JP2011006304A - Nitride semiconductor substrate and production method of the same - Google Patents

Nitride semiconductor substrate and production method of the same Download PDF

Info

Publication number
JP2011006304A
JP2011006304A JP2009153461A JP2009153461A JP2011006304A JP 2011006304 A JP2011006304 A JP 2011006304A JP 2009153461 A JP2009153461 A JP 2009153461A JP 2009153461 A JP2009153461 A JP 2009153461A JP 2011006304 A JP2011006304 A JP 2011006304A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor substrate
protective film
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009153461A
Other languages
Japanese (ja)
Inventor
Takehiro Yoshida
丈洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009153461A priority Critical patent/JP2011006304A/en
Publication of JP2011006304A publication Critical patent/JP2011006304A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nitride semiconductor substrate having a protective film formed on a surface where a high-quality epitaxial wafer can be produced.SOLUTION: A protective film essentially comprising gallium oxide and/or indium oxide and having a surface roughness of not more than 5 nm in terms of a square mean value is formed on the surface of a nitride semiconductor substrate by heat treating the nitride semiconductor substrate in an atmosphere containing air or oxygen or by exposing the surface of the nitride semiconductor substrate to oxygen plasma. The protective film prevents a contaminant from depositing on the substrate surface and can be easily removed only by keeping the substrate at a temperature of not higher than 1,200°C in a hydrogen atmosphere, and thereby, unusual growth of an epitaxial growth film or generation of crystal defects caused by contaminants can be prevented.

Description

本発明は、窒化物半導体基板に関し、特に窒化物半導体基板の汚染を防ぐための保護膜が形成された基板とその製造方法に関する。   The present invention relates to a nitride semiconductor substrate, and more particularly to a substrate on which a protective film for preventing contamination of a nitride semiconductor substrate is formed and a method for manufacturing the same.

窒化物半導体は、禁制帯幅が大きく、直接遷移型半導体であるという特長を有しているため、短波長発光素子への応用に適している。近年では、青紫色レーザーダイオードや緑色・青色・白色の発光ダイオードなどに用いられている。また、絶縁耐圧や飽和電子速度が従来の半導体材料に比べて非常に大きいことから、高周波電子デバイスへの応用も盛んに研究されている。   Nitride semiconductors are suitable for application to short-wavelength light-emitting elements because they have the advantage of being a direct transition semiconductor with a large forbidden bandwidth. In recent years, it has been used for blue-violet laser diodes and green, blue and white light emitting diodes. In addition, since the withstand voltage and the saturation electron velocity are much higher than those of conventional semiconductor materials, application to high-frequency electronic devices has been actively studied.

従来、窒化物半導体デバイスの作製にはサファイア基板が用いられてきた。しかし、サファイアと窒化物半導体との間の格子不整合が大きいため、サファイア基板上に作製した窒化物半導体エピタキシャル成長膜には、1 cm2あたり108〜1010個もの転位欠陥が存在した。近年では、高品質な窒化ガリウム単結晶基板が実現し流通するようになったため、転位欠陥を1 cm2あたり105〜106個程度に抑えた窒化物半導体エピタキシャル成長膜の作製が可能となった。これにより、窒化物半導体材料は、高いパフォーマンスを示すデバイスを提供することができるようになってきた。 Conventionally, a sapphire substrate has been used to manufacture a nitride semiconductor device. However, since the lattice mismatch between sapphire and the nitride semiconductor is large, the nitride semiconductor epitaxially grown film formed on the sapphire substrate has 10 8 to 10 10 dislocation defects per 1 cm 2 . In recent years, high-quality gallium nitride single crystal substrates have been realized and distributed, and it has become possible to produce nitride semiconductor epitaxial growth films that suppress dislocation defects to about 10 5 to 10 6 per cm 2 . . As a result, the nitride semiconductor material can provide a device exhibiting high performance.

シリコン(Si)系デバイスは、金属元素による汚染に対して敏感である。金属元素はSi結晶中で容易に拡散し深い準位を形成するため、デバイス特性に甚大な悪影響を及ぼす。そのため、特許文献1や特許文献2に記載されているように、Si基板の表面を金属汚染から保護するため、Si基板表面に保護膜を形成するなどの対策が施されてきた。   Silicon (Si) based devices are sensitive to contamination by metallic elements. Since metal elements diffuse easily in Si crystals and form deep levels, they have a significant adverse effect on device characteristics. Therefore, as described in Patent Document 1 and Patent Document 2, in order to protect the surface of the Si substrate from metal contamination, measures such as forming a protective film on the surface of the Si substrate have been taken.

一方、窒化物半導体基板においても、一部のデバイスに保護膜が形成されている。例えば、特許文献3では、窒素とケイ素からなる保護層を形成したHJFET(ヘテロ接合電界効果トランジスタ)エピタキシャルウェハが開示されている。   On the other hand, also in the nitride semiconductor substrate, a protective film is formed on some devices. For example, Patent Document 3 discloses an HJFET (Heterojunction Field Effect Transistor) epitaxial wafer in which a protective layer made of nitrogen and silicon is formed.

