JP4614616B2 - ZnTe single crystal and method for producing the same - Google Patents

ZnTe single crystal and method for producing the same Download PDF

Info

Publication number
JP4614616B2
JP4614616B2 JP2002324622A JP2002324622A JP4614616B2 JP 4614616 B2 JP4614616 B2 JP 4614616B2 JP 2002324622 A JP2002324622 A JP 2002324622A JP 2002324622 A JP2002324622 A JP 2002324622A JP 4614616 B2 JP4614616 B2 JP 4614616B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
single crystal
znte
treatment temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002324622A
Other languages
Japanese (ja)
Other versions
JP2004158731A (en
Inventor
賢次 佐藤
貴幸 矢辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2002324622A priority Critical patent/JP4614616B2/en
Publication of JP2004158731A publication Critical patent/JP2004158731A/en
Application granted granted Critical
Publication of JP4614616B2 publication Critical patent/JP4614616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発光ダイオード(LED)や半導体レーザダイオード(LD)等の光電変換機能素子の材料として好適なII−VI族化合物半導体単結晶の結晶性を改善する技術に係り、特にII−VI族化合物半導体単結晶の熱処理技術に関する。
【0002】
【従来の技術】
周期表第12(2B)族元素および第16(6B)族元素からなる化合物半導体(以下、II−VI族化合物半導体と称する)結晶は、種々の禁制体幅を有するため光学的特性も多様である。従って、禁制帯幅を適正に選ぶことにより所望の波長の光を得ることが可能となるため、発光素子の材料として期待されている。
【0003】
しかしながら、II−VI族化合物半導体は化学量論的組成(ストイキオメトリ)の制御が難しいので、現状の製造技術では良好なバルク結晶を成長させるのが困難である。そのため、エピタキシャル成長用の良質な基板(ウェハ)を入手するのも困難な状況にある。
【0004】
最近では、II−VI族化合物半導体単結晶基板上に良好なエピタキシャル層を成長させるために、基板の表面状態を改善する表面処理方法が提案されている(例えば、特許文献1)。
【0005】
特許文献1の技術によれば、II−VI族化合物半導体の一つであるZnTe単結晶の熱処理方法において、熱処理温度に基づいて所定の関係式から雰囲気ガスの圧力を導出し、導出された条件下で基板に熱処理を施すことにより基板表面のTe析出物を消失させている。さらに、Te析出物を消失させるための第1の熱処理によりZnTe単結晶中のキャリア濃度が低下するのを、2段階の熱処理を施すことにより元に戻すようにしている。これにより、理想的な化学量論的組成を有するII−VI族化合物半導体単結晶を得ることができる。なお、特許文献1では、ZnTe化合物半導体単結晶に所定の熱処理を施した後に、単結晶表面を光学顕微鏡(ノマルスキー顕微鏡)で観察することによりTe析出物が消失されたことを確認している。
【0006】
【特許文献1】
特開平11−8119号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記先願に記載の熱処理方法で得られたZnTe化合物半導体単結晶は、走査型電子顕微鏡(SEM)を用いた観察により三角形あるいは半円の形状をした数μmオーダーの析出物が存在することが判明した(図4参照)。これは、光学顕微鏡では観察されずSEMのみで観察されたことから、前記析出物は周囲と異なる面方位を示す多結晶が成長して形成されたものであると考えられた。
【0008】
そこで本発明者等は、上記先願の熱処理方法はTe析出物を消失するのには有効であるが、さらなる改良の余地があると考え、ZnTe化合物半導体単結晶の熱処理方法について鋭意研究を重ねた。
【0009】
本発明は、II−VI族化合物半導体単結晶において多結晶等の析出物を消失させるための熱処理方法、および光学特性、電気特性、高周波特性等のデバイス性能に優れた半導体装置を製造するのに適したII−VI族化合物半導体単結晶を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、周期表第12(2B)族元素及び第16(6B)族元素からなるII−VI族化合物半導体単結晶を第1の熱処理温度T1(K)まで昇温して所定の時間(例えば2h)だけ保持する第1の工程と、前記第1の熱処理温度T1から該熱処理温度T1よりも低い第2の熱処理温度T2(K)まで所定の速度で徐々に降温する第2の工程と、を少なくとも有することを特徴とするII−VI族化合物半導体単結晶の製造方法である。ここで、II−VI族化合物半導体とは、ZnTe,CdTe,ZnSe等の2元系だけでなく、CdZnTe,ZnSeTe等の3元系又はそれ以上の系を含むものとする。
【0011】
これにより、第1の工程で第16族元素(例えばTe)からなる析出物を消失できるとともに、第2の工程で多結晶等からなる析出物を消失することができる。なお、本明細書において多結晶等からなる析出物とは、例えば、(100)面のII−VI族化合物半導体結晶基板を劈開したときの(110)面をSEMで観察したときに確認できる、一辺が3から10μmの三角形状または半円状の析出物をいう(図4参照)。
【0012】
具体的には、前記II−VI族化合物半導体単結晶の融点をM(K)として、前記第1の熱処理温度T1を0.50M≦T1≦0.65Mの範囲で設定し、前記第2の熱処理温度T2をT2≦T1−50の範囲で設定するのが望ましい。なお、第2の熱処理温度T2の下限値は室温でも構わないが、工業的な見地からT1−200以上、さらに好ましくはT1−100以上とするのが適切である。
【0013】
これにより、効果的にTe析出物および多結晶等からなる析出物を消失させて、良質なII−VI族化合物半導体単結晶を得ることができる。
【0014】
また、前記第2の工程における降温速度を0.8℃/min以下とすることで、II−VI族化合物半導体単結晶の多結晶等からなる析出物を確実に消失することができる。一方、工業的生産性の面から降温速度は0.05℃/min以上とするのが望ましい。
【0015】
さらに、前記第1および第2の工程を1サイクルとして、該工程を複数サイクル実行するようにしてもよい。例えば、II−VI族化合物半導体単結晶の大きさに基づいて繰り返しサイクル数を決定すればよく、特にインゴットのまま熱処理するときは繰り返しサイクル数を増加させると効果的である。これによりII−VI族化合物半導体単結晶の析出物を有効に消失させることができる。
【0016】
