JP4511378B2 - Method for forming single crystal SiC layer using SOI substrate - Google Patents

Method for forming single crystal SiC layer using SOI substrate Download PDF

Info

Publication number
JP4511378B2
JP4511378B2 JP2005037039A JP2005037039A JP4511378B2 JP 4511378 B2 JP4511378 B2 JP 4511378B2 JP 2005037039 A JP2005037039 A JP 2005037039A JP 2005037039 A JP2005037039 A JP 2005037039A JP 4511378 B2 JP4511378 B2 JP 4511378B2
Authority
JP
Japan
Prior art keywords
layer
single crystal
crystal sic
soi substrate
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005037039A
Other languages
Japanese (ja)
Other versions
JP2006228763A (en
Inventor
勝俊 泉
基 中尾
純夫 小林
敬志 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Osaka Prefecture University
Original Assignee
Air Water Inc
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc, Osaka Prefecture University filed Critical Air Water Inc
Priority to JP2005037039A priority Critical patent/JP4511378B2/en
Publication of JP2006228763A publication Critical patent/JP2006228763A/en
Application granted granted Critical
Publication of JP4511378B2 publication Critical patent/JP4511378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、絶縁層埋め込み型の半導体基板であるSOI基板を用いた単結晶SiC層を形成する方法に関するものである。
The present invention relates to a method of forming a single crystal SiC layer using an SOI substrate which is a semiconductor substrate embedded with an insulating layer.

単結晶SiC(炭化シリコン)は、熱的、化学的安定性に優れ、機械的強度も強く、放射線照射にも強いという特性から、次世代の半導体デバイス材料として注目を集めている。また、埋め込み絶縁層を有するSOI基板は、回路の高速化と低消費電力化を図る上で優れており、次世代のLSI基板として有望視されている。従って、これら2つの特徴を融合した絶縁層埋め込み型半導体SiC基板が半導体デバイス材料として極めて有望視されている。   Single crystal SiC (silicon carbide) is attracting attention as a next-generation semiconductor device material because of its excellent thermal and chemical stability, strong mechanical strength, and resistance to radiation. In addition, an SOI substrate having a buried insulating layer is excellent in achieving high-speed circuit and low power consumption, and is promising as a next-generation LSI substrate. Therefore, an insulating layer embedded semiconductor SiC substrate that fuses these two features is very promising as a semiconductor device material.

上記のような絶縁層埋め込み型半導体SiC基板は、表面Si層とこの表面Si層の下側に存在する埋め込み絶縁層(SiO層)とを有する絶縁層埋め込み型のSi基板(SOI基板)を用いて作製する。すなわち、SOI基板の表面Si層を10nm程度に薄膜化し、これを高温で炭化処理して単結晶SiC薄膜に変成し、上記単結晶SiC薄膜をシード層としてエピタキシャル法によりSiCを成長させる(例えば下記の特許文献1)。
特開2003−224248号公報
An insulating layer embedded type semiconductor SiC substrate as described above includes an insulating layer embedded type Si substrate (SOI substrate) having a surface Si layer and an embedded insulating layer (SiO 2 layer) existing below the surface Si layer. Use to make. That is, the surface Si layer of the SOI substrate is thinned to about 10 nm, carbonized at a high temperature to be transformed into a single crystal SiC thin film, and SiC is grown by an epitaxial method using the single crystal SiC thin film as a seed layer (for example, below) Patent Document 1).
JP 2003-224248 A

しかしながら、上述した製造方法では、炭化処理で形成される単結晶SiC薄膜が極めて薄い膜であるため、その後に高温でエピタキシャル成長を行うと、単結晶SiC薄膜が昇華により局所的に消滅してしまい、部分的にSiO層が露出するという問題があった。このように、シード層としての単結晶SiC薄膜が部分的に消滅すると、エピタキシャル成長で生成される単結晶SiC層の結晶性が劣化し、表面の平坦性も悪いものになっていた。 However, in the manufacturing method described above, the single crystal SiC thin film formed by carbonization is an extremely thin film. Therefore, when epitaxial growth is performed at a high temperature after that, the single crystal SiC thin film disappears locally due to sublimation, There was a problem that the SiO 2 layer was partially exposed. As described above, when the single crystal SiC thin film as the seed layer partially disappears, the crystallinity of the single crystal SiC layer produced by epitaxial growth is deteriorated, and the surface flatness is also poor.

本発明は、上記のような事情に鑑みなされたもので、エピタキシャル成長させるSiC層の結晶性を良好にして表面平坦性を向上させることができるSOI基板を用いた単結晶SiC層を形成する方法の提供を目的とする。
The present invention has been made in view of the circumstances as described above, and relates to a method for forming a single crystal SiC layer using an SOI substrate that can improve the crystallinity of an epitaxially grown SiC layer and improve surface flatness. For the purpose of provision.

上記目的を達成するため、本発明のSOI基板を用いた単結晶SiC層を形成する方法は、所定厚さの表面Si層と埋め込み絶縁層とを有するSOI基板を準備し、上記SOI基板を炭化水素系ガス雰囲気中で加熱して上記表面Si層を単結晶SiC膜に変成させ、上記単結晶SiC膜をシード層としてエピタキシャル成長させることにより単結晶SiC層を形成する方法であって、
上記シード層となる単結晶SiC膜1nm〜15nmの薄膜として形成し
上記シード層に対し、700〜1050℃の温度範囲内で後述する第2段階のエピタキシャル成長よりも相対的に低温の成長温度に設定した第1段階のエピタキシャル成長により単結晶SiCを堆積させて上記シード層の昇華による消失を防止しながら上記シード層に単結晶SiCをさらに堆積させ
1100〜1405℃の温度範囲内で上記第1段階のエピタキシャル成長よりも相対的に高温の成長温度に設定した第2段階のエピタキシャル成長により単結晶SiCを成長させることを要旨とする。
In order to achieve the above object, a method for forming a single crystal SiC layer using an SOI substrate of the present invention comprises preparing an SOI substrate having a surface Si layer and a buried insulating layer having a predetermined thickness, and carbonizing the SOI substrate. A method of forming a single crystal SiC layer by heating in a hydrogen-based gas atmosphere to transform the surface Si layer into a single crystal SiC film and epitaxially growing the single crystal SiC film as a seed layer,
Forming a single crystal SiC film as a seed layer as a thin film of 1 nm to 15 nm;
Single seed SiC is deposited on the seed layer by first-stage epitaxial growth set at a relatively lower growth temperature than the second-stage epitaxial growth described later within a temperature range of 700 to 1050 ° C. Further depositing single crystal SiC on the seed layer while preventing disappearance due to sublimation,
The gist is to grow single-crystal SiC by second-stage epitaxial growth set at a growth temperature relatively higher than that of the first-stage epitaxial growth within a temperature range of 1100 to 1405 ° C.