また、特許文献4には、窒化物半導体の自立基板中に含まれる不純物を低減させる技術として、基板表面に酸化膜を形成し、基板中に含まれる硫黄(S)や炭素(C)等の不純物をゲッタリングした後、エピタキシャル成長前に該酸化膜を除去するという技術が開示されている。   Patent Document 4 discloses a technique for reducing impurities contained in a nitride semiconductor free-standing substrate by forming an oxide film on the surface of the substrate, such as sulfur (S) and carbon (C) contained in the substrate. A technique of removing the oxide film after gettering impurities and before epitaxial growth is disclosed.

特開平2−198140号公報Japanese Unexamined Patent Publication No. 2-198140 特開平2−177539号公報JP-A-2-177539 特開2007−150106号公報JP 2007-150106 A 特表2004−502298号公報JP-T-2004-502298

窒化物半導体基板上への半導体薄膜の形成(成膜)は、一般にMOVPE(Metal Organic Vapor Phase Epitaxy)法やMBE(Molecular Beam Epitaxy)法等によるエピタキシャル成長によって行われる。この時、窒化物半導体基板の表面に汚染された領域が存在すると、その領域でエピタキシャル成長膜が異常成長したり結晶欠陥が多数発生したりして、デバイス特性が劣化するという問題があった。   Formation (film formation) of a semiconductor thin film on a nitride semiconductor substrate is generally performed by epitaxial growth by a MOVPE (Metal Organic Vapor Phase Epitaxy) method, an MBE (Molecular Beam Epitaxy) method, or the like. At this time, if there is a contaminated region on the surface of the nitride semiconductor substrate, there has been a problem that the epitaxial growth film grows abnormally or a large number of crystal defects occur in the region, thereby deteriorating device characteristics.

このような問題の対策として、前述したように基板表面に保護膜を形成し、エピタキシャル成長前に該保護膜を除去する方法が考えられてきた。こうすることで、基板の保管中やハンドリング中に予期せぬ汚染物質が付着したとしても、保護膜をリフトオフすることで汚染物質が一緒に除去され、正常なエピタキシャル成長が期待できる。保護膜は、エピタキシャル成長を行う直前に成長炉内で簡単に除去されるような膜であることが望ましい。例えば、エピタキシャル成長時にキャリヤガスとして使用する水素雰囲気中で、適当な温度に昇温するだけで除去されるような膜であれば、その後連続して半導体薄膜のエピタキシャル成長を行うことができることから都合よい。   As a countermeasure against such a problem, a method of forming a protective film on the substrate surface as described above and removing the protective film before epitaxial growth has been considered. By doing so, even if an unexpected contaminant adheres during storage or handling of the substrate, the contaminant is removed together by lifting off the protective film, and normal epitaxial growth can be expected. The protective film is desirably a film that can be easily removed in the growth furnace immediately before epitaxial growth. For example, a film that can be removed by simply raising the temperature to a suitable temperature in a hydrogen atmosphere used as a carrier gas during epitaxial growth is advantageous because the semiconductor thin film can be subsequently epitaxially grown.

特許文献3では、窒素とケイ素からなる保護膜を形成しているが、この膜は水素雰囲気中で非常に安定であり、成長炉内で保護膜を簡便に除去することができない。また、特許文献4では、アルミニウムを含む酸化膜からなる保護膜を形成しているが、酸化アルミニウムは水素雰囲気中では1200℃よりも高温でないとエッチングすることができないめ、成長炉内で該酸化膜を除去することが困難と考えられる。   In Patent Document 3, a protective film made of nitrogen and silicon is formed, but this film is very stable in a hydrogen atmosphere, and the protective film cannot be easily removed in a growth furnace. In Patent Document 4, a protective film made of an oxide film containing aluminum is formed. However, since aluminum oxide cannot be etched unless the temperature is higher than 1200 ° C. in a hydrogen atmosphere, the oxidation film is formed in a growth furnace. It is considered difficult to remove the film.

なお、一般的に、半導体薄膜のエピタキシャル成長装置における成長炉の構成部材には石英を用いることが多く、石英の軟化点を越える温度でまで昇温するプロセスは好ましくない。また、原子状態の水素を供給することにより、600℃程度の低温でも酸化アルミニウムをエッチングできるとの報告もあるが、一般的な気相成長装置で原子状態の水素を供給することは困難である。   In general, quartz is often used as a constituent member of a growth furnace in a semiconductor thin film epitaxial growth apparatus, and a process of raising the temperature to a temperature exceeding the softening point of quartz is not preferable. Although it has been reported that aluminum oxide can be etched even at a low temperature of about 600 ° C. by supplying atomic state hydrogen, it is difficult to supply atomic state hydrogen with a general vapor phase growth apparatus. .

従って、本発明の目的は、窒化物半導体基板上に容易に形成でき、かつ水素雰囲気中1200℃以下の温度に保持するだけで簡単に除去できる保護膜を有する窒化物半導体基板およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a nitride semiconductor substrate having a protective film that can be easily formed on a nitride semiconductor substrate and can be easily removed simply by holding at a temperature of 1200 ° C. or less in a hydrogen atmosphere, and a method for manufacturing the same. It is to provide.

