JP3748011B2 - Si wafer for GaN semiconductor crystal growth, wafer for GaN light emitting device using the same, and manufacturing method thereof - Google Patents

Si wafer for GaN semiconductor crystal growth, wafer for GaN light emitting device using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP3748011B2
JP3748011B2 JP16483599A JP16483599A JP3748011B2 JP 3748011 B2 JP3748011 B2 JP 3748011B2 JP 16483599 A JP16483599 A JP 16483599A JP 16483599 A JP16483599 A JP 16483599A JP 3748011 B2 JP3748011 B2 JP 3748011B2
Authority
JP
Japan
Prior art keywords
wafer
gan
substrate
semiconductor crystal
gan semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16483599A
Other languages
Japanese (ja)
Other versions
JP2000351692A (en
Inventor
秀夫 中西
一高 寺嶋
鈴香 西村
Original Assignee
東芝セラミックス株式会社
一高 寺嶋
鈴香 西村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社, 一高 寺嶋, 鈴香 西村 filed Critical 東芝セラミックス株式会社
Priority to JP16483599A priority Critical patent/JP3748011B2/en
Publication of JP2000351692A publication Critical patent/JP2000351692A/en
Application granted granted Critical
Publication of JP3748011B2 publication Critical patent/JP3748011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、青色の発光素子(例えば、発光ダイオード(LED)やレーザ素子)を作るためのGaN(窒化ガリウム)半導体結晶成長用Si(シリコン)ウエーハ、それを用いたGaN発光素子用ウエーハ及びそれらの製造方法に関する。
【0002】
【従来の技術】
通常、青色の発光素子としてのGaN半導体結晶は、サファイア基板上にエピタキシャル成長によって育成されているが、GaN半導体結晶とサファイア基板の格子定数の差異による格子不整合を生じたり、基板としてのサファイアが劈開性、導電性を有しないことによる不具合がある。
【0003】
従来、かかる不具合を解消するため、図7に示すように、基板としてSiを用い、Si基板31上にGa(ガリウム)のバリア層32を介在してGaN半導体結晶層33を形成するGaN発光素子用ウエーハとその製造方法が知られている(特開平10−242055号公報参照)。
【0004】
【発明が解決しようとする課題】
しかし、従来のGaN発光素子用ウエーハとその製造方法では、Si基板上へのGaのバリア層の形成は、両者の格子定数の大幅な違いにより不具合があり、Gaのバリア層上への閃亜鉛鉱型結晶構造のGaN層の形成が困難で、GaN層の結晶構造がウルツ鉱型の結晶系となり、発光素子としての青色発光時の輝度があまりあがらない不具合がある。
【0005】
このため、Si基板とGaN層の中間層としてウルツ鉱型結晶構造のGaNと格子不整合が僅か0.6%程度のBP(リン化ホウ素)単結晶を用いることが考えられる。
BP単結晶は、中性子の吸収作用があり、原子炉の安全管理や中性子線散乱による物性評価のための中性子線センサーとしての用途が期待され研究が行われている。
BPは、閃亜鉛鉱型結晶構造を有し、GaNとの格子不整合も前述したように僅かである。一方、Siとの格子不整合が16%と大きいが、B(ホウ素)とSiとの相性がよく、Si基板上へのBPのエピタキシャル成長が報告されているものの、未だ安定的な結晶成長を行えるまでには至っていない。
その理由として、下記の要因が挙げられる。
(1)BPのエピタキシャル成長プロセス中に、Si基板に含まれるO(酸素)が外方拡散し、Bを酸化するため、多結晶化が起こり単結晶成長を阻害する。
(2)Si基板34(図8、図9参照)の表面、すなわち、デバイス製作面にCOP(Crystal Originated Paricle :ごく軽いエッチングで形成されるピット(0.5μmぐらいの小孔))等の欠陥35があると、結晶方位の違いによりBPの成長速度に差異が生じ、表面の凹凸が増幅され、表面の均一性(平面度)を欠いてしまう。
