しやすくなっている。Furthermore, since many defects are introduced inside the crystal, the light emission output tends to decrease due to long-term energization.
本発明の目的はGa−Znを用いてQaAsを主成分と
する半導体層に&nを拡散するに際して、結晶欠陥の発
生を少くし、出力が高く、寿命の長℃1発光ダイオード
の新規な製造方法を提供することである。The purpose of the present invention is to provide a novel manufacturing method for a C1 light emitting diode with high output and long life by reducing the occurrence of crystal defects when diffusing &n into a semiconductor layer mainly composed of QaAs using Ga-Zn. The goal is to provide the following.
本発明は、GaAsの表面にS + 02を直接つける
ことをさけ、5102膜とGaAsの間にSi3N4膜
をつけることにより前出の問題点をのがれることを可能
にする。通常S+3N4膜はZn拡散のマスクとなり、
Si3N4膜は使用できないわけであるが、GaAs
についたプラズマCVDにより形成されたS + 3
N4膜をたとえばN2中で500〜700’Cの温度
範囲で1〜IO時間アニールするとS i 3N4膜と
Gaksとの密着力が低下していくと同時にZn に
対するマスク効果が減少し、GaAsにZnが拡散でき
るようになる。このとき5i02膜はS i 3N4膜
のはがれを防止するのに役立つ。The present invention makes it possible to avoid the above-mentioned problems by avoiding directly attaching S + 02 to the surface of GaAs and attaching a Si3N4 film between the 5102 film and GaAs. Normally, the S+3N4 film serves as a mask for Zn diffusion,
Si3N4 film cannot be used, but GaAs
S + 3 formed by plasma CVD on
For example, when an N4 film is annealed in N2 at a temperature range of 500 to 700'C for 1 to 10 hours, the adhesion between the Si3N4 film and Gaks decreases, and at the same time, the masking effect for Zn decreases. becomes able to spread. At this time, the 5i02 film serves to prevent the S i 3N4 film from peeling off.
以下に本発明による実施例を第3図を用いて説明する。An embodiment according to the present invention will be described below with reference to FIG.
■n型GaAs基板表面の研磨により生じた欠陥を含む
層を化学エツチングにより除去する。(2) A layer containing defects caused by polishing the surface of the n-type GaAs substrate is removed by chemical etching.
■前記基板上にアンモニアガス(NH8)とシランガス
(Sir(+)によるプラズマCVD法によりSi3N
4膜を成長させる。(第3図(a))■N2 中で5
00〜700°Cの温度で1時間以上アニールする。(
第3図(a))
■シランガスと酸素によるCVD法によりSi3N4上
にSiO2を形成する。(第3図(b))■以下Zn拡
散以後のプロセスは従来の方法(第2図)と同じ。(第
3図(C)〜第3図(g>は第2図(l〕)〜第2図(
f)に対応する。)本発明によれば、GaAs表面はC
VDの1祭シζ直接酸素にさらされることはなく(第8
図(b))、またSi、N、膜はGaに対してバリアと
なる効果を有しているので結晶中に欠陥が導入される原
因はとり除かれる。したがって従来の方法によるよりも
発光出力が向上し、発光出力の経年変化も少しへ発光ダ
イオードが製造できる。実際、本発明をてより発光出力
は従来の2〜3倍に増加し、寿命によ2イ音に増加して
いる。■Si3N was deposited on the substrate by plasma CVD using ammonia gas (NH8) and silane gas (Sir(+)).
4. Grow a film. (Figure 3 (a)) ■N2 inside 5
Anneal at a temperature of 00 to 700°C for at least 1 hour. (
FIG. 3(a)) 2) Form SiO2 on Si3N4 by CVD using silane gas and oxygen. (FIG. 3(b)) ② The process after Zn diffusion is the same as the conventional method (FIG. 2). (Fig. 3 (C) - Fig. 3 (g> is Fig. 2 (l)) - Fig. 2 (
Corresponds to f). ) According to the present invention, the GaAs surface is C
No direct exposure to oxygen (No. 8)
In addition, since the Si, N, and films have a barrier effect against Ga, the cause of introducing defects into the crystal is eliminated. Therefore, it is possible to manufacture a light emitting diode with improved light emitting output and little change in light emitting output over time than with conventional methods. In fact, by using the present invention, the light emitting output is increased by 2 to 3 times compared to the conventional one, and the light output increases to 2 A over the life span.
本発明はGaAsを用いて説明したが、QaAs を
主成分とする半導体についても適用できること※よ明ら
かである。Although the present invention has been explained using GaAs, it is obvious that it can also be applied to semiconductors whose main component is QaAs.
池の半導体としては、GaAlAs 、 GaAsPな
どがあげられる。Examples of semiconductors include GaAlAs and GaAsP.