本発明は上記目的を達成するため、表面に保護膜が形成された窒化物半導体基板であって、前記保護膜の表面粗さの2乗平均値が5 nm以下であることを特徴とする窒化物半導体基板を提供する。   In order to achieve the above object, the present invention provides a nitride semiconductor substrate having a protective film formed on a surface thereof, wherein a mean square value of the surface roughness of the protective film is 5 nm or less. A semiconductor substrate is provided.

また、本発明は上記目的を達成するため、上記の本発明に係る窒化物半導体基板において、以下のような改良や変更を加えることができる。
(1)前記保護膜の主成分が酸化ガリウムおよび/または酸化インジウムである。
(2)前記保護膜の平均膜厚が1 nm以上10 nm以下である。
(3)前記窒化物半導体の組成がInxGa1-xN(0 ≦ x ≦ 1)である。
In addition, in order to achieve the above object, the present invention can make the following improvements and changes in the nitride semiconductor substrate according to the present invention.
(1) The main component of the protective film is gallium oxide and / or indium oxide.
(2) The average film thickness of the protective film is 1 nm or more and 10 nm or less.
(3) The composition of the nitride semiconductor is In x Ga 1-x N (0 ≦ x ≦ 1).

また、本発明は上記目的を達成するため、表面粗さの2乗平均値が5 nm以下である保護膜を窒化物半導体基板の表面上に形成する方法であって、前記窒化物半導体基板を空気または酸素を含む雰囲気中で熱処理する工程を含むことを特徴とする窒化物半導体基板の製造方法を提供する。   In order to achieve the above object, the present invention provides a method for forming a protective film having a surface roughness square mean value of 5 nm or less on the surface of a nitride semiconductor substrate, the nitride semiconductor substrate comprising: Provided is a method for manufacturing a nitride semiconductor substrate, comprising a step of performing a heat treatment in an atmosphere containing air or oxygen.

また、本発明は上記目的を達成するため、上記の本発明に係る窒化物半導体基板の製造方法において、以下のような改良や変更を加えることができる。
(4)前記工程は窒化物半導体基板の表面を酸素プラズマに暴露する工程である。
In order to achieve the above object, the present invention can be modified or changed as follows in the method for manufacturing a nitride semiconductor substrate according to the present invention.
(4) The step is a step of exposing the surface of the nitride semiconductor substrate to oxygen plasma.

本発明によれば、窒化物半導体基板上に簡便に保護膜を形成することができ、かつ該保護膜を水素雰囲気中1200℃以下の温度に保持するだけで簡単に除去できる窒化物半導体基板を提供することができる。また、本発明による窒化物半導体基板は、基板表面への汚染物質の付着を防ぎ、汚染物質に起因するエピタキシャル成長膜の異常成長や結晶欠陥の発生を防止することで高品質なエピタキシャルウェハを提供することができる。   According to the present invention, there is provided a nitride semiconductor substrate that can be easily formed on a nitride semiconductor substrate and can be removed simply by holding the protective film at a temperature of 1200 ° C. or lower in a hydrogen atmosphere. Can be provided. In addition, the nitride semiconductor substrate according to the present invention provides a high-quality epitaxial wafer by preventing adhesion of contaminants to the substrate surface and preventing abnormal growth of the epitaxially grown film and occurrence of crystal defects due to the contaminants. be able to.

窒化物半導体基板を用いたエピタキシャル成長膜において、汚染された領域上に異常成長した部分の光学顕微鏡写真(ノマルスキー観察像)である。It is an optical microscope photograph (Nomarski observation image) of the part which grew abnormally on the contaminated area | region in the epitaxial growth film | membrane using a nitride semiconductor substrate.

従来技術を参照しながら各種保護膜の性状について調査した。はじめに、窒化ガリウム(GaN)基板の表面にAlを含む酸化保護膜を形成し、気相成長装置内でのエッチング除去を検討した。水素雰囲気中1100〜1200℃の熱処理を行った後、基板上にエピタキシャル成長を実施したところ、基板表面に酸化アルミニウム膜が残留し、エピタキシャル成長膜に欠陥を導入する起点となっていた。このことから、Alを含む酸化保護膜は、水素雰囲気中1200℃以下の温度での除去が困難であることが確認された。   The properties of various protective films were investigated with reference to the prior art. First, an oxide protective film containing Al was formed on the surface of a gallium nitride (GaN) substrate, and etching removal in a vapor phase growth apparatus was examined. After performing heat treatment at 1100 to 1200 ° C. in a hydrogen atmosphere, epitaxial growth was performed on the substrate. As a result, an aluminum oxide film remained on the substrate surface, which was a starting point for introducing defects into the epitaxial growth film. From this, it was confirmed that the oxidation protective film containing Al is difficult to remove at a temperature of 1200 ° C. or less in a hydrogen atmosphere.