またさらに、前記第2の工程後に、前記第2の熱処理温度T2で所定の時間だけ保持する第3の工程を有するようにしてもよい。これにより、第1の工程でII−VI族化合物半導体単結晶のキャリア密度が低下したのを、効果的に元に戻すことができる。このときの保持時間はII−VI族化合物半導体単結晶の大きさにより決定するのが望ましく、基板の厚さによっては第3の工程を行うことなく第2の工程後にそのまま室温まで降温しても同様の効果を得ることができる。
【0017】
上記した製造方法により得られるII−VI族化合物半導体単結晶は、走査型電子顕微鏡(SEM)で観察される多結晶等からなる析出物の密度が200cm−2以下であり、光学特性、電気特性、高周波特性等のデバイス性能に優れた半導体装置を製造するのに適している。
【0018】
【発明の実施の形態】
以下、本発明の好適な実施の形態を、ZnTe単結晶を例に挙げて説明する。
【0019】
(実施例1)
本実施例では、P(リン)をドーパントとして融液成長法で得られた直径2インチで面方位が(100)のZnTe結晶を厚さ0.8〜1.0mmにスライスし、その表面に#1200の砥粒を使用したラッピング及びBr3%MeOHを使用したエッチングを施したものを試料(基板)とした。
【0020】
また、ZnTe基板の熱処理を行うに際して、石英アンプル内の所定の位置にZnTe基板及びZnを入れ、真空度1.0×10−6Torr以下で封止した。また、ZnTe基板設置部分と、Zn設置部分は独立して温度制御できるように構成し、熱処理中のZn蒸気圧を適正に制御できるようにした。そして、この石英アンプルを拡散炉内に配置して以下の熱処理を行った。
【0021】
実施例1では、図1の温度プロファイルに従って、ZnTe基板に対して熱処理を施した。図1中、それぞれの工程に対して符号A〜Eを付しており、同一の工程には同一の符号を付している。
【0022】
まず、ZnTe基板設置部分を650℃(第1の熱処理温度)まで例えば15℃/minで昇温した(図中A)。これに対して、Zn設置部分は590℃まで昇温し、3回目の工程Bが終了するまで590℃で保持した。ここで、第1の熱処理温度は650℃に制限されない。例えば、第1の熱処理温度をT1(K),ZnTeの融点をM(K)としたときに、0.50M≦T1≦0.65Mを満たす温度T1に設定すればよい。
【0023】
次に、ZnTe基板設置部分を650℃で2h保持し(図中B)、その後0.3℃/minで590℃(第2の熱処理温度)まで徐々に降温した(図中C)。
このとき、第2の熱処理温度は、第1の熱処理温度よりも50℃以上低く設定するのが望ましい。また、この第2の熱処理温度は室温でも構わないが、工業的な見地から(第1の熱処理温度―200)℃以上、さらに望ましくは(第1の熱処理温度−100)℃以上とするのがよい。
【0024】
また、工程Cにおける降温速度は0.8℃/min以下で設定するのが望ましく、さらに工業的生産性の面から0.05℃/min以上とするのが望ましい。
【0025】
さらに、工程A〜Cを2回繰り返した後、590℃で20h保持した(図中D)。一方、3回目の工程Cに対応して、Zn設置部分を430℃まで降温し、そのまま430℃で20h保持した。このように、第1の熱処理温度よりも低い温度で長時間熱処理を施すことにより、工程Bにおいて生じた結晶欠陥によるキャリア密度の低下を元に戻すことができる。
【0026】
その後、例えば15℃/minで室温まで降温して、熱処理を終了した(図中E)。同様に、Zn設置部分も室温まで降温した。そして、熱処理後のZnTe基板に対して前処理と同一の条件でラッピング及びエッチング処理を施した。
【0027】
得られたZnTe基板を同一単結晶領域から5〜10mm角程度の大きさで劈開し、その(110)面をSEMで観察したが、多結晶等からなる析出物は観察されなかった。また、透過型の光学顕微鏡でも観察してTe析出物がないことも確認した。
【0028】
一方、得られたZnTe基板の四隅に無電解金メッキ膜を形成し、これを電極としてホール測定装置により抵抗率およびキャリア濃度を測定したところ、抵抗率は0.103Ω・cmであり、キャリア密度は7.5×1017cm−3であった。
【0029】
(実施例2)
本実施例では、実施例1と同様のZnTe基板を試料とした。なお、熱処理工程前の処理は実施例1と同様に行った。
【0030】
実施例2では、図2の温度プロファイルに従って、ZnTe基板に対して熱処理を施した。図2中、それぞれの工程に対して符号A〜C,Eを付しており、図1と同一の工程には同一の符号を付している。
【0031】
実施例1では工程A〜Cを3回繰り返しているのに対して実施例2では1回としている点、および実施例1の工程Dに相当する工程を設けず工程Cの後にそのまま室温まで降温している点で両者は異なる。
【0032】
まず、ZnTe基板設置部分を650℃まで例えば15℃/minで昇温した(図中A)。これに対して、Zn設置部分は590℃に昇温した。
【0033】
続いて、ZnTe基板設置部分を650℃で2h保持し(図中B)、その後0.3℃/minで590℃まで徐々に降温した(図中C)。これに対して、Zn設置部分は590℃で2h保持し、その後430℃まで降温した。
【0034】
次いで、ZnTe基板設置部分およびZn設置部分を、例えば15℃/minで室温まで降温して、熱処理を終了した(図中E)。
【0035】
以上の熱処理を施したZnTe基板に対して、実施例1と同様の方法にてSEMおよび光学顕微鏡による観察を行ったが、多結晶等からなる析出物およびTe析出物は観察できなかった。
【0036】
また、実施例1と同様の方法にて抵抗率およびキャリア濃度を測定したところ、抵抗率は0.16Ω・cmで、キャリア濃度は4.0×1017cm−3であった。
【0037】
このように、第1の熱処理温度(650℃)で所定の時間(2h)加熱した後に、所定の降温速度(0.3℃/min)で第2の熱処理温度(590℃)まで降温させるだけでも、Te析出物及び多結晶等からなる析出物を消失させることができた。
【0038】
(実施例3)
本実施例では、P(リン)をドーパントとして融液成長法で得られた直径2インチのZnTe結晶のインゴットを試料とした。なお、熱処理工程前の処理は実施例1および実施例2と同様に行った。
【0039】
また、実施例3では、基本的に図1の温度プロファイルに従って熱処理を施したが、工程A〜Cを5回繰り返すようにしている点で実施例1と異なる。
【0040】
まず、ZnTe基板設置部分を650℃まで例えば15℃/minで昇温した。これに対して、Zn設置部分は590℃まで昇温し、5回目の工程Bが終了するまで590℃で保持した。
【0041】
次に、ZnTe基板設置部分を650℃で2h保持し、その後0.3℃/minで590℃まで徐々に降温した。さらに、工程A〜Cを4回繰り返した後、590℃で20h保持した。また、5回目の工程Cに対応してZn設置部分を430℃まで降温し、そのまま430℃で20h保持した。
【0042】
その後、ZnTe基板設置部分およびZn設置部分を、例えば15℃/minで室温まで降温して、熱処理を終了した。
【0043】
以上の熱処理を施したZnTe基板に対して、実施例1および実施例2と同様の方法にてSEMおよび光学顕微鏡による観察を行ったが、多結晶等からなる析出物およびTe析出物は観察できなかった。
【0044】
また、実施例1と同様の方法にて抵抗率およびキャリア濃度を測定したところ、抵抗率は0.15Ω・cmで、キャリア濃度は3.6×1017cm−3であった。
【0045】
このように、ZnTe結晶をインゴットのまま熱処理する場合は、工程A〜Cの回数を増加することにより、Te析出物及び多結晶等からなる析出物を消失させることができた。
【0046】
(比較例1)
比較例1では、実施例1と同様のZnTe基板を試料とした。なお、熱処理工程前の処理は実施例1と同様に行った。
【0047】
比較例1では、図3の温度プロファイルに従って、ZnTe基板に対して熱処理を施した。図3中、それぞれの工程に対して符号a〜cを付している。比較例1は、実施例1〜3の工程Cに相当する徐冷を行っていない点が異なる。