(3)Si基板36(図10参照)の表面がシングルステップレーヤの場合、BPの結晶成長中に、A−A面でフェースの異なるアンチフェーズドドメインが生じ多結晶化する。
一方、上記要因を解消するため、BPエピタキシャル成長プロセスにおいて、前処理として、Si基板を水素ガス雰囲気において1000〜1200℃の温度でアニール処理することが考えられるが、処理時間が長時間となる上、高温度に保持するため、新たな表面荒れが発生する等の不具合がある。
そこで、本発明は、閃亜鉛鉱型結晶構造のGaN層を良好に形成し得るGaN半導体結晶成長用Siウエーハ、それを用いたGaN発光素子用ウエーハ及びそれらの製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記課題を解決するため、前記課題を解決するため、本発明GaN半導体結晶成長用Siウエーハは、CZ法によるSi基板の表面から厚み方向へ少なくとも3μmの間に亘って低酸度濃度で酸素析出物が無く、かつ、表面構造が全面に亘ってダブルステップレーヤとなっており、該Si基板の表面にBP単結晶層が形成されていることを特徴とする。
前記Si基板の表面から厚み方向へ少なくとも5μmの間に亘る酸素濃度は1.0×1017atoms/cm3以下で、残部の酸素濃度は5.0×1017〜1.0×1018atoms/cm3であることが好ましい。
又、前記Si基板の表面にはCOP等のピットが存在しないことが好ましい。
、GaN発光素子用ウエーハは、前記GaN半導体結晶成長用Siウエーハにおいて、BP単結晶層の上に閃亜鉛鉱型結晶構造のGaN層が形成されていることを特徴とする。
【0007】
一方、本発明のGaN半導体結晶成長用Siウエーハの製造方法は、CZ法によるSi単結晶からなるSi基板に水素ガス雰囲気において800〜1300℃の温度でアニール処理を施した後、1050〜1150℃の温度でSiのエピタキシャル成長を施し、該Si基板の表面にBPのエピタキシャル成長を施すことを特徴とする。
前記Si基板は表面にCOP等のピットの無いものとすることが好ましい。
前記Si単結晶は抵抗値5/1000〜15/1000ΩcmのBヘビードープP+シリコン単結晶とすることが好ましい。
、GaN発光素子用ウエーハの製造方法は、第2のGaN半導体結晶成長用ウエーハの製造方法において、BP単結晶層の上に閃亜鉛鉱型結晶構造のGaNのエピタキシャル成長を施すことを特徴とする。
【0008】
Si基板の表面から厚み方向へ少なくとも3μmの間に亘って酸素濃度が高くて酸素析出物が有ると、BP層のエピタキシャル成長プロセスにおいて、Si基板中の酸素が外方拡散してBを酸化するため、多結晶化が起こりBPの単結晶成長を阻害する。
低酸素濃度で酸素析出物の無い領域は、表面から厚み方向へ15μmの間に亘って形成することが望ましい。
表面から厚み方向へ少なくとも5μmの間に亘る酸素濃度は、8×1016atoms /cm3 以下であることが望ましい。
【0009】
水素ガス雰囲気におけるSi基板のアニール処理温度が、800℃未満であると、表面変化は少なくなる、一方、1300℃を超えると、表面が荒れる不具合がある。
好ましいアニール処理温度は、900〜1250℃である。
シリコン単結晶の抵抗値が、5/1000Ωcm未満であると、エピタキシャル中に不純物が酸素と反応する、一方、15/1000Ωcmを超えると、デバイス形成後に抵抗が大きくなりすぎる。
好ましいシリコン単結晶の抵抗値は、6/1000〜14/1000Ωcmである。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について具体的な実施例を参照して説明する。
先ず、CZ(チョクラルスキー)法により、ドーパントであるBを1.0×1018 atoms/cm3 以上ドーピングし、6インチのBヘビードープP+ Si単結晶(100)を引き上げ、スライスしてCOP等のピットが存在しないSi基板を得た。
次に、Si基板に水素(H2 )ガス雰囲気において800〜1300℃の温度でアニール処理施したところ、図1に示すように、表面から厚さ方向(図1においては上下方向)へ3μmの間に亘って酸素及びその析出物の全く見られないものとなった。
図1において黒点状のものが酸素析出物である。
又、Si基板の表面から厚み方向へ5μmの間に亘る酸素濃度は、1.0×1017 atoms/cm3 以下で、残部(バルク)の酸素濃度は、5.0×1017〜1.0×1018 atoms/cm3 であり、かつ、Si基板の電気抵抗値は、5/1000〜15/1000Ωcmであった。
【0011】
次いで、アニール処理を施したSi基板の表面に、1050〜1150℃の温度でSiのエピタキシャル成長を施してSi単結晶層を形成した。
エピタキシャル装置は、内径50mm、長さ350mmの石英管の中央に石英でカバーされたSiCコートを施した黒鉛サセプターを納置し、その上にSi基板を載置し、外部より高周波を印加することによりサセプターを発熱させる構造のものである。