すなわち、本発明のSOI基板を用いた単結晶SiC層を形成する方法は、上記シード層に対し、700〜1050℃の温度範囲内で後述する第2段階のエピタキシャル成長よりも相対的に低温の成長温度に設定した第1段階のエピタキシャル成長により単結晶SiCを堆積させて上記シード層の昇華による消失を防止しながら上記シード層に単結晶SiCをさらに堆積させ1100〜1405℃の温度範囲内で上記第1段階のエピタキシャル成長よりも相対的に高温の成長温度に設定した第2段階のエピタキシャル成長により単結晶SiCを成長させる。このように、まず、相対的に低温の成長温度に設定した第1段階でエピタキシャル成長させることにより、炭化処理で形成される単結晶SiC薄膜のシード層が昇華で消滅するのを防止しながら、上記シード層に単結晶SiCを堆積させて厚みを増す。ついで、相対的に高温の成長温度に設定した第2段階で本格的な高温域におけるエピタキシャル成長を行うことにより、上記シード層は第1段階で厚みを増していることから、昇華による部分的なシード層の消滅が完全に防止でき、エピタキシャル成長で生成される単結晶SiC層の結晶性が良くなり、表面の平坦性も大幅に向上する。さらに、この後にエピタキシャルGaN膜等の他の半導体膜を形成させた場合にも、その半導体膜の結晶性や膜厚均一性はすぐれたものとなる。 That is, the method for forming a single crystal SiC layer using the SOI substrate of the present invention is a growth at a lower temperature than the second stage epitaxial growth described later in the temperature range of 700 to 1050 ° C. with respect to the seed layer. depositing a single-crystal SiC by the first stage epitaxial growth is set to a temperature more depositing a single-crystal SiC on the seed layer while preventing the loss due to sublimation of the seed layer, above the temperature range of 1100-1405 ° C. Single-crystal SiC is grown by second-stage epitaxial growth set to a relatively higher growth temperature than the first-stage epitaxial growth . In this way, first, the epitaxial growth is performed at the first stage set at a relatively low growth temperature, thereby preventing the seed layer of the single crystal SiC thin film formed by carbonization from disappearing by sublimation. Single crystal SiC is deposited on the seed layer to increase the thickness. Next, since the seed layer is increased in thickness in the first stage by performing epitaxial growth in a full-scale high temperature region in the second stage set at a relatively high growth temperature, a partial seed by sublimation is obtained. The disappearance of the layer can be completely prevented, the crystallinity of the single crystal SiC layer formed by epitaxial growth is improved, and the flatness of the surface is greatly improved. Furthermore, when another semiconductor film such as an epitaxial GaN film is formed thereafter, the crystallinity and film thickness uniformity of the semiconductor film are excellent.

本発明、上記シード層となる単結晶SiC膜は1nm〜15nmの薄膜であるため、SOI基板を構成するSiO層やSiが軟化や溶融をしない温度域でのエピタキシャル成長でも、昇華によって単結晶SiC膜が消滅しやすいことから、2段階によってシード層の消滅を防止して、成長させる単結晶SiC層の結晶性を良好にして表面の平坦性を向上させる効果が顕著に現れて効果的である。
The present invention, since a single crystal SiC film serving as the seed layer is a thin film of 1 nm to 15 nm, in the epitaxial growth in the temperature range of the SiO 2 layer and Si is not to soften or melt that constitutes the SOI substrate, a single crystal by sublimation Since the SiC film tends to disappear, the effect of improving the surface flatness by improving the crystallinity of the single crystal SiC layer to be grown by preventing the disappearance of the seed layer in two steps is effective. is there.

本発明、上記第1段階のエピタキシャル成長の成長温度は、700〜1050℃の温度範囲内であるため、炭化処理で形成される単結晶SiC薄膜のシード層が昇華で消滅するのを防止しながら上記シード層に単結晶SiCを堆積させ、その後の第2段階におけるシード層の消滅を有効かつ確実に防止する。
The present invention, the growth temperature of the epitaxial growth of the first stage are the temperature range of 700 to 1050 ° C., while preventing the seed layer of the single crystal SiC thin film formed by the carbonization process to disappear sublimation Single crystal SiC is deposited on the seed layer, and the disappearance of the seed layer in the subsequent second stage is effectively and reliably prevented.

本発明上記2段階のエピタキシャル成長の成長温度は、1100〜1405℃の温度範囲内であるため、SOI基板を構成するSiO層やSiが軟化や溶融をしない温度域において、結晶性と表面の平坦性が良好な単結晶SiC層をエピタキシャル成長させることができる。
The growth temperature of the present invention is the two-step epitaxial growth are the temperature range of 1100 ~1405 ℃, in a temperature range where the SiO 2 layer and Si is not to soften or melt that constitutes the SOI substrate, the crystallinity and surface A single crystal SiC layer with good flatness can be epitaxially grown.