【0048】
まず、ZnTe基板設置部分を650℃まで例えば15℃/minで昇温した(図中a)。これに対して、Zn設置部分は590℃に昇温した。
【0049】
続いて、ZnTe基板設置部分を650℃で40h保持した(図中b)。これに対して、Zn設置部分は590℃で40h保持した。
【0050】
その後、ZnTe基板設置部分およびZn設置部分を、例えば15℃/minで室温まで降温して、熱処理を終了した(図中c)。
【0051】
以上の熱処理を施したZnTe基板に対して、実施例1と同様の方法にてSEMによる観察を行ったところ、多結晶等からなる析出物の密度は1.7×10cm−2であった。この析出物は、図4に示すように、一辺が3〜10μmの三角形状をしていた。一方、光学顕微鏡による観察ではTe析出物は認められなかった。
【0052】
また、実施例1と同様の方法にて抵抗率およびキャリア濃度を測定したところ、抵抗率は1.09Ω・cmで、キャリア濃度は9.5×1016cm−3であった。
【0053】
このように、比較例では、比較的高温(650℃)で長時間熱処理したために、Te析出物は消失されているものの、多結晶からなる析出物は消失できなかった。
【0054】
(比較例2)
比較例2では、実施例1と同様のZnTe基板を試料とし、熱処理を施さない場合のSEMおよび光学顕微鏡による観察、および抵抗率,キャリア濃度の測定を行った。
【0055】
SEMによる観察では多結晶等からなる析出物の密度は1.3×10cm であった。一方、光学顕微鏡による観察ではTe析出物の密度は1.0〜2.0×10cm−2であった。
【0056】
また、実施例1と同様の方法にて抵抗率およびキャリア濃度を測定したところ、抵抗率は0.1Ω・cmで、キャリア濃度は9.5×1017cm−3であった。
【0057】
以上説明した実施例1〜3および比較例1,2で得られた、SEMおよび光学顕微鏡による析出物密度、および抵抗率,キャリア濃度を表1に示す。
【0058】
【表1】

Figure 0004614616
【0059】
このように、実施例1〜3によれば、Te析出物および多結晶からなる析出物のない良質なZnTe単結晶を得ることができる。また、実施例で実行した熱処理により抵抗率およびキャリア濃度の低下は見られないので、デバイス性能に優れた半導体装置を製造するのに適したZnTe単結晶となる。
【0060】
以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は上記実施例に限定されるものではない。
【0061】
例えば、ZnTe単結晶に制限されず、II−VI族化合物半導体一般について、結晶中の析出物を低減させるのに有効である。
【0062】
【発明の効果】
本発明によれば、周期表第12(2B)族元素及び第16(6B)族元素からなるII−VI族化合物半導体単結晶を第1の熱処理温度T1(K)まで昇温して所定の時間だけ保持する第1の工程と、前記第1の熱処理温度T1から該熱処理温度T1よりも低い第2の熱処理温度T2(K)まで所定の速度で徐々に降温する第2の工程と、を少なくとも有するようにしたので、第1の工程で第16族元素(例えばTe)からなる析出物を消失できるとともに、第2の工程で多結晶等からなる析出物を消失することができる。したがって、得られたII−VI族化合物半導体単結晶を半導体装置の基板とすることにより、デバイス特性に優れた半導体装置を製造することができるという効果を奏する。
【図面の簡単な説明】
【図1】実施例1でZnTe基板に対して施した熱処理における温度プロファイルを示す説明図である。
【図2】実施例2でZnTe基板に対して施した熱処理における温度プロファイルを示す説明図である。
【図3】比較例1でZnTe基板に対して施した熱処理における温度プロファイルを示す説明図である。
【図4】比較例1で得られたZnTe基板をSEMで観察したときに認められた析出物の一例を示す写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for improving the crystallinity of a II-VI compound semiconductor single crystal suitable as a material for a photoelectric conversion functional element such as a light emitting diode (LED) or a semiconductor laser diode (LD), and more particularly, a II-VI group. The present invention relates to a heat treatment technique for compound semiconductor single crystals.
[0002]
[Prior art]
A compound semiconductor (hereinafter referred to as a II-VI group compound semiconductor) crystal composed of Group 12 (2B) group elements and Group 16 (6B) group elements in the periodic table has various forbidden body widths, and thus has various optical characteristics. is there. Accordingly, it is possible to obtain light having a desired wavelength by appropriately selecting the forbidden band width, and therefore, it is expected as a material for a light emitting element.
[0003]
However, since it is difficult to control the stoichiometric composition (stoichiometry) of the II-VI group compound semiconductor, it is difficult to grow a good bulk crystal with the current manufacturing technology. Therefore, it is difficult to obtain a high-quality substrate (wafer) for epitaxial growth.
[0004]
Recently, in order to grow a good epitaxial layer on a II-VI group compound semiconductor single crystal substrate, a surface treatment method for improving the surface state of the substrate has been proposed (for example, Patent Document 1).
[0005]