又、エピタキシャル成長は、原料ガスとしてSiCl4 (四塩化ケイ素)ガス、キャリアガスとしてH2 ガスを用い、マスフローコントローラを介して一定量炉内に導入した。
得られたSi基板は、表面構造が全面に亘ってダブルステップレーヤとなっていた。
【0012】
次に、Si基板のSi単結晶層の上に、900〜1150℃の温度でBPのエピタキシャル成長を施してGaN成長の中間層(バッファー層)としてのBP単結晶層を形成した。
エピタキシャル装置は、Siのエピタキシャル成長に用いたものと同様のものを用い、BPのエピタキシャル成長は、原料ガスとしてPCl3 (三塩化リン)とBCl3 (三塩化ホウ素)の混合ガス、キャリアガスとしてH2 ガスを用い、マスフローコントローラを介して一定量炉内に導入した。
成長温度シーケンスを図2に示す。
得られたGaN半導体結晶成長用Siウエーハは、図3に示すように、テラス状の結晶成長が行われていると共に、図4、図5に示すように、ダブルステップレーヤの表面構造のSi基板1の上にBP単結晶層2が、BP,BPと順番に4.56μmの厚みに積層され、表面が極めて均一なものとなった。
【0013】
比較のため、アニール処理とSiのエピタキシャル成長を施さない通常のミラーウエーハ(Si基板)を用い、このSi基板の表面に、上述のものと同様にBPのエピタキシャル成長を施してBP単結晶層を形成したところ、その表面の結晶構造は、図6に示すように、四角錐の島状のBPの多結晶が成長しており、表面の均一性(平面度)に欠けたものとなった。
【0014】
次いで、GaN半導体結晶成長用Siウエーハの表面に、700〜1100℃の温度でGaNのエピタキシャル成長を施して閃亜鉛鉱型結晶構造のGaN半導体結晶層を形成した。
エピタキシャル装置は、Siのエピタキシャル成長に用いたものと同様のものを用い、GaNのエピタキシャル成長は、原料ガスとしてMMH(モノメチルヒドラジン)、TMG(トリメチルガリウム)ガス、キャリアガスとしてH2 、N2 (窒素)ガスを用い、マスフローコントローラを介して一定量炉内に導入した。
得られたGaN発光素子用ウエーハは、GaN半導体単結晶層の表面が極めて均一で、その厚みが4μmであり、又、結晶構造が完全な閃亜鉛鉱型となっていた。
【0015】
上記GaN発光素子用ウエーハから、GaN発光素子を切り出して発光させたところ、青色発光時の輝度が極めて高いものであった。
【0016】
【発明の効果】
以上説明したように、本発明GaN半導体結晶成長用Siウエーハとその製造方法によれば、デバイス形成用領域側が低酸素濃度で酸素析出物が無く、かつ、表面構造がダブルステップレーヤとなっているので、GaN半導体単結晶層の中間層となるBP単結晶層を、表面の均一性に優れたものとして、極めて安定的に形成することができる。
又、GaNに対するBPの格子不整合が僅か0.6%程度であるので、GaNの結晶構造を完全な閃亜鉛鉱型とすることができる。
又、GaN発光素子用ウエーハとその製造方法によれば、GaN半導体単結晶の結晶構造が完全な閃亜鉛鉱型となるので、発光素子とした場合、青色発光時の輝度を極めて高いものとすることができる。
【図面の簡単な説明】
【図1】本発明に係るGaN半導体結晶成長用Siウエーハの製造方法の実施の形態の一例を示すアニール処理工程後のSiウエーハの結晶構造の電子顕微鏡写真である。
【図2】本発明に係るGaN半導体結晶成長用Siウエーハの製造方法の実施の形態の一例を示すBPエピタキシャル成長工程の成長温度シーケンスの説明図である。
【図3】本発明に係るGaN半導体結晶成長用Siウエーハの実施の形態の一例を示すGaN成長中間層としてのBPエピタキシャル成長後の表面の電子顕微鏡写真である。
【図4】本発明に係るGaN半導体結晶成長用Siウエーハの実施の形態の一例を示す模式的な部分断面図である。
【図5】本発明に係るGaN半導体結晶成長用Siウエーハの実施の形態の一例を示すBPエピタキシャル成長後の断面の電子顕微鏡写真である。
【図6】従来のGaN半導体結晶成長用Siウエーハにエピタキシャル成長を施されたBPの結晶構造を示す電子顕微鏡写真である。
【図7】従来のGaN発光素子用ウエーハの断面図である。
【図8】従来のGaN半導体結晶成長用Siウエーハの部分断面図である。
【図9】図6のSiウエーハの平面図である。
【図10】BPがエピタキシャル成長された従来のGaN半導体結晶成長用Siウエーハの模式的な部分断面図である。
【符号の説明】
1 Si基板
2 BP単結晶層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a GaN (gallium nitride) semiconductor crystal growth Si (silicon) wafer for producing a blue light-emitting element (for example, a light-emitting diode (LED) or a laser element), a GaN light-emitting element wafer using the same, and the like It relates to the manufacturing method.