つぎに、本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described.

図1は、本発明のSOI基板を用いた単結晶SiC層を形成する方法の一実施の形態を示す工程図である。
FIG. 1 is a process diagram showing an embodiment of a method for forming a single crystal SiC layer using an SOI substrate of the present invention.

本発明の方法は、所定厚さの表面Si層3と埋め込み絶縁層4とを有するSOI基板1を準備する。ついで、上記SOI基板1の表面Si層3の厚みを1nm〜15nmに薄膜化する。つぎに、上記SOI基板1を炭化水素系ガス雰囲気中で加熱して上記表面Si層4を単結晶SiC薄膜5に変成させる。   The method of the present invention prepares an SOI substrate 1 having a surface Si layer 3 and a buried insulating layer 4 having a predetermined thickness. Next, the thickness of the surface Si layer 3 of the SOI substrate 1 is reduced to 1 nm to 15 nm. Next, the SOI substrate 1 is heated in a hydrocarbon gas atmosphere to transform the surface Si layer 4 into a single crystal SiC thin film 5.

そして、上記単結晶SiC薄膜5をシード層5としてエピタキシャル成長させる際、上記エピタキシャル成長を、相対的に低温の成長温度に設定した第1段階と、相対的に高温の成長温度に設定した第2段階を含む少なくとも2段階の処理で段階的にエピタキシャル成長させる。   Then, when the single crystal SiC thin film 5 is epitaxially grown as the seed layer 5, the first stage in which the epitaxial growth is set to a relatively low growth temperature and the second stage in which the growth is set to a relatively high temperature. The epitaxial growth is performed in stages by at least two stages of processing.

以下、各工程について詳しく説明する。   Hereinafter, each step will be described in detail.

図2(a)に示すように、上記SOI基板1は、Si母材2の表面近傍に、埋め込み絶縁層4として所定厚みのSiO層が形成され、表面に所定厚さの表面Si層3が形成されたものである。上記埋め込み絶縁層4の厚みは、約1〜200nm程度の厚みになるよう設定されている。 As shown in FIG. 2A, in the SOI substrate 1, a SiO 2 layer having a predetermined thickness is formed as a buried insulating layer 4 in the vicinity of the surface of the Si base material 2, and a surface Si layer 3 having a predetermined thickness is formed on the surface. Is formed. The buried insulating layer 4 is set to have a thickness of about 1 to 200 nm.

図2(b)に示すように、準備したSOI基板1に対し、SOI基板1の表面Si層3の厚みを薄くし薄膜化する処理を行う。この薄膜化は、例えば、SOI基板1を酸化雰囲気で加熱処理することにより、埋め込み絶縁層4との界面近傍に所望厚みのSi層を残存させるよう、表面Si層3の表面から所定深さを酸化させたのち、表面に生成した酸化物層をフッ化水素酸等でエッチングすることにより除去して薄膜化することが行われる。   As shown in FIG. 2B, the prepared SOI substrate 1 is subjected to a process of reducing the thickness of the surface Si layer 3 of the SOI substrate 1 to make it thinner. This thinning is performed, for example, by heating the SOI substrate 1 in an oxidizing atmosphere so that a predetermined depth from the surface of the surface Si layer 3 is left so that a Si layer having a desired thickness remains in the vicinity of the interface with the buried insulating layer 4. After the oxidation, the oxide layer formed on the surface is removed by etching with hydrofluoric acid or the like to form a thin film.

このとき、薄膜化した表面Si層3の厚みは、1nm〜15nm程度に設定するのが好ましく、より好ましいのは1nm〜10nm程度であり、さらに好ましいの3nm〜7nm程度である。上記薄膜化した表面Si層3の厚みが1nm未満では、その後の変成工程によって一次単結晶SiC層6が十分に生成されず、やはりその後の変成工程での一次単結晶SiC層6の生成に支障をきたすからである。   At this time, the thickness of the thinned surface Si layer 3 is preferably set to about 1 nm to 15 nm, more preferably about 1 nm to 10 nm, and further preferably about 3 nm to 7 nm. If the thickness of the thinned surface Si layer 3 is less than 1 nm, the primary single-crystal SiC layer 6 is not sufficiently formed by the subsequent transformation step, which also hinders the production of the primary single-crystal SiC layer 6 in the subsequent transformation step. Because it brings

また、上記薄膜化した表面Si層3の厚みが15nmを超えると、その後の炭化処理後のエピタキシャル成長で単結晶SiC薄膜5が昇華で消滅しにくくなるので、本発明の効果が得られにくくなるからである。   Further, if the thickness of the thinned surface Si layer 3 exceeds 15 nm, the single crystal SiC thin film 5 is difficult to disappear by sublimation in the subsequent epitaxial growth after carbonization treatment, so that it is difficult to obtain the effects of the present invention. It is.

また、その後にイオン注入して埋め込み絶縁層4と表面Si層3の界面近傍に窒素含有Si層をする場合に、窒素含有Si層を表面から深い位置に形成させる必要が生じることから、イオン注入のエネルギーレベルを高くする必要が生じ、表面Si層3の結晶性を低下させるおそれがある。また、窒素を表面から深いところまでイオン注入させる必要があることから、深さ方向の窒素分布領域も広くなる。このため、所定の窒素含有Si層を、表面Si層3と埋め込み絶縁層4との界面近傍の領域に形成したときに、表面Si層3のうち窒素を含有しない表面層の存在比率が小さくなって、その後の変成工程での一次単結晶SiC層6の生成に支障をきたすおそれがあるからである。   Further, when a nitrogen-containing Si layer is formed in the vicinity of the interface between the buried insulating layer 4 and the surface Si layer 3 by ion implantation thereafter, it is necessary to form the nitrogen-containing Si layer at a deep position from the surface. Therefore, it is necessary to increase the energy level of the surface Si layer 3 and the crystallinity of the surface Si layer 3 may be lowered. Further, since nitrogen needs to be ion-implanted from the surface to a deep place, the nitrogen distribution region in the depth direction is also widened. For this reason, when a predetermined nitrogen-containing Si layer is formed in a region near the interface between the surface Si layer 3 and the buried insulating layer 4, the abundance ratio of the surface layer that does not contain nitrogen in the surface Si layer 3 is reduced. This is because there is a risk of hindering the generation of the primary single crystal SiC layer 6 in the subsequent modification step.