これらはGaAs基板上にエビクキジ−ル成長されてυ
・ることか多いが、池の材料であってもよV N 0These are grown on a GaAs substrate by υ
・There are many things, but even if it is a pond material, V N 0
第1図はZn拡散型発光ダイオードの一例の断面1造で
あり、第2図は、第1図の発光ダイオードの従来の製造
方法を示すための図であり、第3図は、本発明の発光ダ
イオードの製造方法を示すための図である。
1・・・・・・・・・n型QaAs基板2・・・・・・
・・P型GaAs
3・・・・・・・・Au−Zn電極
4・・・・・・・Au −(ie−IJi電臣5−・・
・・・・・・5i02膜
6・・・・・・Si3N4膜FIG. 1 is a cross-sectional view of an example of a Zn diffused light emitting diode, FIG. 2 is a diagram showing a conventional manufacturing method of the light emitting diode shown in FIG. 1, and FIG. FIG. 2 is a diagram showing a method for manufacturing a light emitting diode. 1......n-type QaAs substrate 2...
...P-type GaAs 3...Au-Zn electrode 4...Au - (ie-IJi Denomi 5-...
...5i02 film 6...Si3N4 film
Claims (1)
する基板にZnを拡散する際に、該半導体表面上にプラ
ズマCVD法による窒化シリコン膜と該プラズマCVD
膜上にCVD法による二酸化シリコン膜を有し、該窒化
シリコン膜形成後に該窒化シリコン膜と該半導体が50
0〜700’Cの範囲でアニールされていることを具励
する発光ダイオードの製造方法(1) When diffusing Zn into a substrate having a semiconductor layer containing gallium arsenide as a main component on the surface, a silicon nitride film formed by plasma CVD and a silicon nitride film formed by the plasma CVD method are formed on the semiconductor surface.
A silicon dioxide film is formed on the film by a CVD method, and after the silicon nitride film is formed, the silicon nitride film and the semiconductor are
Method for manufacturing a light emitting diode that is annealed in the range of 0 to 700'C
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57188482A JPS5976486A (en) | 1982-10-26 | 1982-10-26 | Manufacture of light emitting diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57188482A JPS5976486A (en) | 1982-10-26 | 1982-10-26 | Manufacture of light emitting diode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5976486A true JPS5976486A (en) | 1984-05-01 |
Family
ID=16224498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57188482A Pending JPS5976486A (en) | 1982-10-26 | 1982-10-26 | Manufacture of light emitting diode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5976486A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6235587A (en) * | 1985-08-08 | 1987-02-16 | Sanyo Electric Co Ltd | Light emitting element |
JPH01290270A (en) * | 1988-05-18 | 1989-11-22 | Sanyo Electric Co Ltd | Compound semiconductor and treatment thereof |
-
1982
- 1982-10-26 JP JP57188482A patent/JPS5976486A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6235587A (en) * | 1985-08-08 | 1987-02-16 | Sanyo Electric Co Ltd | Light emitting element |
JPH01290270A (en) * | 1988-05-18 | 1989-11-22 | Sanyo Electric Co Ltd | Compound semiconductor and treatment thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6248607B1 (en) | Method for manufacturing semiconductor light emitting device | |
US4017881A (en) | Light emitting semiconductor device and a method for making the same | |
JP3136672B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JP3325713B2 (en) | Manufacturing method of semiconductor light emitting device | |
US3629018A (en) | Process for the fabrication of light-emitting semiconductor diodes | |
US3861969A (en) | Method for making III{14 V compound semiconductor devices | |
JPS5976486A (en) | Manufacture of light emitting diode | |
JP2001156003A (en) | Method of manufacturing p-type gallium nitride semiconductor, and light-emitting element using p-type gallium nitride semiconductor | |
JPH05234927A (en) | Method of forming diffusion region of semiconductor device by solid-phase diffusion | |
JP2661420B2 (en) | Method of manufacturing gallium nitride based compound semiconductor light emitting device | |
US3801384A (en) | Fabrication of semiconductor devices | |
JP2003332237A (en) | Method of manufacturing semiconductor thin film | |
JPS5816535A (en) | Semiconductor device and its manufacture | |
JPH04163970A (en) | Gallium nitride compound semiconductor light emitting element and manufacture thereof | |
JP3232654B2 (en) | Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same | |
JP2912780B2 (en) | Method for manufacturing semiconductor light emitting device | |
JPS58223382A (en) | Semiconductor light emitting device | |
JP3193980B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
JPH04163969A (en) | Light emitting element of gallium nitride compound semiconductor | |
JPH0766450A (en) | Light emitting diode device and its manufacture | |
JPH05335621A (en) | Gallium phosphide green light emitting diode | |
JPH11284227A (en) | Manufacture of compound semiconductor | |
JPS6181679A (en) | Manufacture of semiconductor light emitting element | |
JP2002314126A (en) | InGaAlP-BASED OPTICAL SEMICONDUCTOR ELEMENT AND ITS MANUFACTURING METHOD | |
JPH03252178A (en) | Light emitting element of gallium nitride compound semiconductor |