[0002]
[Prior art]
Normally, a GaN semiconductor crystal as a blue light-emitting element is grown on a sapphire substrate by epitaxial growth. However, a lattice mismatch occurs due to a difference in lattice constant between the GaN semiconductor crystal and the sapphire substrate, or the sapphire as a substrate is cleaved. There is a problem due to lack of conductivity and conductivity.
[0003]
Conventionally, in order to solve such a problem, as shown in FIG. 7, a GaN light emitting device using Si as a substrate and forming a GaN semiconductor crystal layer 33 on a Si substrate 31 with a Ga (gallium) barrier layer 32 interposed therebetween. A known wafer and a method for manufacturing the same are known (see Japanese Patent Application Laid-Open No. 10-242055).
[0004]
[Problems to be solved by the invention]
However, in the conventional GaN light emitting device wafer and its manufacturing method, the formation of the Ga barrier layer on the Si substrate has a problem due to the large difference in lattice constant between the two, and zinc flash on the Ga barrier layer. It is difficult to form a GaN layer with an ore-type crystal structure, the crystal structure of the GaN layer becomes a wurtzite-type crystal system, and there is a problem that the luminance at the time of blue light emission as a light-emitting element does not increase so much.
[0005]
For this reason, it is conceivable to use a BP (boron phosphide) single crystal having a lattice mismatch of only about 0.6% with GaN having a wurtzite crystal structure as an intermediate layer between the Si substrate and the GaN layer.
The BP single crystal has a neutron absorption action, and is expected to be used as a neutron beam sensor for safety management of a nuclear reactor and evaluation of physical properties by neutron scattering.
BP has a zinc blende crystal structure, and the lattice mismatch with GaN is also slight as described above. On the other hand, although the lattice mismatch with Si is as large as 16%, the compatibility between B (boron) and Si is good and the epitaxial growth of BP on the Si substrate has been reported, but stable crystal growth can still be performed. It has not yet reached.
The reason is as follows.
(1) During the BP epitaxial growth process, O (oxygen) contained in the Si substrate diffuses outward and oxidizes B, so that polycrystallization occurs and inhibits single crystal growth.
(2) Defects such as COP (Crystal Originated Paricle: pits formed by very light etching) on the surface of the Si substrate 34 (see FIGS. 8 and 9), that is, the device fabrication surface If there is 35, the difference in crystal orientation causes a difference in the growth rate of BP, the surface irregularities are amplified, and the surface uniformity (flatness) is lacking.
(3) When the surface of the Si substrate 36 (see FIG. 10) is a single-step layer, antiphased domains having different faces on the AA plane are generated and crystallized during the BP crystal growth.
On the other hand, in order to eliminate the above factors, in the BP epitaxial growth process, it is considered that the Si substrate is annealed at a temperature of 1000 to 1200 ° C. in a hydrogen gas atmosphere as a pretreatment. Since it is kept at a high temperature, there are problems such as new surface roughness.
Accordingly, an object of the present invention is to provide a Si wafer for GaN semiconductor crystal growth that can satisfactorily form a GaN layer having a zinc blende crystal structure, a wafer for a GaN light emitting device using the same, and a method for manufacturing the same. To do.
[0006]
[Means for Solving the Problems]
To solve the above problems, in order to solve the above problems, GaN semiconductor crystal growth Si wafer of the present invention, the oxygen precipitates at a low acidity concentrations over a period of at least 3μm from the surface to the thickness direction of the Si substrate by the CZ method There is no object, the surface structure is a double step layer over the entire surface, and a BP single crystal layer is formed on the surface of the Si substrate .
The oxygen concentration ranging from the surface of the Si substrate to at least 5 μm in the thickness direction is 1.0 × 10 17 atoms / cm 3 or less, and the remaining oxygen concentration is 5.0 × 10 17 to 1.0 × 10 18 atoms. / Cm 3 is preferable.
Further, it is preferable that pits such as COP do not exist on the surface of the Si substrate.
Also, wafers for GaN light-emitting element, in the GaN semiconductor crystal growth Si wafer, wherein the GaN layer of zinc blende type crystal structure on the BP single crystal layer is formed.