According to the technique of Patent Document 1, in the heat treatment method for ZnTe single crystal, which is one of II-VI group compound semiconductors, the pressure of the atmospheric gas is derived from a predetermined relational expression based on the heat treatment temperature, and the derived condition The Te precipitate on the surface of the substrate disappears by performing a heat treatment on the substrate below. Furthermore, the reduction in the carrier concentration in the ZnTe single crystal due to the first heat treatment for eliminating Te precipitates is restored by performing a two-step heat treatment. Thereby, a II-VI group compound semiconductor single crystal having an ideal stoichiometric composition can be obtained. In Patent Document 1, it is confirmed that the Te precipitate has disappeared by observing the surface of the single crystal with an optical microscope (Nomarski microscope) after subjecting the ZnTe compound semiconductor single crystal to a predetermined heat treatment.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-8119
[Problems to be solved by the invention]
However, the ZnTe compound semiconductor single crystal obtained by the heat treatment method described in the above-mentioned prior application has a precipitate on the order of several μm in the shape of a triangle or a semicircle by observation using a scanning electron microscope (SEM). It became clear (refer FIG. 4). This was not observed with an optical microscope but was observed only with SEM, and thus the precipitate was considered to be formed by growing a polycrystal having a plane orientation different from the surroundings.
[0008]
Therefore, the present inventors consider that the heat treatment method of the above-mentioned prior application is effective in eliminating Te precipitates, but considers that there is room for further improvement, and repeated earnest research on the heat treatment method of ZnTe compound semiconductor single crystals. It was.
[0009]
The present invention provides a heat treatment method for eliminating precipitates such as polycrystals in a II-VI group compound semiconductor single crystal, and a semiconductor device having excellent device performance such as optical characteristics, electrical characteristics, and high frequency characteristics. An object is to provide a suitable II-VI compound semiconductor single crystal.
[0010]
[Means for Solving the Problems]
In the present invention, a II-VI group compound semiconductor single crystal composed of Group 12 (2B) group elements and Group 16 (6B) group elements is heated to a first heat treatment temperature T1 (K) for a predetermined time ( For example, a first step of holding only 2h), and a second step of gradually lowering the temperature from the first heat treatment temperature T1 to a second heat treatment temperature T2 (K) lower than the heat treatment temperature T1 at a predetermined rate, And a method for producing a II-VI compound semiconductor single crystal. Here, the II-VI group compound semiconductor includes not only a binary system such as ZnTe, CdTe, and ZnSe but also a ternary system such as CdZnTe and ZnSeTe or higher.
[0011]
Thereby, the precipitate made of a group 16 element (for example, Te) can be lost in the first step, and the precipitate made of polycrystal or the like can be lost in the second step. In the present specification, the precipitate made of polycrystal or the like can be confirmed, for example, when the (110) plane when the (100) plane II-VI group compound semiconductor crystal substrate is cleaved is observed with an SEM, This refers to a triangular or semicircular precipitate having a side of 3 to 10 μm (see FIG. 4).