このとき、表面Si層3の薄膜化後にNイオンのイオン注入等を行うことにより、表面Si層3と埋め込み酸化物層4との界面近傍領域に、窒素含有Si層を形成し、この状態のSOI基板1を炭化水素系ガス雰囲気中で加熱して上記表面Si層3を単結晶SiC薄膜5に変成させることもできる。   At this time, a nitrogen-containing Si layer is formed in a region near the interface between the surface Si layer 3 and the buried oxide layer 4 by performing ion implantation of N ions after the surface Si layer 3 is thinned. The surface Si layer 3 can be transformed into the single crystal SiC thin film 5 by heating the SOI substrate 1 in a hydrocarbon gas atmosphere.

図2(c)に示すように、上記表面Si層3の薄膜化を行ったSOI基板1を、炭化水素系ガス雰囲気中で加熱して上記表面Si層3を単結晶SiC薄膜5に変成させる。   As shown in FIG. 2C, the SOI substrate 1 having the thinned surface Si layer 3 is heated in a hydrocarbon gas atmosphere to transform the surface Si layer 3 into a single crystal SiC thin film 5. .

上記変成工程は、例えば、雰囲気制御が可能な加熱炉において、加熱炉内に導入される雰囲気ガス(水素ガスおよび炭化水素ガス)を切り換えながら温度調節することにより行うことができる。   For example, in the heating furnace capable of controlling the atmosphere, the transformation step can be performed by adjusting the temperature while switching the atmosphere gas (hydrogen gas and hydrocarbon gas) introduced into the heating furnace.

上記のような装置により、上記SOI基板1を加熱炉内に設置し、上記加熱炉内に水素ガスと炭化水素系ガスとの混合ガスを供給しながら、加熱炉内の雰囲気温度を上昇させて、前記SOI基板1の表面Si層3を単結晶SiC薄膜5に変成させることが行われる。   With the apparatus as described above, the SOI substrate 1 is installed in a heating furnace, and while the mixed gas of hydrogen gas and hydrocarbon gas is supplied into the heating furnace, the ambient temperature in the heating furnace is raised. The surface Si layer 3 of the SOI substrate 1 is transformed into a single crystal SiC thin film 5.

このとき、上記SOI基板1を加熱炉内に設置して、加熱炉内に水素ガスに対して炭化水素系ガスを1体積%の割合で混合した混合ガスを供給する。また、この混合ガスの供給と同じくして、加熱炉内の雰囲気温度を1200〜1405℃に加熱する。この加熱によって、SOI基板1の表面Si層3を単結晶SiC薄膜5に変成させることができる。   At this time, the SOI substrate 1 is installed in a heating furnace, and a mixed gas in which a hydrocarbon gas is mixed at a ratio of 1% by volume with respect to the hydrogen gas is supplied into the heating furnace. Moreover, the atmospheric temperature in a heating furnace is heated to 1200-1405 degreeC similarly to supply of this mixed gas. By this heating, the surface Si layer 3 of the SOI substrate 1 can be transformed into the single crystal SiC thin film 5.

ここで、前記水素ガスはキャリアガスであり、炭化水素ガスとしては例えばプロパンガスを使用する。例えば、水素ガスのボンベからの供給量が1000cc/分であったならば、炭化水素ガスのボンベからの供給量を10cc/分とする。   Here, the hydrogen gas is a carrier gas, and propane gas, for example, is used as the hydrocarbon gas. For example, if the supply amount of hydrogen gas from the cylinder is 1000 cc / min, the supply amount of hydrocarbon gas from the cylinder is set to 10 cc / min.

このとき、上述したように、表面Si層3における表面Si層3と埋め込み絶縁層4との界面近傍領域に窒素含有Si層を形成したのち、上記SOI基板1を炭化水素系ガス雰囲気中で加熱して上記表面Si層3を一次単結晶SiC層6に変成させると、その後のエピタキシャル成長でのSiCの結晶性が向上する。   At this time, as described above, after forming the nitrogen-containing Si layer in the surface Si layer 3 in the vicinity of the interface between the surface Si layer 3 and the buried insulating layer 4, the SOI substrate 1 is heated in a hydrocarbon gas atmosphere. Then, when the surface Si layer 3 is transformed into the primary single crystal SiC layer 6, the crystallinity of SiC in the subsequent epitaxial growth is improved.

すなわち、上記窒素含有Si層は、窒素が含有されたSiであり、純Siに比べて反応性が低く不活性である。このため、表面Si層3における表面Si層3と埋め込み絶縁層4との界面近傍領域に高温下で安定な窒素含有Si層を形成してから炭化処理を行うことにより、生成されたSiCが埋め込み絶縁層4に侵入して界面を不安定にするのが防止され、SiC/絶縁層界面が均一な状態となる。したがって、その後にエピタキシャル成長によって単結晶SiC層6,7を形成した場合にも、SiCの結晶性が向上するため、きれいな単結晶で膜厚も均一な単結晶SiC層6,7が得られるようになる。さらに、この後にエピタキシャルGaN層8等の他の半導体膜を形成させた場合にも、その半導体膜の結晶性や膜厚均一性はすぐれたものとなる。   That is, the nitrogen-containing Si layer is Si containing nitrogen and has a low reactivity and is inactive compared to pure Si. For this reason, by forming a stable nitrogen-containing Si layer at a high temperature in a region near the interface between the surface Si layer 3 and the buried insulating layer 4 in the surface Si layer 3, the generated SiC is buried. It is prevented from entering the insulating layer 4 and destabilizing the interface, and the SiC / insulating layer interface becomes uniform. Therefore, even when the single crystal SiC layers 6 and 7 are subsequently formed by epitaxial growth, the crystallinity of SiC is improved, so that the single crystal SiC layers 6 and 7 having a uniform single crystal thickness can be obtained. Become. Further, when another semiconductor film such as the epitaxial GaN layer 8 is formed thereafter, the crystallinity and film thickness uniformity of the semiconductor film are excellent.