次に、Alを含まない酸化保護膜について調査した。その結果、酸化インジウムや酸化ガリウムからなる保護膜は、水素雰囲気中1200℃以下の熱処理を行うことによって容易に分解・除去できることが判った。そこで、更に詳細に検討したところ、該酸化保護膜の表面粗さが非常に重要な因子となっており、該表面粗さが特定の範囲内に無いとエピタキシャル成長膜の品質が低下する場合があることを見出した。本発明は、そのような知見を基にして完成された。   Next, an oxidation protective film containing no Al was investigated. As a result, it was found that a protective film made of indium oxide or gallium oxide can be easily decomposed and removed by performing a heat treatment at 1200 ° C. or less in a hydrogen atmosphere. Therefore, when examined in more detail, the surface roughness of the oxidation protective film is a very important factor, and the quality of the epitaxially grown film may deteriorate if the surface roughness is not within a specific range. I found out. The present invention has been completed based on such knowledge.

以下、本発明に係る実施の形態について、詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail.

本発明に係る窒化物半導体基板は、基板表面に保護膜が形成され、前記保護膜の表面粗さの2乗平均値が5 nm以下であることを特徴とする。表面粗さの2乗平均値が5 nmを超えると、当該基板を用いて形成したエピタキシャル成長膜の表面粗さが1 nmを超えてしまい、最終的なデバイス特性が低下する。よって、保護膜を形成した窒化物半導体基板の表面粗さの2乗平均値は5 nm以下であることが望ましい。   The nitride semiconductor substrate according to the present invention is characterized in that a protective film is formed on the substrate surface, and the mean square value of the surface roughness of the protective film is 5 nm or less. When the mean square value of the surface roughness exceeds 5 nm, the surface roughness of the epitaxially grown film formed using the substrate exceeds 1 nm, and the final device characteristics deteriorate. Therefore, the mean square value of the surface roughness of the nitride semiconductor substrate on which the protective film is formed is preferably 5 nm or less.

保護膜の平均膜厚は1 nm以上10 nm以下であることが好ましい。1 nm未満の膜厚では汚染物質のリフトオフが不完全になりやすい。一方、保護膜が10 nmよりも厚いと、表面粗さの2乗平均値が5 nmを超えやすくなる。また、保護膜の除去に多大な時間を要し、エピタキシャルウェハ作製のスループットが著しく低下する。   The average film thickness of the protective film is preferably 1 nm or more and 10 nm or less. Contaminant lift-off tends to be incomplete at film thicknesses below 1 nm. On the other hand, if the protective film is thicker than 10 nm, the mean value of the surface roughness tends to exceed 5 nm. In addition, it takes a long time to remove the protective film, and the throughput of epitaxial wafer fabrication is significantly reduced.

保護膜は、酸化ガリウムおよび/または酸化インジウムを主成分とし、例えば、InxGa1-xN(0 ≦ x ≦ 1)の組成を有する窒化物半導体基板の極表面を酸化することにより形成することができる。保護膜を形成する方法に特段の制限は無いが、窒化物半導体基板を空気または酸素を含む雰囲気中で熱酸化する方法が好ましく、窒化物半導体基板の表面を酸素プラズマに暴露する方法が膜厚制御性の観点から特に好ましい。 The protective film is formed by oxidizing the extreme surface of a nitride semiconductor substrate containing gallium oxide and / or indium oxide as a main component and having, for example, a composition of In x Ga 1-x N (0 ≦ x ≦ 1). be able to. Although there is no particular limitation on the method for forming the protective film, a method of thermally oxidizing the nitride semiconductor substrate in an atmosphere containing air or oxygen is preferable, and a method of exposing the surface of the nitride semiconductor substrate to oxygen plasma is preferable. This is particularly preferable from the viewpoint of controllability.

以下、本発明を実施例に基づいて更に詳しく説明する。ただし、本発明はここで取り上げた実施例に限定されることはなく、要旨を変更しない範囲で組み合わせや改良が適宜可能である。   Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the embodiments taken up here, and combinations and improvements are possible as long as the gist is not changed.

(比較例1)
基板の表面の一部を意図的に汚染させた直径2インチの窒化ガリウム基板を用意した。MOVPE装置を用い、該基板上に窒化ガリウム膜を厚さ2μmでホモエピタキシャル成長してエピタキシャルウェハを作製した。成長後、MOVPE装置から該ウェハを取り出し、意図的に汚染させた箇所を光学顕微鏡の微分干渉モードで観察した。図1は、窒化物半導体基板を用いたエピタキシャル成長膜において、汚染された領域上に異常成長した部分の光学顕微鏡写真(ノマルスキー観察像)である。図1から判るように、意図的に汚染させた箇所において異常成長が観察された。
(Comparative Example 1)
A gallium nitride substrate having a diameter of 2 inches in which a part of the surface of the substrate was intentionally contaminated was prepared. Using a MOVPE apparatus, an epitaxial wafer was fabricated by homoepitaxial growth of a gallium nitride film with a thickness of 2 μm on the substrate. After the growth, the wafer was taken out from the MOVPE apparatus, and the intentionally contaminated portion was observed in a differential interference mode of an optical microscope. FIG. 1 is an optical micrograph (Nomarski observation image) of a portion abnormally grown on a contaminated region in an epitaxially grown film using a nitride semiconductor substrate. As can be seen from FIG. 1, abnormal growth was observed in the intentionally contaminated portion.