[0007]
On the other hand, in the method for producing a Si wafer for GaN semiconductor crystal growth according to the present invention, a Si substrate made of a Si single crystal by CZ method is annealed at a temperature of 800 to 1300 ° C. in a hydrogen gas atmosphere, and then 1050 to 1150 ° C. The epitaxial growth of Si is performed at the temperature of BP, and the epitaxial growth of BP is performed on the surface of the Si substrate .
The Si substrate preferably has no pits such as COP on the surface.
The Si single crystal is preferably a B heavy-doped P + silicon single crystal having a resistance value of 5/1000 to 15/1000 Ωcm.
A method for manufacturing a wafer for a GaN light emitting device is characterized in that, in the second method for manufacturing a wafer for GaN semiconductor crystal growth, GaN having a zinc blende crystal structure is epitaxially grown on a BP single crystal layer. .
[0008]
When oxygen concentration is high and oxygen precipitates exist in the thickness direction from the surface of the Si substrate to at least 3 μm, oxygen in the Si substrate diffuses outwardly and oxidizes B in the epitaxial growth process of the BP layer. Polycrystallization occurs and inhibits BP single crystal growth.
The region having a low oxygen concentration and no oxygen precipitate is preferably formed from the surface to the thickness direction in a thickness of 15 μm.
The oxygen concentration ranging from the surface to the thickness direction of at least 5 μm is desirably 8 × 10 16 atoms / cm 3 or less.
[0009]
If the annealing temperature of the Si substrate in a hydrogen gas atmosphere is less than 800 ° C., the surface change is reduced, while if it exceeds 1300 ° C., the surface becomes rough.
A preferable annealing temperature is 900 to 1250 ° C.
If the resistance value of the silicon single crystal is less than 5/1000 Ωcm, impurities react with oxygen during the epitaxial process, while if it exceeds 15/1000 Ωcm, the resistance becomes too high after device formation.
A preferable resistance value of the silicon single crystal is 6/1000 to 14/1000 Ωcm.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to specific examples.
First, the dopant B is doped by 1.0 × 10 18 atoms / cm 3 or more by the CZ (Czochralski) method, the 6-inch B heavy-doped P + Si single crystal (100) is pulled, sliced, and COP A Si substrate having no pits such as was obtained.
Next, when the Si substrate was annealed at a temperature of 800 to 1300 ° C. in a hydrogen (H 2 ) gas atmosphere, as shown in FIG. 1, the thickness was 3 μm from the surface in the thickness direction (vertical direction in FIG. 1). In the meantime, oxygen and precipitates thereof were not seen at all.
In FIG. 1, the black spots are oxygen precipitates.
The oxygen concentration from the surface of the Si substrate to 5 μm in the thickness direction is 1.0 × 10 17 atoms / cm 3 or less, and the remaining (bulk) oxygen concentration is 5.0 × 10 17 to 1. It was 0 × 10 18 atoms / cm 3 , and the electric resistance value of the Si substrate was 5/1000 to 15/1000 Ωcm.
[0011]
Next, Si was epitaxially grown at a temperature of 1050 to 1150 ° C. on the surface of the annealed Si substrate to form a Si single crystal layer.
In the epitaxial device, a graphite susceptor coated with SiC coated with quartz is placed in the center of a quartz tube having an inner diameter of 50 mm and a length of 350 mm, and a Si substrate is placed on the graphite susceptor and high frequency is applied from the outside. In this structure, the susceptor generates heat.
In addition, the epitaxial growth was performed by using SiCl 4 (silicon tetrachloride) gas as a source gas and H 2 gas as a carrier gas, and introduced into a certain amount of furnace through a mass flow controller.
The obtained Si substrate had a double step layer over the entire surface structure.
[0012]
Next, BP epitaxial growth was performed on the Si single crystal layer of the Si substrate at a temperature of 900 to 1150 ° C. to form a BP single crystal layer as an intermediate layer (buffer layer) for GaN growth.
Epitaxial device using the same as that used in the epitaxial growth of Si, epitaxial growth of the BP, a mixed gas of BCl and PCl 3 (phosphorus trichloride) as a source gas 3 (boron trichloride), H 2 as a carrier gas A certain amount of gas was introduced into the furnace through a mass flow controller.
The growth temperature sequence is shown in FIG.
The obtained Si wafer for GaN semiconductor crystal growth has a terrace-shaped crystal growth as shown in FIG. 3 and a Si substrate having a double step layer surface structure as shown in FIGS. The BP single crystal layer 2 was laminated on the layer 1 in the order of BP and BP in a thickness of 4.56 μm, and the surface became extremely uniform.