[0012]
Specifically, the melting point of the II-VI group compound semiconductor single crystal is M (K), the first heat treatment temperature T1 is set in the range of 0.50M ≦ T1 ≦ 0.65M, and the second It is desirable to set the heat treatment temperature T2 in the range of T2 ≦ T1-50. The lower limit value of the second heat treatment temperature T2 may be room temperature, but from an industrial point of view, it is appropriate to set it to T1-200 or more, more preferably T1-100 or more.
[0013]
Thereby, Te precipitates and precipitates composed of polycrystals and the like can be effectively eliminated, and a high-quality II-VI group compound semiconductor single crystal can be obtained.
[0014]
Moreover, the precipitate which consists of a polycrystal etc. of a II-VI group compound semiconductor single crystal can be lose | disappeared reliably by making the temperature-fall rate in the said 2nd process into 0.8 degrees C / min or less. On the other hand, from the viewpoint of industrial productivity, it is desirable that the temperature lowering rate is 0.05 ° C./min or more.
[0015]
Furthermore, the first and second steps may be set as one cycle, and the steps may be executed for a plurality of cycles. For example, the number of repeated cycles may be determined based on the size of the II-VI group compound semiconductor single crystal, and it is effective to increase the number of repeated cycles, particularly when heat treatment is performed with an ingot. Thereby, the deposit of a II-VI group compound semiconductor single crystal can be lost effectively.
[0016]
Furthermore, after the second step, a third step of holding the second heat treatment temperature T2 for a predetermined time may be provided. Thereby, it is possible to effectively reverse the decrease in the carrier density of the II-VI group compound semiconductor single crystal in the first step. The holding time at this time is desirably determined by the size of the II-VI group compound semiconductor single crystal. Depending on the thickness of the substrate, the temperature may be lowered to the room temperature after the second step without performing the third step. Similar effects can be obtained.
[0017]
The II-VI group compound semiconductor single crystal obtained by the above-described manufacturing method has a density of precipitates composed of polycrystals and the like observed with a scanning electron microscope (SEM) of 200 cm −2 or less, and has optical characteristics and electrical characteristics. It is suitable for manufacturing a semiconductor device excellent in device performance such as high-frequency characteristics.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described by taking a ZnTe single crystal as an example.
[0019]
Example 1
In this example, a ZnTe crystal having a diameter of 2 inches and a plane orientation of (100) obtained by melt growth using P (phosphorus) as a dopant is sliced to a thickness of 0.8 to 1.0 mm, and the surface thereof is sliced. A sample (substrate) was subjected to lapping using # 1200 abrasive grains and etching using Br 2 3% MeOH.
[0020]
In addition, when performing heat treatment on the ZnTe substrate, the ZnTe substrate and Zn were put in predetermined positions in the quartz ampule and sealed at a vacuum degree of 1.0 × 10 −6 Torr or less. In addition, the ZnTe substrate installation part and the Zn installation part were configured so that the temperature could be controlled independently, so that the Zn vapor pressure during the heat treatment could be appropriately controlled. And this quartz ampule was arrange | positioned in a diffusion furnace, and the following heat processing was performed.
[0021]
In Example 1, the ZnTe substrate was heat-treated according to the temperature profile of FIG. In FIG. 1, reference signs A to E are assigned to the respective steps, and the same reference numerals are assigned to the same steps.
[0022]
First, the ZnTe substrate installation portion was heated to 650 ° C. (first heat treatment temperature) at, for example, 15 ° C./min (A in the figure). On the other hand, the temperature of the Zn-installed portion was raised to 590 ° C. and kept at 590 ° C. until the third step B was completed. Here, the first heat treatment temperature is not limited to 650 ° C. For example, when the first heat treatment temperature is T1 (K) and the melting point of ZnTe is M (K), the temperature may be set to a temperature T1 that satisfies 0.50M ≦ T1 ≦ 0.65M.
[0023]
Next, the ZnTe substrate mounting portion was held at 650 ° C. for 2 h (B in the figure), and then gradually lowered to 590 ° C. (second heat treatment temperature) at 0.3 ° C./min (C in the figure).
At this time, it is desirable to set the second heat treatment temperature to be lower by 50 ° C. or more than the first heat treatment temperature. The second heat treatment temperature may be room temperature, but from an industrial point of view, (first heat treatment temperature−200) ° C. or higher, more preferably (first heat treatment temperature−100) ° C. or higher. Good.
[0024]
Moreover, it is desirable to set the temperature-decreasing rate in the process C at 0.8 ° C./min or less, and more preferably 0.05 ° C./min or more in terms of industrial productivity.
[0025]
Further, Steps A to C were repeated twice and held at 590 ° C. for 20 hours (D in the figure). On the other hand, corresponding to the third step C, the temperature of the Zn-installed portion was lowered to 430 ° C. and kept at 430 ° C. for 20 hours. In this manner, by performing the heat treatment for a long time at a temperature lower than the first heat treatment temperature, the decrease in carrier density due to the crystal defects generated in the step B can be restored.
[0026]
Thereafter, for example, the temperature was lowered to room temperature at 15 ° C./min, and the heat treatment was completed (E in the figure). Similarly, the temperature at the Zn installation part was also lowered to room temperature. Then, lapping and etching were performed on the ZnTe substrate after the heat treatment under the same conditions as the pretreatment.
[0027]
The obtained ZnTe substrate was cleaved with a size of about 5 to 10 mm square from the same single crystal region, and the (110) plane was observed with SEM, but precipitates composed of polycrystal or the like were not observed. Also, it was confirmed by observation with a transmission type optical microscope that there was no Te precipitate.