(実施例1)
清浄な表面を有する直径2インチの窒化ガリウム基板を用意した。その後、該窒化ガリウム基板を電気炉内に設置し、乾燥空気を1 lmで供給しながら、30℃/minの速度で900℃まで昇温し60分間保持した後、自然冷却した。取り出した窒化ガリウム基板の表面および裏面には、酸化ガリウムの保護膜が形成されていた。酸化ガリウム保護膜の平均膜厚は約5 nmであった。該保護膜の表面に対し、10μm × 10μmの範囲についてAFM(原子間力顕微鏡)で観察したところ、表面粗さの2乗平均値は3.794 nmであった。
Example 1
A 2-inch diameter gallium nitride substrate having a clean surface was prepared. Thereafter, the gallium nitride substrate was placed in an electric furnace, and while supplying dry air at 1 lm, the temperature was raised to 900 ° C. at a rate of 30 ° C./min, held for 60 minutes, and then naturally cooled. A protective film of gallium oxide was formed on the front and back surfaces of the extracted gallium nitride substrate. The average film thickness of the gallium oxide protective film was about 5 nm. When the surface of the protective film was observed with an AFM (atomic force microscope) in the range of 10 μm × 10 μm, the mean square value of the surface roughness was 3.794 nm.

保護膜の表面の一部を意図的に汚染させた後、MOVPE装置に設置した。MOVPE装置内において、水素分圧40 kPa・アンモニア分圧13 kPaの雰囲気中で、1100℃で15分間保持する熱処理を施し、その後、窒化ガリウム膜を厚さ2μmでホモエピタキシャル成長した。なお、事前の検討において、この条件で熱処理後、窒化ガリウム膜を成長させずに取り出した基板表面をEDX(エネルギー分散型X線分光法)で分析したところ、酸素成分は検出されず、十分に保護膜(酸化ガリウム膜)を除去できていることが確認された。   After a part of the surface of the protective film was intentionally contaminated, it was installed in the MOVPE apparatus. In the MOVPE apparatus, heat treatment was performed for 15 minutes at 1100 ° C. in an atmosphere with a hydrogen partial pressure of 40 kPa and an ammonia partial pressure of 13 kPa. Thereafter, the gallium nitride film was homoepitaxially grown to a thickness of 2 μm. In a prior study, the substrate surface taken out without growing the gallium nitride film after heat treatment under these conditions was analyzed by EDX (energy dispersive X-ray spectroscopy). It was confirmed that the protective film (gallium oxide film) could be removed.

窒化ガリウム膜の成膜後、MOVPE装置からウェハを取り出し、保護膜表面を意図的に汚染させた箇所を光学顕微鏡の微分干渉モードで観察した。その結果、エピタキシャル成長膜の異常成長は観察されなかった。また、エピタキシャル成長膜の表面に対し、10μm × 10μmについてAFMで観察したところ、表面粗さの2乗平均値は0.737 nmであった。   After the gallium nitride film was formed, the wafer was taken out from the MOVPE apparatus, and the part where the protective film surface was intentionally contaminated was observed in the differential interference mode of the optical microscope. As a result, abnormal growth of the epitaxially grown film was not observed. Further, when the surface of the epitaxially grown film was observed by AFM with respect to 10 μm × 10 μm, the mean square value of the surface roughness was 0.737 nm.

(実施例2)
清浄な表面を有する直径2インチの窒化ガリウム基板を電気炉内に設置し、酸素(純度99.9999%)を1 lmで供給しながら、30℃/minの速度で900℃まで昇温し60分間保持した後、自然冷却した。取り出した窒化ガリウム基板の表面および裏面には、酸化ガリウムの保護膜が形成されていた。酸化ガリウム保護膜の平均膜厚は約5 nmであり、実施例1の場合とほぼ同様の結果であった。
(Example 2)
A 2-inch diameter gallium nitride substrate with a clean surface is placed in an electric furnace, heated to 900 ° C at a rate of 30 ° C / min and held for 60 minutes while supplying oxygen (purity 99.9999%) at 1 lm. And then cooled naturally. A protective film of gallium oxide was formed on the front and back surfaces of the extracted gallium nitride substrate. The average film thickness of the gallium oxide protective film was about 5 nm, which was almost the same result as in Example 1.

(比較例2)
清浄な表面を有する直径2インチの窒化ガリウム基板を電気炉内に設置し、乾燥空気を1 lmで供給しながら、30℃/minの速度で800℃まで昇温し60分間保持した後、自然冷却した。取り出した窒化ガリウム基板の表面および裏面には、酸化ガリウムの保護膜が形成されていた。ただし、膜厚は0.3〜0.9 nm(平均約0.6 nm)と非常に薄いものであった。
(Comparative Example 2)
A 2 inch diameter gallium nitride substrate with a clean surface was placed in an electric furnace, heated to 800 ° C at a rate of 30 ° C / min and maintained for 60 minutes while supplying dry air at 1 lm. Cooled down. A protective film of gallium oxide was formed on the front and back surfaces of the extracted gallium nitride substrate. However, the film thickness was as very thin as 0.3 to 0.9 nm (average of about 0.6 nm).