[0013]
For comparison, a normal mirror wafer (Si substrate) not subjected to annealing treatment and Si epitaxial growth was used, and BP single-crystal layer was formed on the surface of this Si substrate in the same manner as described above. However, as shown in FIG. 6, the crystal structure of the surface was such that a polygonal BP of a quadrangular pyramid was grown, and the surface uniformity (flatness) was lacking.
[0014]
Subsequently, GaN was epitaxially grown on the surface of the Si wafer for GaN semiconductor crystal growth at a temperature of 700 to 1100 ° C. to form a GaN semiconductor crystal layer having a zinc blende crystal structure.
The epitaxial apparatus is the same as that used for the epitaxial growth of Si. The epitaxial growth of GaN is performed by using MMH (monomethylhydrazine) or TMG (trimethylgallium) gas as a source gas and H 2 or N 2 (nitrogen) as a carrier gas. A certain amount of gas was introduced into the furnace through a mass flow controller.
The obtained wafer for a GaN light emitting device had a very uniform surface of the GaN semiconductor single crystal layer, a thickness of 4 μm, and a zinc blende type with a complete crystal structure.
[0015]
When the GaN light emitting device was cut out from the GaN light emitting device wafer and allowed to emit light, the luminance during blue light emission was extremely high.
[0016]
【The invention's effect】
As described above, according to the Si wafer and a manufacturing method thereof for GaN semiconductor crystal growth of the present invention, the device forming region side no oxygen precipitates at a low oxygen concentration, and the surface structure becomes double step player Therefore, the BP single crystal layer, which is an intermediate layer of the GaN semiconductor single crystal layer, can be formed extremely stably with excellent surface uniformity.
Also, since the lattice mismatch of BP to GaN is only about 0.6%, the crystal structure of GaN can be a perfect zinc blende type.
In addition, according to the wafer for GaN light emitting device and the manufacturing method thereof, the crystal structure of the GaN semiconductor single crystal is a perfect zinc blende type, so that when the light emitting device is used, the luminance during blue light emission is extremely high. be able to.
[Brief description of the drawings]
FIG. 1 is an electron micrograph of the crystal structure of a Si wafer after an annealing process showing an example of an embodiment of a method for producing a Si wafer for GaN semiconductor crystal growth according to the present invention.
FIG. 2 is an explanatory diagram of a growth temperature sequence in a BP epitaxial growth step showing an example of an embodiment of a method for manufacturing a Si wafer for GaN semiconductor crystal growth according to the present invention.
FIG. 3 is an electron micrograph of the surface after BP epitaxial growth as a GaN growth intermediate layer showing an example of an embodiment of a Si wafer for GaN semiconductor crystal growth according to the present invention.
FIG. 4 is a schematic partial sectional view showing an example of an embodiment of a Si wafer for GaN semiconductor crystal growth according to the present invention.
FIG. 5 is an electron micrograph of a cross section after BP epitaxial growth showing an example of an embodiment of a Si wafer for GaN semiconductor crystal growth according to the present invention.
FIG. 6 is an electron micrograph showing the crystal structure of BP epitaxially grown on a conventional GaN semiconductor crystal growth Si wafer.
FIG. 7 is a cross-sectional view of a conventional GaN light emitting device wafer.
FIG. 8 is a partial cross-sectional view of a conventional Si wafer for GaN semiconductor crystal growth.
9 is a plan view of the Si wafer of FIG. 6. FIG.
FIG. 10 is a schematic partial sectional view of a conventional GaN semiconductor crystal growth Si wafer on which BP is epitaxially grown.