上記単結晶SiC薄膜5は、表面Si層3を変成させたものであるため、その膜厚は表面Si層3の膜厚とほぼ等しくなる。すなわち、単結晶SiC薄膜5の膜厚は、SOI基板1の表面Si層3の膜厚を制御することにより、任意に制御できることになる。   Since the single crystal SiC thin film 5 is obtained by modifying the surface Si layer 3, the film thickness thereof is substantially equal to the film thickness of the surface Si layer 3. That is, the film thickness of the single crystal SiC thin film 5 can be arbitrarily controlled by controlling the film thickness of the surface Si layer 3 of the SOI substrate 1.

必要に応じて、上記工程を過剰に行って単結晶SiCを上記単結晶SiC薄膜5の上に堆積させることを行なってもよい。上記工程を過剰に行う(例えば数分〜数時間継続させる)ことにより、上記単結晶SiC薄膜5の上に炭素薄膜が堆積される。   If necessary, the above process may be performed excessively to deposit single crystal SiC on the single crystal SiC thin film 5. By performing the above process excessively (for example, continuing for several minutes to several hours), a carbon thin film is deposited on the single crystal SiC thin film 5.

図3(d)(e)に示すように、上記炭化処理を行ったSOI基板1に対し、上記単結晶SiC薄膜5をシード層5としてエピタキシャル成長することにより、上記シード層5の上に単結晶SiC層6,7を成長させる。   As shown in FIGS. 3D and 3E, the single crystal SiC thin film 5 is epitaxially grown as the seed layer 5 on the SOI substrate 1 subjected to the carbonization treatment, so that a single crystal is formed on the seed layer 5. SiC layers 6 and 7 are grown.

図4に示すように、上記エピタキシャル成長工程は、後述する第2段階よりは相対的に低温の成長温度Tでエピタキシャル成長を行ってシード層5の上に一次単結晶SiC層6を形成する第1段階と(図3(d))、上記第1段階よりは相対的に高温の成長温度Tでエピタキシャル成長を行って上記一次単結晶SiC層6の上に二次単結晶SiC層7を形成する第2段階(図3(e))との少なくとも2段階の処理で段階的にエピタキシャル成長させる。 As shown in FIG. 4, in the epitaxial growth step, the first single crystal SiC layer 6 is formed on the seed layer 5 by performing epitaxial growth at a growth temperature T 1 that is relatively lower than the second stage described later. In step (FIG. 3D), epitaxial growth is performed at a growth temperature T 2 that is relatively higher than that in the first step to form a secondary single crystal SiC layer 7 on the primary single crystal SiC layer 6. Epitaxial growth is performed stepwise by at least two steps of treatment with the second step (FIG. 3E).

具体的には、上記エピタキシャル成長は、例えば、下記の条件により単結晶SiC層6,7を成長させる。例えば、単結晶SiC薄膜5が形成されたSOI基板1を処理チャンバー内に配置し、上記処理チャンバー内にモノメチルシランまたはシランおよびポロパン等の原料ガスを約1sccm程度のガス流量で供給しながら、所定の成長温度で処理することにより、上記単結晶SiC薄膜5をシード層5としてエピタキシャル成長により、単結晶SiC層6,7を成長させることができる。   Specifically, in the epitaxial growth, for example, the single crystal SiC layers 6 and 7 are grown under the following conditions. For example, the SOI substrate 1 on which the single-crystal SiC thin film 5 is formed is placed in a processing chamber, and a raw material gas such as monomethylsilane or silane and poropan is supplied into the processing chamber at a gas flow rate of about 1 sccm. By processing at the growth temperature, single crystal SiC layers 6 and 7 can be grown by epitaxial growth using the single crystal SiC thin film 5 as a seed layer 5.

上記2段階の成長温度のうち第1段階の成長温度は、700〜1200℃の温度範囲内で行われる。第1段階の成長温度としてより好ましいのは800〜1100℃であり、最も好ましいのは900〜1050℃である。第1段階の成長温度が高すぎると、炭化処理で得られた単結晶SiC薄膜5が昇華して部分的に消滅してしまい、本発明の効果が得られず、反対に、第1段階の成長温度が低すぎると、単結晶SiC薄膜5のシード層5上に結晶性のより単結晶SiCが成長しなくなるからである。   Of the two growth temperatures, the first growth temperature is 700 to 1200 ° C. A more preferable growth temperature for the first stage is 800 to 1100 ° C., and a most preferable temperature is 900 to 1050 ° C. If the growth temperature in the first stage is too high, the single crystal SiC thin film 5 obtained by the carbonization process sublimates and partially disappears, and the effect of the present invention cannot be obtained. This is because if the growth temperature is too low, single-crystal SiC having a higher crystallinity cannot be grown on the seed layer 5 of the single-crystal SiC thin film 5.

また、上記2段階の成長温度のうち第2段階以降の段階の成長温度は、1000〜1405℃の温度範囲内で行われる。第2段階の成長温度としてより好ましいのは1000〜1200℃であり、最も好ましいのは1050〜1150℃である。第2段階の成長温度が高すぎると、埋め込み酸化物層4が軟化したりSi母材2が軟化や溶融をはじめ、形成される二次単結晶SiC層7の結晶性や平坦性が悪化したり、清浄な基板を得られなかったりし、反対に、第2段階の成長温度が低すぎると、結晶性のよい二次単結晶SiC層7が得られないからである。   In addition, the growth temperature of the second and subsequent stages among the two stages of growth temperatures is performed within a temperature range of 1000 to 1405 ° C. More preferably, the growth temperature in the second stage is 1000 to 1200 ° C, and the most preferable temperature is 1050 to 1150 ° C. If the growth temperature in the second stage is too high, the buried oxide layer 4 is softened, the Si base material 2 is softened or melted, and the crystallinity and flatness of the formed secondary single crystal SiC layer 7 are deteriorated. On the contrary, if the growth temperature in the second stage is too low, the secondary single crystal SiC layer 7 with good crystallinity cannot be obtained.

図3(f)に示すように、そののち、必要に応じて、上記二次単結晶SiC層7の上に、エピタキシャル成長によりGaN層8等の他の半導体膜を形成させることが行われる。   As shown in FIG. 3F, after that, another semiconductor film such as a GaN layer 8 is formed on the secondary single crystal SiC layer 7 by epitaxial growth as necessary.

上記エピタキシャル成長は、例えば、下記の条件によりGaN層8を成長させる。例えば、単結晶SiC層6,7をエピタキシャル成長させたSOI基板1を処理チャンバー内に配置し、上記処理チャンバー内にトリメチルガリウムおよびアンモニア等の原料ガスを約1sccm程度のガス流量で供給しながら、温度800〜1405℃で処理することにより、上記二次単結晶SiC層7の上にGaN層8を形成させることができる。   In the epitaxial growth, for example, the GaN layer 8 is grown under the following conditions. For example, an SOI substrate 1 on which single-crystal SiC layers 6 and 7 are epitaxially grown is placed in a processing chamber, and a raw material gas such as trimethylgallium and ammonia is supplied into the processing chamber at a gas flow rate of about 1 sccm. By performing the treatment at 800 to 1405 ° C., the GaN layer 8 can be formed on the secondary single crystal SiC layer 7.

このような方法では、まず、相対的に低温の成長温度に設定した第1段階でエピタキシャル成長させることにより、炭化処理で形成される単結晶SiC薄膜5のシード層5が昇華で消滅するのを防止しながら、上記シード層5に一次単結晶SiC6を堆積させて厚みを増す。ついで、相対的に高温の成長温度に設定した第2段階で本格的な高温域におけるエピタキシャル成長を行うことにより、上記シード層5は第1段階で厚みを増していることから、昇華による部分的なシード層5の消滅が完全に防止でき、エピタキシャル成長で生成される二次単結晶SiC層7の結晶性が良くなり、表面の平坦性も大幅に向上する。さらに、この後にエピタキシャルGaN膜8等の他の半導体膜を形成させた場合にも、その半導体膜の結晶性や膜厚均一性はすぐれたものとなる。   In such a method, first, the seed layer 5 of the single crystal SiC thin film 5 formed by carbonization is prevented from disappearing by sublimation by performing epitaxial growth at the first stage set at a relatively low growth temperature. However, the primary single crystal SiC 6 is deposited on the seed layer 5 to increase the thickness. Next, since the seed layer 5 has increased in thickness in the first stage by performing epitaxial growth in a full-scale high temperature region in the second stage set at a relatively high growth temperature, partial growth by sublimation is possible. The disappearance of the seed layer 5 can be completely prevented, the crystallinity of the secondary single crystal SiC layer 7 produced by epitaxial growth is improved, and the flatness of the surface is greatly improved. Furthermore, when another semiconductor film such as the epitaxial GaN film 8 is formed thereafter, the crystallinity and film thickness uniformity of the semiconductor film are excellent.

また、上記シード層5となる単結晶SiC薄膜5は1nm〜15nmの薄膜であるため、SOI基板1を構成するSiO層やSiが軟化や溶融をしない温度域でのエピタキシャル成長でも、昇華によって単結晶SiC薄膜5が消滅しやすいことから、2段階によってシード層5の消滅を防止して、成長させる単結晶SiC層6,7の結晶性を良好にして表面の平坦性を向上させる効果が顕著に現れて効果的である。 Further, since the single crystal SiC thin film 5 serving as the seed layer 5 is a thin film having a thickness of 1 nm to 15 nm, even in the epitaxial growth in the temperature range in which the SiO 2 layer and Si that constitute the SOI substrate 1 are not softened or melted, the single crystal SiC thin film 5 is formed by sublimation. Since the crystalline SiC thin film 5 tends to disappear, the effect of improving the flatness of the surface by preventing the disappearance of the seed layer 5 in two steps and improving the crystallinity of the single crystal SiC layers 6 and 7 to be grown is remarkable. Appears effectively.

さらに、上記2段階の成長温度のうち第1段階の成長温度は、700〜1200℃の温度範囲内であるため、炭化処理で形成される単結晶SiC薄膜5のシード層5が昇華で消滅するのを防止しながら上記シード層5に一次単結晶SiC6を堆積させ、その後の第2段階におけるシード層5の消滅を有効かつ確実に防止する。   Furthermore, since the growth temperature of the first stage of the two stages of growth temperature is in the temperature range of 700 to 1200 ° C., the seed layer 5 of the single crystal SiC thin film 5 formed by the carbonization process disappears by sublimation. The primary single crystal SiC 6 is deposited on the seed layer 5 while preventing the seed layer 5 from disappearing effectively and reliably in the second stage.

本発明において、上記2段階の成長温度のうち第2段階以降の段階の成長温度は、1000〜1405℃の温度範囲内であるため、SOI基板1を構成するSiO層やSiが軟化や溶融をしない温度域において、結晶性と表面の平坦性が良好でな二次単結晶SiC層7をエピタキシャル成長させることができる。 In the present invention, the growth temperature of the second and subsequent stages among the two stages of growth temperatures is within the temperature range of 1000 to 1405 ° C., so that the SiO 2 layer and Si constituting the SOI substrate 1 are softened or melted. The secondary single crystal SiC layer 7 having good crystallinity and surface flatness can be epitaxially grown in a temperature range where no crystallization occurs.

つぎに、本発明の単結晶SiC基板の製法の実施例について説明する。   Next, examples of the method for producing a single crystal SiC substrate of the present invention will be described.

サンプルとして厚み100nmの表面Si層3を有した30mm四方のSOI基板1を準備した。上記サンプルのSOI基板1を、1slmで酸素ガスを流しながら1100℃で90分加熱して表面に酸化膜を形成させたのち、フッ化水素酸等でエッチングすることにより、表面Si層3を5nmに薄膜化した。   A 30 mm square SOI substrate 1 having a surface Si layer 3 having a thickness of 100 nm was prepared as a sample. The SOI substrate 1 of the above sample was heated at 1100 ° C. for 90 minutes while flowing oxygen gas at 1 slm to form an oxide film on the surface, and then etched with hydrofluoric acid or the like to form a surface Si layer 3 having a thickness of 5 nm. It was thinned.

上記SOI基板1を処理チャンバー内に配置し、処理チャンバー内に1slmのHガスと10sccmのCを流しながら1250℃に加熱して15分間炭化処理を行い、SiC変成を行った。 The SOI substrate 1 was placed in a processing chamber, heated at 1250 ° C. while flowing 1 slm of H 2 gas and 10 sccm of C 3 H 8 in the processing chamber, and subjected to carbonization for 15 minutes to perform SiC conversion.

そして、上記処理チャンバー内に0.1sccmのモノメチルシランを流しながら1000℃に20分間保持することにより、第1段階のSiCのエピタキシャル成長を行い、一次単結晶SiC層6を15nm形成してトータル厚み20nmの単結晶SiCとした。   Then, by holding 0.1 sccm monomethylsilane in the processing chamber at 1000 ° C. for 20 minutes, the first stage SiC is epitaxially grown to form a primary single crystal SiC layer 6 having a thickness of 15 nm and a total thickness of 20 nm. Single crystal SiC.

ついで、処理温度を1100℃に上げて90分間保持することにより、第2段階のSiCのエピタキシャル成長を行い、二次単結晶SiC層7を80nm形成してトータル厚み100nmの単結晶SiCとした。   Next, the processing temperature was raised to 1100 ° C. and held for 90 minutes, whereby second-stage SiC epitaxial growth was performed to form a secondary single crystal SiC layer 7 having a thickness of 80 nm to obtain a single crystal SiC having a total thickness of 100 nm.

一方、比較例として1000℃での第1段階を行わず、1100℃で90分間保持する1段階のみのエピタキシャル成長を行ったものを準備した。   On the other hand, a comparative example was prepared in which the first stage at 1000 ° C. was not performed and only one stage of epitaxial growth was held at 1100 ° C. for 90 minutes.

上記実施例の単結晶SiC基板の表面RMSラフネス粗さは5.95nmであったのに対し、比較例の単結晶SiC基板の表面RMSラフネス粗さは38.90nmであり、比較例に比べて実施例の方が大幅に表面平坦性が向上していることがわかる。   The surface RMS roughness roughness of the single crystal SiC substrate of the above example was 5.95 nm, whereas the surface RMS roughness roughness of the single crystal SiC substrate of the comparative example was 38.90 nm, compared with the comparative example. It can be seen that the surface flatness is greatly improved in the example.

本発明は、大規模集積回路等に用いる半導体基板の製造等に適用することができる。   The present invention can be applied to the manufacture of semiconductor substrates used for large scale integrated circuits and the like.

本発明の一実施例のSOI基板を用いた単結晶SiC層を形成する方法を示す工程図である。It is process drawing which shows the method of forming the single crystal SiC layer using the SOI substrate of one Example of this invention. 上記SOI基板を用いた単結晶SiC層を形成する方法を示す図である。It is a figure which shows the method of forming the single crystal SiC layer using the said SOI substrate . 上記SOI基板を用いた単結晶SiC層を形成する方法を示す図である。It is a figure which shows the method of forming the single crystal SiC layer using the said SOI substrate . エピタキシャル成長の温度条件を示す図である。It is a figure which shows the temperature conditions of epitaxial growth.

符号の説明Explanation of symbols

1 SOI基板
2 Si母材
3 表面Si層
4 埋め込み絶縁層(酸化物層)
5 シード層(単結晶SiC薄膜)
6 一次単結晶SiC層
7 二次単結晶SiC層
8 GaN層
1 SOI substrate 2 Si base material 3 Surface Si layer 4 Buried insulating layer (oxide layer)
5 Seed layer (single crystal SiC thin film)
6 Primary single crystal SiC layer 7 Secondary single crystal SiC layer 8 GaN layer

Claims (1)

所定厚さの表面Si層と埋め込み絶縁層とを有するSOI基板を準備し、上記SOI基板を炭化水素系ガス雰囲気中で加熱して上記表面Si層を単結晶SiC膜に変成させ、上記単結晶SiC膜をシード層としてエピタキシャル成長させることにより単結晶SiC層を形成する方法であって、
上記シード層となる単結晶SiC膜1nm〜15nmの薄膜として形成し
上記シード層に対し、700〜1050℃の温度範囲内で後述する第2段階のエピタキシャル成長よりも相対的に低温の成長温度に設定した第1段階のエピタキシャル成長により単結晶SiCを堆積させて上記シード層の昇華による消失を防止しながら上記シード層に単結晶SiCをさらに堆積させ
1100〜1405℃の温度範囲内で上記第1段階のエピタキシャル成長よりも相対的に高温の成長温度に設定した第2段階のエピタキシャル成長により単結晶SiCを成長させることを特徴とするSOI基板を用いた単結晶SiC層を形成する方法。
An SOI substrate having a surface Si layer having a predetermined thickness and a buried insulating layer is prepared, and the SOI substrate is heated in a hydrocarbon-based gas atmosphere to transform the surface Si layer into a single crystal SiC film. A method of forming a single crystal SiC layer by epitaxial growth using a SiC film as a seed layer,
Forming a single crystal SiC film as a seed layer as a thin film of 1 nm to 15 nm;
Single seed SiC is deposited on the seed layer by first-stage epitaxial growth set at a relatively lower growth temperature than the second-stage epitaxial growth described later within a temperature range of 700 to 1050 ° C. Further depositing single crystal SiC on the seed layer while preventing disappearance due to sublimation,
Single crystal SiC using a SOI substrate is characterized in that single crystal SiC is grown by a second stage epitaxial growth set at a growth temperature relatively higher than the first stage epitaxial growth within a temperature range of 1100 to 1405 ° C. A method of forming a crystalline SiC layer .
JP2005037039A 2005-02-15 2005-02-15 Method for forming single crystal SiC layer using SOI substrate Active JP4511378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037039A JP4511378B2 (en) 2005-02-15 2005-02-15 Method for forming single crystal SiC layer using SOI substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037039A JP4511378B2 (en) 2005-02-15 2005-02-15 Method for forming single crystal SiC layer using SOI substrate

Publications (2)

Publication Number Publication Date
JP2006228763A JP2006228763A (en) 2006-08-31
JP4511378B2 true JP4511378B2 (en) 2010-07-28

Family

ID=36989899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037039A Active JP4511378B2 (en) 2005-02-15 2005-02-15 Method for forming single crystal SiC layer using SOI substrate

Country Status (1)

Country Link
JP (1) JP4511378B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563918B2 (en) * 2005-10-31 2010-10-20 エア・ウォーター株式会社 Method for producing single crystal SiC substrate
JP2009158702A (en) * 2007-12-26 2009-07-16 Kyushu Institute Of Technology Light-emitting device
SG10201600407SA (en) 2009-02-20 2016-02-26 Semiconductor Energy Lab Semiconductor device and manufacturing method of the same
JP5693946B2 (en) 2010-03-29 2015-04-01 エア・ウォーター株式会社 Method for producing single crystal 3C-SiC substrate
WO2014125550A1 (en) * 2013-02-13 2014-08-21 三菱電機株式会社 Sic epitaxial wafer production method
JP6500378B2 (en) 2014-09-22 2019-04-17 株式会社Sumco Method of manufacturing bonded SiC wafer and bonded SiC wafer
JP2018101721A (en) * 2016-12-21 2018-06-28 株式会社ニューフレアテクノロジー Vapor growth method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230699A (en) * 1985-07-30 1987-02-09 Sharp Corp Production of silicon carbide single crystal substrate
JP2002363751A (en) * 2001-06-06 2002-12-18 Osaka Prefecture Method and device for producing single crystal silicon carbide thin film
JP2003224248A (en) * 2002-01-31 2003-08-08 Osaka Prefecture Method and device for manufacturing insulating layer buried semiconductor silicon carbide substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230699A (en) * 1985-07-30 1987-02-09 Sharp Corp Production of silicon carbide single crystal substrate
JP2002363751A (en) * 2001-06-06 2002-12-18 Osaka Prefecture Method and device for producing single crystal silicon carbide thin film
JP2003224248A (en) * 2002-01-31 2003-08-08 Osaka Prefecture Method and device for manufacturing insulating layer buried semiconductor silicon carbide substrate

Also Published As

Publication number Publication date
JP2006228763A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP5693946B2 (en) Method for producing single crystal 3C-SiC substrate
JP4511378B2 (en) Method for forming single crystal SiC layer using SOI substrate
WO2011126145A1 (en) Process for producing epitaxial single-crystal silicon carbide substrate and epitaxial single-crystal silicon carbide substrate obtained by the process
JP2009149481A (en) Method for manufacturing semiconductor substrate
US8906786B2 (en) Method for producing single crystal SiC substrate and single crystal SiC substrate produced by the same
US8906487B2 (en) Base material with single-crystal silicon carbide film, method of producing single-crystal silicon carbide film, and method of producing base material with single-crystal silicon carbide film
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP2010034330A (en) Epitaxial wafer and method of manufacturing the same
TWI457476B (en) Method for manufacturing nitrogen compound semiconductor substrate and method for manufacturing nitrogen compound semiconductor substrate, single crystal SiC substrate and single crystal SiC substrate
JP4563918B2 (en) Method for producing single crystal SiC substrate
CN106169497B (en) Silicon carbide substrate and method for producing silicon carbide substrate
JP4713089B2 (en) Method for producing single crystal SiC substrate
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
KR20230132455A (en) Method for manufacturing epitaxial wafers
CN114293252A (en) Aluminum nitride template and preparation method thereof
KR20220100196A (en) Gallium oxide thin film using phase-transition domain alignment buffer layer and method of manufacturing the same
CN100459046C (en) Production of high-quality magnesium silicide thin-film on silicon wafer
JP2011077478A (en) Semiconductor and method for manufacturing the same
JP2009302098A (en) Method of manufacturing nitrogen compound semiconductor substrate, and nitrogen compound semiconductor substrate
JP2010225733A (en) Method of manufacturing semiconductor substrate
JP2009302097A (en) Method of manufacturing single crystal sic substrate, and single crystal sic substrate
JP2010062219A (en) Production process of silicon carbide
JP4550870B2 (en) Manufacturing method of semiconductor device
JPH09306844A (en) Semiconductor device and manufacture thereof
JP2010225734A (en) Method of manufacturing semiconductor substrate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4511378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250