保護膜の表面の一部を意図的に汚染させた後、MOVPE装置に設置した。MOVPE装置内において、水素分圧40 kPa・アンモニア分圧13 kPaの雰囲気中で、1100℃で5分間保持する熱処理を施し、その後、窒化ガリウム膜を厚さ2μmでホモエピタキシャル成長した。窒化ガリウム膜の成膜後、MOVPE装置からウェハを取り出し、保護膜表面を意図的に汚染させた箇所を光学顕微鏡の微分干渉モードで観察した。その結果、比較例1と同様な異常成長が観察された。   After a part of the surface of the protective film was intentionally contaminated, it was installed in the MOVPE apparatus. In the MOVPE apparatus, heat treatment was performed for 5 minutes at 1100 ° C. in an atmosphere with a hydrogen partial pressure of 40 kPa and an ammonia partial pressure of 13 kPa. Thereafter, the gallium nitride film was homoepitaxially grown to a thickness of 2 μm. After the gallium nitride film was formed, the wafer was taken out from the MOVPE apparatus, and the part where the protective film surface was intentionally contaminated was observed in the differential interference mode of the optical microscope. As a result, abnormal growth similar to that of Comparative Example 1 was observed.

(実施例3)
清浄な表面を有する直径2インチの窒化ガリウム基板を電気炉内に設置し、乾燥空気を1 lmで供給しながら、30℃/minの速度で805℃まで昇温し60分間保持した後、自然冷却した。取り出した窒化ガリウム基板の表面および裏面には、酸化ガリウムの保護膜が形成されていた。酸化ガリウム保護膜の膜厚は1〜5 nm(平均約3 nm)であった。
(Example 3)
A 2 inch diameter gallium nitride substrate with a clean surface was placed in an electric furnace, heated to 805 ° C at a rate of 30 ° C / min and maintained for 60 minutes while supplying dry air at 1 lm. Cooled down. A protective film of gallium oxide was formed on the front and back surfaces of the extracted gallium nitride substrate. The thickness of the gallium oxide protective film was 1 to 5 nm (average of about 3 nm).

保護膜の表面の一部を意図的に汚染させた後、MOVPE装置に設置した。MOVPE装置内において、水素分圧40 kPa・アンモニア分圧13 kPaの雰囲気中で、1100℃で5分間保持する熱処理を施し、その後、窒化ガリウム膜を厚さ2μmでホモエピタキシャル成長した。なお、事前の検討において、この条件で熱処理後、窒化ガリウム膜を成長させずに取り出した基板表面をEDXで分析したところ、酸素成分は検出されず、十分に保護膜(酸化ガリウム膜)を除去できていることが確認された。   After a part of the surface of the protective film was intentionally contaminated, it was installed in the MOVPE apparatus. In the MOVPE apparatus, heat treatment was performed for 5 minutes at 1100 ° C. in an atmosphere with a hydrogen partial pressure of 40 kPa and an ammonia partial pressure of 13 kPa. Thereafter, the gallium nitride film was homoepitaxially grown to a thickness of 2 μm. In the preliminary study, the substrate surface taken out without growing the gallium nitride film after heat treatment under these conditions was analyzed by EDX. As a result, the oxygen component was not detected and the protective film (gallium oxide film) was removed sufficiently. It was confirmed that it was made.

窒化ガリウム膜の成膜後、MOVPE装置からウェハを取り出し、保護膜表面を意図的に汚染させた箇所を光学顕微鏡の微分干渉モードで観察した。その結果、エピタキシャル成長膜の異常成長は観察されなかった。また、エピタキシャル成長膜の表面に対し、10μm × 10μmの範囲についてAFMで観察したところ、表面粗さの2乗平均値は0.513 nmであった。   After the gallium nitride film was formed, the wafer was taken out from the MOVPE apparatus, and the part where the protective film surface was intentionally contaminated was observed in the differential interference mode of the optical microscope. As a result, abnormal growth of the epitaxially grown film was not observed. Further, when the surface of the epitaxially grown film was observed with AFM in a range of 10 μm × 10 μm, the root mean square value of the surface roughness was 0.513 nm.

(比較例3)
清浄な表面を有する直径2インチの窒化ガリウム基板を電気炉内に設置し、乾燥空気を1 lmで供給しながら、30℃/minの速度で950℃まで昇温し60分間保持した後、自然冷却した。取り出した窒化ガリウム基板の表面および裏面には、酸化ガリウムの保護膜が形成されていた。酸化ガリウム保護膜の平均膜厚は約11 nmであった。該保護膜の表面に対し、10μm × 10μmの範囲についてAFMで観察したところ、表面粗さの2乗平均値は5.102〜6.659 nmであった。
(Comparative Example 3)
A 2 inch diameter gallium nitride substrate with a clean surface was placed in an electric furnace, heated to 950 ° C at a rate of 30 ° C / min and maintained for 60 minutes while supplying dry air at 1 lm. Cooled down. A protective film of gallium oxide was formed on the front and back surfaces of the extracted gallium nitride substrate. The average film thickness of the gallium oxide protective film was about 11 nm. When the surface of the protective film was observed with AFM over a range of 10 μm × 10 μm, the mean square of the surface roughness was 5.102 to 6.659 nm.

保護膜の表面の一部を意図的に汚染させた後、MOVPE装置に設置した。MOVPE装置内において、水素分圧40 kPa・アンモニア分圧13 kPaの雰囲気中で、1100℃で30分間保持する熱処理を施し、その後、窒化ガリウム膜を厚さ2μmでホモエピタキシャル成長した。   After a part of the surface of the protective film was intentionally contaminated, it was installed in the MOVPE apparatus. In the MOVPE apparatus, a heat treatment was performed for 30 minutes at 1100 ° C. in an atmosphere with a hydrogen partial pressure of 40 kPa and an ammonia partial pressure of 13 kPa. Thereafter, the gallium nitride film was homoepitaxially grown to a thickness of 2 μm.

窒化ガリウム膜の成膜後、MOVPE装置からウェハを取り出し、保護膜表面を意図的に汚染させた箇所を光学顕微鏡の微分干渉モードで観察した。その結果、エピタキシャル成長膜の異常成長は観察されなかった。また、エピタキシャル成長膜の表面に対し、10μm × 10μmの範囲についてAFMで観察したところ、表面粗さの2乗平均値は1.229〜3.354 nmであった。   After the gallium nitride film was formed, the wafer was taken out from the MOVPE apparatus, and the part where the protective film surface was intentionally contaminated was observed in the differential interference mode of the optical microscope. As a result, abnormal growth of the epitaxially grown film was not observed. Further, when the surface of the epitaxially grown film was observed with an AFM in a range of 10 μm × 10 μm, the mean square value of the surface roughness was 1.229 to 3.354 nm.

以上の実施例1〜3および比較例1〜3の結果から、表面粗さの2乗平均値が5 nm以下で平均膜厚が1 nm以上10 nm以下である保護膜(酸化ガリウム膜)を窒化物半導体基板上に形成するためには、空気または酸素気流中、805℃以上950℃未満で1時間加熱保持を行うことによって得られることが確認された。   From the results of Examples 1 to 3 and Comparative Examples 1 to 3, a protective film (gallium oxide film) having a mean square roughness of 5 nm or less and an average film thickness of 1 nm to 10 nm is obtained. In order to form on a nitride semiconductor substrate, it was confirmed that it was obtained by heating and holding at 805 ° C. or more and less than 950 ° C. for 1 hour in air or oxygen stream.

実施例1、実施例3および比較例3で作製したエピタキシャルウェハを用いて、発光波長410 nmのLED(発光ダイオード)を作製し、内部量子効率を測定する実験を行った。その結果、実施例1及び実施例3のウェハを使用したLEDと比べて、比較例3のウェハを用いたLEDは、内部量子効率が10%程度低かった。この実験から、良好なデバイス特性を得るためには、基板表面に保護膜が形成され、該保護膜の表面粗さの2乗平均値が5 nm以下である窒化物半導体基板を用いることが望ましいと言える。   Using the epitaxial wafers produced in Example 1, Example 3 and Comparative Example 3, an LED (light emitting diode) having an emission wavelength of 410 nm was produced, and an experiment was conducted to measure the internal quantum efficiency. As a result, the internal quantum efficiency of the LED using the wafer of Comparative Example 3 was about 10% lower than that of the LED using the wafers of Example 1 and Example 3. From this experiment, in order to obtain good device characteristics, it is desirable to use a nitride semiconductor substrate in which a protective film is formed on the substrate surface and the mean square value of the surface roughness of the protective film is 5 nm or less. It can be said.

Claims (6)

表面に保護膜が形成された窒化物半導体基板であって、前記保護膜の表面粗さの2乗平均値が5 nm以下であることを特徴とする窒化物半導体基板。   A nitride semiconductor substrate having a protective film formed on a surface thereof, wherein a mean square value of the surface roughness of the protective film is 5 nm or less. 前記保護膜の主成分が酸化ガリウムおよび/または酸化インジウムであることを特徴とする請求項1に記載の窒化物半導体基板。   The nitride semiconductor substrate according to claim 1, wherein a main component of the protective film is gallium oxide and / or indium oxide. 前記保護膜の平均膜厚が1 nm以上10 nm以下であることを特徴とする請求項1または請求項2に記載の窒化物半導体基板。   The nitride semiconductor substrate according to claim 1 or 2, wherein an average film thickness of the protective film is 1 nm or more and 10 nm or less. 前記窒化物半導体の組成がInxGa1-xN(0 ≦ x ≦ 1)であることを特徴とする請求項1乃至請求項3のいずれかに記載の窒化物半導体基板。 4. The nitride semiconductor substrate according to claim 1, wherein a composition of the nitride semiconductor is In x Ga 1-x N (0 ≦ x ≦ 1). 表面粗さの2乗平均値が5 nm以下である保護膜を窒化物半導体基板の表面上に形成する方法であって、前記窒化物半導体基板を空気または酸素を含む雰囲気中で熱処理する工程を含むことを特徴とする窒化物半導体基板の製造方法。   A method for forming a protective film having a surface roughness square mean value of 5 nm or less on a surface of a nitride semiconductor substrate, comprising the step of heat-treating the nitride semiconductor substrate in an atmosphere containing air or oxygen A method for manufacturing a nitride semiconductor substrate, comprising: 前記工程は、窒化物半導体基板の表面を酸素プラズマに暴露する工程であることを特徴とする請求項5に記載の窒化物半導体基板の製造方法。   6. The method for manufacturing a nitride semiconductor substrate according to claim 5, wherein the step is a step of exposing the surface of the nitride semiconductor substrate to oxygen plasma.
JP2009153461A 2009-06-29 2009-06-29 Nitride semiconductor substrate and production method of the same Pending JP2011006304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153461A JP2011006304A (en) 2009-06-29 2009-06-29 Nitride semiconductor substrate and production method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153461A JP2011006304A (en) 2009-06-29 2009-06-29 Nitride semiconductor substrate and production method of the same

Publications (1)

Publication Number Publication Date
JP2011006304A true JP2011006304A (en) 2011-01-13

Family

ID=43563447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153461A Pending JP2011006304A (en) 2009-06-29 2009-06-29 Nitride semiconductor substrate and production method of the same

Country Status (1)

Country Link
JP (1) JP2011006304A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141317A1 (en) * 2011-04-15 2012-10-18 三菱化学株式会社 Method for manufacturing group iii nitride crystal and group iii nitride crystal
JP2015527292A (en) * 2012-08-23 2015-09-17 シックスポイント マテリアルズ, インコーポレイテッド Composite substrate of gallium nitride and metal oxide
JP2016117646A (en) * 2011-04-15 2016-06-30 三菱化学株式会社 Production method of group iii nitride crystal, and group iii nitride crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141317A1 (en) * 2011-04-15 2012-10-18 三菱化学株式会社 Method for manufacturing group iii nitride crystal and group iii nitride crystal
JP2012231103A (en) * 2011-04-15 2012-11-22 Mitsubishi Chemicals Corp Method for producing group iii nitride crystal, and group iii nitride crystal
JP2016117646A (en) * 2011-04-15 2016-06-30 三菱化学株式会社 Production method of group iii nitride crystal, and group iii nitride crystal
US9502241B2 (en) 2011-04-15 2016-11-22 Mitsusbishi Chemical Corporation Group III nitride crystal production method and group III nitride crystal
JP2015527292A (en) * 2012-08-23 2015-09-17 シックスポイント マテリアルズ, インコーポレイテッド Composite substrate of gallium nitride and metal oxide

Similar Documents

Publication Publication Date Title
JP4249184B2 (en) Nitride semiconductor growth substrate
TWI479541B (en) A group III nitride semiconductor semiconductor substrate, a group III nitride semiconductor device, and a group III nitride semiconductor device, and a group III nitride semiconductor self-supporting substrate, and a method of manufacturing the same
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
WO2019137059A1 (en) Indium nitride nanopillar epitaxial wafer grown on aluminum foil substrate and preparation method of indium nitride nanopillar epitaxial wafer
US9896780B2 (en) Method for pretreatment of base substrate and method for manufacturing layered body using pretreated base substrate
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
JP4788397B2 (en) Method for producing group III nitride crystal
CN114093753B (en) Surface treatment method of aluminum nitride single crystal substrate and preparation method of ultraviolet light-emitting diode
KR20140106590A (en) Semiconductor substrate and method of forming
JP2005032823A (en) Method for manufacturing epitaxial wafer for field-effect transistor
JP2011006304A (en) Nitride semiconductor substrate and production method of the same
US20130171811A1 (en) Method for manufacturing compound semiconductor
JP4359770B2 (en) III-V nitride semiconductor substrate and production lot thereof
JPH09129651A (en) Thermal annealing method and device of sapphire substrate
WO2011099469A1 (en) Structural body, and method for producing semiconductor substrate
JP3615081B2 (en) Method for producing GaN single crystal
JP2013211442A (en) Method for manufacturing nitride semiconductor epitaxial wafer
JP5430467B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor free-standing substrate, group III nitride semiconductor device, and methods of manufacturing the same
JP5024765B2 (en) Method for cleaning oxide substrate and method for manufacturing oxide semiconductor thin film
KR20130124766A (en) Manufacturing method of semiconductor substrate having defect-free nitride semiconductor for high quality semiconductor device
JP4612403B2 (en) Method for manufacturing group III nitride semiconductor free-standing substrate
US20190103273A1 (en) Method for Producing Group III Nitride Laminate
JP2010278470A (en) Substrate for growing group-iii nitride semiconductor, epitaxial substrate for group-iii nitride semiconductor, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductor, and methods for manufacturing the same
RU2750295C1 (en) Method for producing heteroepitaxial layers of iii-n compounds on monocrystalline silicon with 3c-sic layer
JP7484773B2 (en) Method for manufacturing an epitaxial wafer for ultraviolet light emitting device, method for manufacturing a substrate for ultraviolet light emitting device, and epitaxial wafer for ultraviolet light emitting device