[Explanation of symbols]
1 Si substrate 2 BP single crystal layer

Claims (8)

CZ法によるSi基板の表面から厚み方向へ少なくとも3μmの間に亘って低酸素濃度で酸素析出物が無く、かつ、表面構造が全面に亘ってダブルステップレーヤとなっており、該Si基板の表面にBP単結晶層が形成されていることを特徴とするGaN半導体結晶成長用Siウエーハ。There is no oxygen precipitate at a low oxygen concentration over at least 3 μm in the thickness direction from the surface of the Si substrate by the CZ method, and the surface structure is a double step layer over the entire surface. A GaN semiconductor crystal growth Si wafer, wherein a BP single crystal layer is formed on the GaN semiconductor crystal. 前記Si基板の表面から厚み方向へ少なくとも5μmの間に亘る酸素濃度が1.0×1017atoms/cm3以下で、残部の酸素濃度が5.0×1017〜1.0×1018atoms/cm3であることを特徴とする請求項1記載のGaN半導体結晶成長用Siウエーハ。The oxygen concentration ranging from the surface of the Si substrate to at least 5 μm in the thickness direction is 1.0 × 10 17 atoms / cm 3 or less, and the remaining oxygen concentration is 5.0 × 10 17 to 1.0 × 10 18 atoms. The Si wafer for GaN semiconductor crystal growth according to claim 1, wherein the Si wafer is / cm 3 . 前記Si基板の表面にCOP等のピットが存在しないことを特徴とする請求項1又は2記載のGaN半導体結晶成長用Siウエーハ。  3. The Si wafer for GaN semiconductor crystal growth according to claim 1, wherein pits such as COP are not present on the surface of the Si substrate. 請求項1、2又は3記載のSiウエーハにおいて、BP単結晶層の上に閃亜鉛鉱型結晶構造のGaN層が形成されていることを特徴とするGaN発光素子用ウエーハ。 4. The wafer for a GaN light emitting device according to claim 1, wherein a GaN layer having a zinc blende type crystal structure is formed on the BP single crystal layer. CZ法によるSi単結晶からなるSi基板に水素ガス雰囲気において800〜1300℃の温度でアニール処理を施した後、1050〜1150℃の温度でSiのエピタキシャル成長を施し、該Si基板の表面にBPのエピタキシャル成長を施すことを特徴とするGaN半導体結晶成長用Siウエーハの製造方法。An Si substrate made of Si single crystal by the CZ method is annealed at a temperature of 800 to 1300 ° C. in a hydrogen gas atmosphere, and then Si is epitaxially grown at a temperature of 1050 to 1150 ° C. , and BP is formed on the surface of the Si substrate. A method for producing a Si wafer for GaN semiconductor crystal growth, comprising performing epitaxial growth . 前記Si基板を表面にCOP等のピットの無いものとすることを特徴とする請求項記載のGaN半導体結晶成長用Siウエーハの製造方法。6. The method for producing a Si wafer for GaN semiconductor crystal growth according to claim 5, wherein the Si substrate has no pits such as COP on the surface. 前記Si単結晶を抵抗値5/1000〜15/1000ΩcmのBヘビードープP+シリコン単結晶とすることを特徴とする請求項又は記載のGaN半導体結晶成長用Siウエーハの製造方法。The method for producing a Si wafer for GaN semiconductor crystal growth according to claim 5 or 6, wherein the Si single crystal is a B heavy-doped P + silicon single crystal having a resistance value of 5/1000 to 15/1000 Ωcm. 請求項5、6又は7記載のSiウエーハの製造方法において、BP単結晶層の上に閃亜鉛鉱型結晶構造のGaNのエピタキシャル成長を施すことを特徴とするGaN発光素子用ウエーハの製造方法。8. The method of manufacturing a wafer for a GaN light emitting device according to claim 5, wherein the epitaxial growth of GaN having a zinc blende crystal structure is performed on the BP single crystal layer.
JP16483599A 1999-06-11 1999-06-11 Si wafer for GaN semiconductor crystal growth, wafer for GaN light emitting device using the same, and manufacturing method thereof Expired - Fee Related JP3748011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16483599A JP3748011B2 (en) 1999-06-11 1999-06-11 Si wafer for GaN semiconductor crystal growth, wafer for GaN light emitting device using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16483599A JP3748011B2 (en) 1999-06-11 1999-06-11 Si wafer for GaN semiconductor crystal growth, wafer for GaN light emitting device using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000351692A JP2000351692A (en) 2000-12-19
JP3748011B2 true JP3748011B2 (en) 2006-02-22

Family

ID=15800840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16483599A Expired - Fee Related JP3748011B2 (en) 1999-06-11 1999-06-11 Si wafer for GaN semiconductor crystal growth, wafer for GaN light emitting device using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3748011B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597340A (en) * 2009-11-10 2012-07-18 株式会社德山 Method for producing laminate
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8853668B2 (en) 2011-09-29 2014-10-07 Kabushiki Kaisha Toshiba Light emitting regions for use with light emitting devices
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693033B2 (en) 2000-02-10 2004-02-17 Motorola, Inc. Method of removing an amorphous oxide from a monocrystalline surface
US6638838B1 (en) 2000-10-02 2003-10-28 Motorola, Inc. Semiconductor structure including a partially annealed layer and method of forming the same
US6673646B2 (en) 2001-02-28 2004-01-06 Motorola, Inc. Growth of compound semiconductor structures on patterned oxide films and process for fabricating same