[0028]
On the other hand, when an electroless gold plating film was formed at the four corners of the obtained ZnTe substrate, and the resistivity and carrier concentration were measured with a Hall measuring device using this as an electrode, the resistivity was 0.103 Ω · cm, and the carrier density was It was 7.5 × 10 17 cm −3 .
[0029]
(Example 2)
In this example, the same ZnTe substrate as in Example 1 was used as a sample. The treatment before the heat treatment step was performed in the same manner as in Example 1.
[0030]
In Example 2, the ZnTe substrate was heat-treated according to the temperature profile of FIG. In FIG. 2, symbols A to C and E are assigned to the respective steps, and the same steps as those in FIG.
[0031]
In Example 1, Steps A to C are repeated three times, whereas in Example 2, the number of times is one. Also, a step corresponding to Step D of Example 1 is not provided and the temperature is lowered to room temperature after Step C. The two are different.
[0032]
First, the temperature of the ZnTe substrate installation portion was increased to 650 ° C., for example, at 15 ° C./min (A in the figure). On the other hand, the temperature of the Zn installation part was raised to 590 ° C.
[0033]
Subsequently, the ZnTe substrate installation portion was held at 650 ° C. for 2 h (B in the figure), and then gradually decreased to 590 ° C. at 0.3 ° C./min (C in the figure). On the other hand, the Zn installation part was held at 590 ° C. for 2 hours, and then cooled to 430 ° C.
[0034]
Next, the temperature of the ZnTe substrate installation part and the Zn installation part was lowered to room temperature, for example, at 15 ° C./min to complete the heat treatment (E in the figure).
[0035]
The ZnTe substrate subjected to the above heat treatment was observed with an SEM and an optical microscope in the same manner as in Example 1. However, precipitates made of polycrystal or the like and Te precipitates could not be observed.
[0036]
Further, when the resistivity and the carrier concentration were measured by the same method as in Example 1, the resistivity was 0.16 Ω · cm and the carrier concentration was 4.0 × 10 17 cm −3 .
[0037]
Thus, after heating at the first heat treatment temperature (650 ° C.) for a predetermined time (2 h), the temperature is simply lowered to the second heat treatment temperature (590 ° C.) at a predetermined temperature drop rate (0.3 ° C./min). However, the precipitate consisting of Te precipitates and polycrystals could be eliminated.
[0038]
(Example 3)
In this example, an ingot of ZnTe crystal having a diameter of 2 inches obtained by melt growth using P (phosphorus) as a dopant was used as a sample. The treatment before the heat treatment step was performed in the same manner as in Example 1 and Example 2.
[0039]
Moreover, in Example 3, although heat processing was fundamentally performed according to the temperature profile of FIG. 1, it differs from Example 1 in the point that process A-C is repeated 5 times.
[0040]
First, the temperature of the ZnTe substrate installation portion was increased to 650 ° C., for example, at 15 ° C./min. On the other hand, the Zn installation part was heated to 590 ° C. and held at 590 ° C. until the fifth step B was completed.
[0041]
Next, the ZnTe substrate installation portion was held at 650 ° C. for 2 hours, and then gradually cooled to 590 ° C. at 0.3 ° C./min. Further, Steps A to C were repeated 4 times, and then held at 590 ° C. for 20 hours. Corresponding to the fifth step C, the temperature of the Zn-installed part was lowered to 430 ° C. and kept at 430 ° C. for 20 hours.
[0042]
Thereafter, the ZnTe substrate installation part and the Zn installation part were cooled to room temperature, for example, at 15 ° C./min, and the heat treatment was completed.
[0043]
The ZnTe substrate subjected to the above heat treatment was observed with an SEM and an optical microscope in the same manner as in Example 1 and Example 2, but precipitates made of polycrystal and the like and Te precipitates could be observed. There wasn't.
[0044]
Further, when the resistivity and the carrier concentration were measured by the same method as in Example 1, the resistivity was 0.15 Ω · cm and the carrier concentration was 3.6 × 10 17 cm −3 .
[0045]
Thus, when heat-treating the ZnTe crystal as an ingot, the precipitate consisting of Te precipitates and polycrystals could be eliminated by increasing the number of steps A to C.
[0046]
(Comparative Example 1)
In Comparative Example 1, the same ZnTe substrate as in Example 1 was used as a sample. The treatment before the heat treatment step was performed in the same manner as in Example 1.
[0047]
In Comparative Example 1, the ZnTe substrate was heat-treated according to the temperature profile of FIG. In FIG. 3, symbols a to c are assigned to the respective steps. The comparative example 1 differs in the point which does not perform the slow cooling corresponded to the process C of Examples 1-3.
[0048]
First, the temperature of the ZnTe substrate installation portion was increased to 650 ° C., for example, at 15 ° C./min (a in the figure). On the other hand, the temperature of the Zn installation part was raised to 590 ° C.
[0049]
Subsequently, the ZnTe substrate installation portion was held at 650 ° C. for 40 hours (b in the figure). In contrast, the Zn installation part was held at 590 ° C. for 40 hours.
[0050]
Thereafter, the ZnTe substrate installation part and the Zn installation part were cooled to room temperature, for example, at 15 ° C./min, and the heat treatment was completed (c in the figure).
[0051]
When the above-mentioned heat-treated ZnTe substrate was observed by SEM in the same manner as in Example 1, the density of precipitates made of polycrystals and the like was 1.7 × 10 3 cm −2. It was. As shown in FIG. 4, the precipitate had a triangular shape with one side of 3 to 10 μm. On the other hand, no Te precipitate was observed by observation with an optical microscope.
[0052]
Further, when the resistivity and the carrier concentration were measured by the same method as in Example 1, the resistivity was 1.09 Ω · cm and the carrier concentration was 9.5 × 10 16 cm −3 .
[0053]
Thus, in the comparative example, since the Te precipitates disappeared because the heat treatment was performed for a long time at a relatively high temperature (650 ° C.), the polycrystalline precipitates could not disappear.
[0054]
(Comparative Example 2)
In Comparative Example 2, the same ZnTe substrate as in Example 1 was used as a sample, and observation with an SEM and an optical microscope in the case where heat treatment was not performed, and measurement of resistivity and carrier concentration were performed.
[0055]
Density of precipitates of polycrystalline or the like in observation by SEM is 1.3 × 10 3 cm - was two. On the other hand, when observed with an optical microscope, the density of Te precipitates was 1.0 to 2.0 × 10 3 cm −2 .
[0056]
Moreover, when the resistivity and the carrier concentration were measured in the same manner as in Example 1, the resistivity was 0.1 Ω · cm and the carrier concentration was 9.5 × 10 17 cm −3 .
[0057]
Table 1 shows the precipitate density, resistivity, and carrier concentration obtained in Examples 1 to 3 and Comparative Examples 1 and 2 described above by SEM and an optical microscope.
[0058]
[Table 1]
Figure 0004614616
[0059]
As described above, according to Examples 1 to 3, it is possible to obtain a high-quality ZnTe single crystal having no Te precipitate and polycrystalline precipitate. In addition, since the resistivity and the carrier concentration are not lowered by the heat treatment performed in the examples, the ZnTe single crystal suitable for manufacturing a semiconductor device having excellent device performance is obtained.
[0060]
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments.
[0061]
For example, the present invention is not limited to a ZnTe single crystal, and is effective for reducing precipitates in the crystal of II-VI group compound semiconductors in general.
[0062]
【The invention's effect】
According to the present invention, the II-VI group compound semiconductor single crystal composed of the 12th (2B) group element and the 16th (6B) group element of the periodic table is heated to the first heat treatment temperature T1 (K) to obtain a predetermined temperature. A first step of holding for a period of time, and a second step of gradually lowering the temperature from the first heat treatment temperature T1 to a second heat treatment temperature T2 (K) lower than the heat treatment temperature T1 at a predetermined rate. Since it has at least, it can lose | dissolve the precipitate which consists of a group 16 element (for example, Te) at a 1st process, and can lose | disappear the precipitate which consists of a polycrystal etc. at a 2nd process. Therefore, by using the obtained II-VI group compound semiconductor single crystal as a substrate of a semiconductor device, it is possible to produce a semiconductor device having excellent device characteristics.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a temperature profile in a heat treatment performed on a ZnTe substrate in Example 1. FIG.
2 is an explanatory diagram showing a temperature profile in a heat treatment performed on a ZnTe substrate in Example 2. FIG.
3 is an explanatory diagram showing a temperature profile in a heat treatment performed on a ZnTe substrate in Comparative Example 1. FIG.
4 is a photograph showing an example of precipitates observed when the ZnTe substrate obtained in Comparative Example 1 is observed with an SEM. FIG.

Claims (4)

ZnTe単結晶を第1の熱処理温度T1(K)まで昇温して所定の時間だけ保持する第1の工程と、
前記第1の熱処理温度T1から該熱処理温度T1よりも低い第2の熱処理温度T2(K)まで所定の速度で徐々に降温する第2の工程と、を少なくとも有し、
前記ZnTe単結晶の融点をM(K)として、前記第1の熱処理温度T1を0.50M≦T1≦0.65Mの範囲で設定し、前記第2の熱処理温度T2をT2≦T1−50の範囲で設定し、
前記第2の工程における降温速度を、0.05℃/min以上0.8℃/min以下で設定することを特徴とするZnTe単結晶の製造方法。
A first step of heating the ZnTe single crystal to a first heat treatment temperature T1 (K) and holding it for a predetermined time;
A second step of gradually lowering the temperature from the first heat treatment temperature T1 to a second heat treatment temperature T2 (K) lower than the heat treatment temperature T1 at a predetermined rate;
The melting point of the ZnTe single crystal is M (K), the first heat treatment temperature T1 is set in a range of 0.50M ≦ T1 ≦ 0.65M, and the second heat treatment temperature T2 is set to T2 ≦ T1-50. Set by range,
A method for producing a ZnTe single crystal, wherein the temperature lowering rate in the second step is set to 0.05 ° C./min or more and 0.8 ° C./min or less.
前記第1および第2の工程を1サイクルとして、該工程を複数サイクル実行することを特徴とする請求項1に記載のZnTe単結晶の製造方法。  2. The method for producing a ZnTe single crystal according to claim 1, wherein the first and second steps are defined as one cycle, and the steps are performed for a plurality of cycles. 前記第2の工程の後に、前記第2の熱処理温度T2で所定の時間だけ保持する第3の工程を有することを特徴とする請求項1又は2に記載のZnTe単結晶の製造方法。  3. The method for producing a ZnTe single crystal according to claim 1, further comprising a third step of holding the second heat treatment temperature T <b> 2 for a predetermined time after the second step. 4. 走査型電子顕微鏡(SEM)で観察される、周囲と異なる面方位を示す三角形状又は半円状の多結晶からなる析出物の密度が200cm−2以下であることを特徴とするZnTe単結晶。Is observed with a scanning electron microscope (SEM), ZnTe single density of triangular or semicircular Tayui crystals or Ranaru precipitates shows a plane orientation different from the surrounding, characterized in that it is 200 cm -2 or less crystal.
JP2002324622A 2002-11-08 2002-11-08 ZnTe single crystal and method for producing the same Expired - Lifetime JP4614616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324622A JP4614616B2 (en) 2002-11-08 2002-11-08 ZnTe single crystal and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002324622A JP4614616B2 (en) 2002-11-08 2002-11-08 ZnTe single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004158731A JP2004158731A (en) 2004-06-03
JP4614616B2 true JP4614616B2 (en) 2011-01-19

Family

ID=32804108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324622A Expired - Lifetime JP4614616B2 (en) 2002-11-08 2002-11-08 ZnTe single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JP4614616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010890A1 (en) * 2005-07-21 2007-01-25 Nippon Mining & Metals Co., Ltd. HEAT TREATMENT METHOD FOR ZnTe SINGLE CRYSTAL SUBSTRATE AND ZnTe SINGLE CRYSTAL SUBSTRATE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497992A (en) * 1990-08-10 1992-03-30 Nikko Kyodo Co Ltd Production of cdte single crystal
JPH05155699A (en) * 1991-12-09 1993-06-22 Nikko Kyodo Co Ltd Production of cdte single crystal
JP2001053080A (en) * 1999-08-05 2001-02-23 Japan Energy Corp Heat treatment method for semiconductor single crystal and manufacture of semiconductor device
JP2001220299A (en) * 2000-02-07 2001-08-14 Sumitomo Electric Ind Ltd ZnSe SUBSTRATE, METHOD FOR HEAT-TREATING THE SAME AND METHOD FOR PRODUCING ZnSe-BASED THIN FILM AND LUMINESCENT ELEMENT
JP2002032689A (en) * 2000-07-17 2002-01-31 Atsushi Hanada Transaction method through communication line
JP2002326899A (en) * 2001-05-02 2002-11-12 Sumitomo Electric Ind Ltd METHOD OF HEAT TREATMENT FOR ZnSe SUBSTRATE, ZnSe SUBSTRATE, METHOD OF EPITAXIAL GROWTH AND THIN FILM OBTAINED BY THE METHOD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497992A (en) * 1990-08-10 1992-03-30 Nikko Kyodo Co Ltd Production of cdte single crystal
JPH05155699A (en) * 1991-12-09 1993-06-22 Nikko Kyodo Co Ltd Production of cdte single crystal
JP2001053080A (en) * 1999-08-05 2001-02-23 Japan Energy Corp Heat treatment method for semiconductor single crystal and manufacture of semiconductor device
JP2001220299A (en) * 2000-02-07 2001-08-14 Sumitomo Electric Ind Ltd ZnSe SUBSTRATE, METHOD FOR HEAT-TREATING THE SAME AND METHOD FOR PRODUCING ZnSe-BASED THIN FILM AND LUMINESCENT ELEMENT
JP2002032689A (en) * 2000-07-17 2002-01-31 Atsushi Hanada Transaction method through communication line
JP2002326899A (en) * 2001-05-02 2002-11-12 Sumitomo Electric Ind Ltd METHOD OF HEAT TREATMENT FOR ZnSe SUBSTRATE, ZnSe SUBSTRATE, METHOD OF EPITAXIAL GROWTH AND THIN FILM OBTAINED BY THE METHOD

Also Published As

Publication number Publication date
JP2004158731A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP5330349B2 (en) Method for producing single crystal thin film
JP5498163B2 (en) Multilayer semiconductor wafer, method of manufacturing the same, and element
JP3352712B2 (en) Gallium nitride based semiconductor device and method of manufacturing the same
EP1724378B1 (en) Manufacturing method for epitaxial substrate and method for unevenly distributing dislocations in group III nitride crystal
JP2005303246A (en) METHOD OF GROWING HIGH QUALITY ZnSe EPITAXIAL LAYER ONTO NEW Si SUBSTRATE
JP2022552024A (en) Gallium nitride single crystal based on ScAlMgO4 substrate and manufacturing method thereof
CN108428618B (en) Gallium nitride growth method based on graphene insertion layer structure
JP4511378B2 (en) Method for forming single crystal SiC layer using SOI substrate
US11476116B2 (en) Manufacturing method of gallium oxide thin film for power semiconductor using dopant activation technology
JP2006062931A (en) Sapphire substrate and its heat treatment method, and method of crystal growth
KR100450781B1 (en) Method for manufacturing GaN single crystal
JP4614616B2 (en) ZnTe single crystal and method for producing the same
JP5145488B2 (en) Sapphire single crystal substrate and manufacturing method thereof
JP2006019648A (en) Iron-silicide light emitting element and its manufacturing method
CN114293252A (en) Aluminum nitride template and preparation method thereof
WO2003056073A1 (en) Group iii nitride semiconductor substrate and its manufacturing method
WO2001086710A1 (en) Method of producing silicon epitaxial wafers
JPH09115832A (en) Iii group nitride semiconductor substrate and method of manufacturing
JP3922674B2 (en) Silicon wafer manufacturing method
JP3560180B2 (en) Method for producing ZnSe homoepitaxial single crystal film
KR100338390B1 (en) Preparation of Thick Film of Gallium Nitride by lower-layer Substrate-Sublimation and Reaction Apparatus Thereof
KR100799144B1 (en) Process for producing monocrystal thin film and monocrystal thin film device
JP5032319B2 (en) Heat treatment method for ZnTe single crystal substrate and ZnTe single crystal substrate
JPWO2002040751A1 (en) Method for producing target film, target film obtained thereby and multilayer structure
JP2000164511A (en) Nitride semiconductor deposited substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4614616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term