US6709989B2 (en) 2001-06-21 2004-03-23 Motorola, Inc. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US6646293B2 (en) 2001-07-18 2003-11-11 Motorola, Inc. Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
US6693298B2 (en) 2001-07-20 2004-02-17 Motorola, Inc. Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
US6667196B2 (en) 2001-07-25 2003-12-23 Motorola, Inc. Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
JP3557571B2 (en) * 2001-08-01 2004-08-25 昭和電工株式会社 Light-emitting element laminated structure, light-emitting element, lamp and light source
US6589856B2 (en) * 2001-08-06 2003-07-08 Motorola, Inc. Method and apparatus for controlling anti-phase domains in semiconductor structures and devices
US6639249B2 (en) 2001-08-06 2003-10-28 Motorola, Inc. Structure and method for fabrication for a solid-state lighting device
JP4766642B2 (en) * 2001-09-06 2011-09-07 コバレントマテリアル株式会社 SiC semiconductor and SiC epitaxial growth method
TWI222104B (en) 2001-09-06 2004-10-11 Toshiba Ceramics Co Semiconductor wafer and method of fabricating the same
US8362503B2 (en) 2007-03-09 2013-01-29 Cree, Inc. Thick nitride semiconductor structures with interlayer structures
JP4497170B2 (en) * 2007-03-26 2010-07-07 住友電気工業株式会社 Epitaxial substrate manufacturing method
JP5636183B2 (en) * 2009-11-11 2014-12-03 コバレントマテリアル株式会社 Compound semiconductor substrate
JP6008661B2 (en) * 2012-08-29 2016-10-19 日東光器株式会社 GaN crystal and method for manufacturing semiconductor device
JP6578570B2 (en) * 2015-03-03 2019-09-25 国立大学法人大阪大学 Method for producing group III nitride semiconductor crystal substrate

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597340A (en) * 2009-11-10 2012-07-18 株式会社德山 Method for producing laminate
CN102597340B (en) * 2009-11-10 2015-04-08 株式会社德山 Method for producing laminate
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8853668B2 (en) 2011-09-29 2014-10-07 Kabushiki Kaisha Toshiba Light emitting regions for use with light emitting devices
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9299881B2 (en) 2011-09-29 2016-03-29 Kabishiki Kaisha Toshiba Light emitting devices having light coupling layers
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes

Also Published As

Publication number Publication date
JP2000351692A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
JP3748011B2 (en) Si wafer for GaN semiconductor crystal growth, wafer for GaN light emitting device using the same, and manufacturing method thereof
JP3409958B2 (en) Semiconductor light emitting device
US7125801B2 (en) Method of manufacturing Group III nitride crystal substrate, etchant used in the method, Group III nitride crystal substrate, and semiconductor device including the same
JP6144630B2 (en) Method for producing composite substrate, method for producing functional layer made of group 13 element nitride
US20130137246A1 (en) Method of producing group iii nitride semiconductor growth substrate
JP4618836B2 (en) Nitride-based compound semiconductor substrate and method for manufacturing the same
JP2001284314A (en) Method of manufacturing nitride-based semiconductor layer
US8039130B2 (en) Method of forming group-III nitride crystal, layered structure and epitaxial substrate
JP2003007616A (en) Method of manufacturing semiconductor film
JP3356041B2 (en) Gallium phosphide green light emitting device
TWI699462B (en) Manufacturing method of group iii nitride semiconductor substrate
WO2008010541A1 (en) Method for reducing dislocation in group iii nitride crystal and substrate for epitaxial growth
JP2003218031A (en) Method of manufacturing semiconductor wafer
JP2005343704A (en) METHOD FOR PRODUCING AlxGayIn1-x-yN CRYSTAL
KR100210758B1 (en) Epitaxial wafer and process for producing the same
JP2006186312A (en) Hetero-epitaxial semiconductor subjected to internal gettering and manufacturing method thereof
JP5672021B2 (en) Manufacturing method of semiconductor substrate
JP2011006304A (en) Nitride semiconductor substrate and production method of the same
JP5315944B2 (en) Manufacturing method of silicon epitaxial wafer
WO2021166896A1 (en) Method for manufacturing semiconductor silicon wafer
TWI741950B (en) Manufacturing method of silicon wafer
US11640906B2 (en) Crystal laminate, semiconductor device and method for manufacturing the same
JP4614616B2 (en) ZnTe single crystal and method for producing the same
JP2022147881A (en) Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE AND MANUFACTURING METHOD OF Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees