JPS5976475A - Manufacture of mos semiconductor device - Google Patents

Manufacture of mos semiconductor device

Info

Publication number
JPS5976475A
JPS5976475A JP18868682A JP18868682A JPS5976475A JP S5976475 A JPS5976475 A JP S5976475A JP 18868682 A JP18868682 A JP 18868682A JP 18868682 A JP18868682 A JP 18868682A JP S5976475 A JPS5976475 A JP S5976475A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
film
source
field oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18868682A
Other languages
Japanese (ja)
Inventor
Tsuneo Tanaka
田中 庸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP18868682A priority Critical patent/JPS5976475A/en
Publication of JPS5976475A publication Critical patent/JPS5976475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain an MOS transistor having a short channel by a method wherein a thick field oxide film is formed while it is half buried in the peripheral edge of a semiconductor substrate, a gate electrode is provided on the substrate surrounded by the film, the entire surface is coated with a silanol compound which contains an impurity, thus diffusing an impurity therefrom, and a source and a drain region are formed by using ion implantation jointly therewith. CONSTITUTION:The thick field oxide film 2 is formed while it is half buried in the peripheral edge of the P type Si substrate 1, and the gate electrode 4 composed of a polycrystalline Si is provided, at the center of the surface of the substrate 1 surrounded by the film, via a gate insulation film 5. Next, the entire surface including these is spin-coated with the silanol compound 6 which contains the N type impurity, which is hardened by baking at approx. 400 deg.C for an hour. At this time, the compound 6 changes thin on an element forming region 3 and thick at a part of stepwise difference. Thereafter, the N type impurity ions are implanted into the thin part of the compound 6 by utilizing the part, extrusion diffusion is performed by heat treatment, and accordingly the deep source region 7 and drain region 8 are obtained at the center.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はMO8半導体装置の製造方法、特に短チャンネ
ルを有するMO3半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for manufacturing an MO8 semiconductor device, and particularly to a method for manufacturing an MO3 semiconductor device having a short channel.

(ロ)従来技術 最近MO3半導体装置、特にMOS  LSIでは動作
速度の高速化、大規模集積化、低消費電力の要求があり
、これからICを構成するMOS)ランジスタの微細化
が急務となっている。この一方法としてMOS)ランジ
スタのチャンネル長を短か(することが行なわれている
。しかしながらゲート電極をマスクとしてセルファライ
ン効果を利用してソースおよびドレイン領域を拡散する
方法では、拡散が横方向にも拡がることが無視できずシ
ョートチャンネルを得るには適した方法ではなかった。
(b) Prior art Recently, MO3 semiconductor devices, especially MOS LSIs, have been required to have higher operating speeds, larger scale integration, and lower power consumption, and there is an urgent need to miniaturize the MOS transistors that will make up the IC. . One method for this is to shorten the channel length of a MOS transistor. However, in the method of diffusing the source and drain regions using the self-aligned effect using the gate electrode as a mask, the diffusion occurs in the lateral direction. It was not a suitable method to obtain a short channel because it could not be ignored that the channel would also expand.

(ハ) 目的 本発明の目的は、従来の欠点に鑑みてよりショートチャ
ンネルの形成に適したMO8半導体装置の製造方法を提
供することにある。
(C) Objective An object of the present invention is to provide a method for manufacturing an MO8 semiconductor device that is more suitable for forming a short channel in view of the conventional drawbacks.

本発明の他の目的は従来の製造技術で微細化加工できる
MO8半導体装置の製造方法を提供することにある。
Another object of the present invention is to provide a method for manufacturing an MO8 semiconductor device that can be miniaturized using conventional manufacturing techniques.

に)構成 本発明は以下の工程より構成されている。) configuration The present invention is comprised of the following steps.

(1)  半導体基板にその一部を埋め込んだ厚いフィ
ールド酸化膜を形成する工程。
(1) A process of forming a thick field oxide film partially buried in the semiconductor substrate.

(2)フィールド酸化膜で囲まれた素子形成領域上にゲ
ート電極を形成する工程。
(2) A step of forming a gate electrode on the element formation region surrounded by the field oxide film.

(3)基板表面に不純物を含んだシラノール化合物をス
ピンオン法により塗布する工程。
(3) A step of applying a silanol compound containing impurities to the substrate surface by a spin-on method.

(4)シラノール化合物を介して深い第2ソースおよび
第2ドレイン領域をイオン注入する工程。
(4) Step of ion-implanting deep second source and second drain regions through a silanol compound.

(5)基板を熱処理して浅い第1のソースおよび第1ド
レイン領域を拡散する工程。
(5) heat treating the substrate to diffuse the shallow first source and first drain regions;

(ホ)実施例 本発明の一実施例を第1図乃至第6図を参照して詳述す
る。
(E) Embodiment An embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6.

本発明の第1の工程は第1図に示す如(、半導体基板(
1)にその一部を埋め込んだ厚いフィールド酸化膜(2
)を形成することにある。
The first step of the present invention is as shown in FIG.
A thick field oxide film (2) is partially embedded in 1).
).

本工程では比抵抗2Ω・cmのP型シリコン基板(1)
の素子形成領域(3)上をシリコン窒化膜で被覆し、1
100℃の水蒸気雰囲気中で熱酸化処理を施して厚さ約
1μmの埋め込みフィールド酸化膜(2)を形成する。
In this process, a P-type silicon substrate (1) with a specific resistance of 2Ω・cm is used.
The element formation region (3) of 1 is coated with a silicon nitride film, and
A buried field oxide film (2) with a thickness of about 1 μm is formed by thermal oxidation treatment in a steam atmosphere at 100° C.

然る後シリコン窒化膜を選択的に除去す本発明の第2の
工程は第2図に示す如く、フィールド酸化膜(2)で囲
まれた素子形成領域(3)上にゲート電極(4)を形成
することにある。
After that, the second step of the present invention in which the silicon nitride film is selectively removed is as shown in FIG. The goal is to form a

本工程では素子形成領域(3)表面に約300X程度の
薄いゲート酸化膜(5)を形成した後、その上に8 X
 1020/c績のリンを含む厚さ3000 A’程度
のポリシリコン膜を付着し、写真蝕刻法により所望のゲ
ート電極(4)を形成する。
In this step, a thin gate oxide film (5) of approximately 300X is formed on the surface of the element formation region (3), and then a gate oxide film (5) of approximately 8X
A polysilicon film having a thickness of about 3000 A' containing 1020/c of phosphorus is deposited, and a desired gate electrode (4) is formed by photolithography.

本発明の第3の工程は第3図に示す如く、基板(1)表
面にN型不純物を含んだシラノール化合物(6)を塗布
することにある。
The third step of the present invention, as shown in FIG. 3, consists in applying a silanol compound (6) containing an N-type impurity to the surface of the substrate (1).

本工程では基板(1)を回転円板上に配置し、液状のシ
ラノール化合物(主成分Rn Si (OH)+−n 
)を基板(1)上に滴下し基板(1)を回転させて遠心
力でシラノール化合物を全面に拡げるスピンオン法で塗
布する。この際にフィールド酸化膜(2)およびゲート
電極(4)の段差部分にシラノール化合物(6)が厚(
付着される性質を有する。然る後シラノール化合物(6
)は約400℃で1時間ベーキングして硬化さぜろ。シ
ラノール化合物(6)は第3図からも明らかyx様にフ
ィールド酸化膜(2)および素子形成領域(3)の平坦
部分には薄く付着し、段差部分には厚(付着する。具体
的[はゲート電極(4)およびフィールド酸化膜(2)
端部より約2μ内側までは厚く付着するのでマスク作用
が得られる。
In this step, the substrate (1) is placed on a rotating disk, and a liquid silanol compound (main component Rn Si (OH)+-n
) onto the substrate (1), and the substrate (1) is rotated to spread the silanol compound over the entire surface using centrifugal force. At this time, a thick layer of silanol compound (6) (
It has the property of being attached. After that, silanol compound (6
) is baked at about 400℃ for 1 hour to harden it. It is clear from FIG. 3 that the silanol compound (6) adheres thinly to the flat parts of the field oxide film (2) and the element formation region (3), and thickly adheres to the stepped parts. Gate electrode (4) and field oxide film (2)
Since it adheres thickly to about 2 μm inside from the end, a masking effect can be obtained.

本発明の第4の工程は第4図に示す如く、シラノール化
合物(6)を介して深いN型の第2ソースおよび第2ド
レイン領域(7)(8)をイオン注入することにある。
The fourth step of the present invention, as shown in FIG. 4, consists in ion-implanting deep N-type second source and drain regions (7) and (8) through a silanol compound (6).

本工程は本発明の特徴の1つとする工程であり、シラノ
ール化合物(6)の厚み差を利用してN型不純物をイオ
ン注入して深い第2ソースおよび第2ドレイン領域(7
)(81を形成する。イオン注入はりん− (P  )を60KeV の加速エネルギーで、ドーズ
量]〜5XlOcm  で行い、第2ンースおよび第2
ドレイン領域(力(8)を約0.2μの深さに形成する
。また第2ソースおよび第2ドレイン領域(71(8)
の巾は厚いシラノール化合物(6)でマスクされるので
、ゲート電極(4)およびフィールド酸化膜(2)端よ
り内側に約2μ入ったところに形成される。
This step is one of the features of the present invention, in which N-type impurities are ion-implanted using the difference in thickness of the silanol compound (6) to form deep second source and drain regions (7).
) (81 is formed. The ion implantation is performed with phosphorus (P) at an acceleration energy of 60 KeV and a dose of ~5XlOcm.
A drain region (71(8)) is formed to a depth of about 0.2μ. A second source and a second drain region (71(8)
The width is masked with a thick silanol compound (6), so it is formed approximately 2 μm inward from the edges of the gate electrode (4) and field oxide film (2).

本発明の第5の工程は第5図に示す如(、基板(1)全
体を加熱して浅いN型の第1ソースおよび第1ドレイン
領域(9)(10)を拡散することにある。
The fifth step of the present invention, as shown in FIG. 5, consists in heating the entire substrate (1) to diffuse shallow N-type first source and drain regions (9) and (10).

本工程は本発明の特徴の1つであり、基板(1)全体を
加熱してシラノール化合物(6)に含まれたヒ素等のN
型不純物を基板(1)表面に拡散し、浅い第1ソースお
よび第1ドレイン領域(91(10)を形成する。
This step is one of the features of the present invention, in which the entire substrate (1) is heated to remove N such as arsenic contained in the silanol compound (6).
Type impurities are diffused into the surface of the substrate (1) to form shallow first source and first drain regions (91 (10)).

このとき前述した深い第2ソースおよび第2ドレイン領
域(7)(8)も更にドライブインされる。この結果チ
ャンネル長は第1ソースおよび第1ドレイン領域(91
00)で決められ、きわめて浅いので横方向の拡散も最
少限にとどめられる。
At this time, the aforementioned deep second source and second drain regions (7) and (8) are also driven in. As a result, the channel length of the first source and drain regions (91
00) and is extremely shallow, minimizing lateral diffusion.

本発明の最終工程は第6図に示す如く、ソースおよびド
レイン電極引1(12)を形成することにある。
The final step of the present invention is to form the source and drain electrodes 1 (12), as shown in FIG.

本工程ではシラ、ノール化合物(6)を二ノチング除去
した後、ゲート電極(4)を除(素子形成領域(3)表
面に酸化膜OJを形成し、その後コンタクト孔を介して
アルミニウム蒸着によるソースおよびドレイン電極(1
1)、Q21を形成する。
In this step, after removing the sila and nol compounds (6) by notching, the gate electrode (4) is removed (an oxide film OJ is formed on the surface of the element formation region (3), and then the source is formed by aluminum evaporation through the contact hole. and drain electrode (1
1), form Q21.

(へ)効果 本発明に依ればシラノール化合物(6)のスピンオンに
よる塗布での付着膜厚の差を利用して深い第2ノースお
よび第2ドレイン領域(7)(8)を第1ンース及び第
1ドレイン領域(91(101より内側に形成できるの
で、チャンネル長は浅い第1ンースおよび第1ドレイン
領域(9)QO)で決定できる。このためチャンネル長
は横方向拡散をほとんど考慮する必要がなく、はぼゲー
ト電極(4)と同等の巾にチャンネル長を設定できる。
(f) Effect According to the present invention, the deep second north and second drain regions (7) and (8) are formed in the first base and the deep second drain regions (7) and (8) by utilizing the difference in the deposited film thickness in spin-on coating of the silanol compound (6). Since the first drain region (91) can be formed inside the first drain region (101), the channel length can be determined by the shallow first drain region (9) and the first drain region (9) QO.For this reason, the channel length needs to take almost no account of lateral diffusion. Therefore, the channel length can be set to the same width as the gate electrode (4).

従ってゲート電極(4)をきわめてIJ狭に形成すれば
容易にショートチャンネルを有するMOS)ランジスタ
が量産可能となる。
Therefore, if the gate electrode (4) is formed to have an extremely narrow IJ, MOS transistors having a short channel can be easily mass-produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明を説明する断面図である。 主な図番の説明 (1)は半導体基板、(2)はフィールド酸化膜、(3
)は素子形成領域、(4)はゲート電極、(6)はシラ
ノール化合物、(71(81は第2ンースおよび第2ド
レイン領域、(91(10)6ま第1ソースおよび第1
ドレイン領域で第1図 7  1  δ 第6図
1 to 6 are cross-sectional views for explaining the present invention. Explanation of main figure numbers (1) is semiconductor substrate, (2) is field oxide film, (3)
) is the element formation region, (4) is the gate electrode, (6) is the silanol compound, (71 (81 is the second source and second drain region, (91 (10) 6 is the first source and the first
In the drain region Fig. 1 7 1 δ Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板にその一部を埋め込んだ厚いフィールド
酸化膜を形成する工程、該フィールド酸化膜で囲まれた
素子形成領域上にゲート電極を形成する工程、基板表面
に不純物を含んだシラノール化合物を塗布する工程、該
シラノール化合物を介してソースおよびドレイン領域を
イオン注入する工程、基板を熱処理してソースおよびド
レイン領域を拡散する工程とを具備することを特徴とす
るMO8半導体装置の製造方法。
1. A step of forming a thick field oxide film partially buried in the semiconductor substrate, a step of forming a gate electrode on the element formation region surrounded by the field oxide film, and a step of forming a silanol compound containing impurities on the surface of the substrate. A method for manufacturing an MO8 semiconductor device, comprising the steps of coating, ion-implanting the source and drain regions through the silanol compound, and heat-treating the substrate to diffuse the source and drain regions.
JP18868682A 1982-10-26 1982-10-26 Manufacture of mos semiconductor device Pending JPS5976475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18868682A JPS5976475A (en) 1982-10-26 1982-10-26 Manufacture of mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18868682A JPS5976475A (en) 1982-10-26 1982-10-26 Manufacture of mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS5976475A true JPS5976475A (en) 1984-05-01

Family

ID=16228057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18868682A Pending JPS5976475A (en) 1982-10-26 1982-10-26 Manufacture of mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS5976475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641283A (en) * 1987-06-23 1989-01-05 Mitsubishi Electric Corp Manufacture of semiconductor device
WO2020116340A1 (en) * 2018-12-07 2020-06-11 東レ株式会社 Method for producing semiconductor element and method for producing solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641283A (en) * 1987-06-23 1989-01-05 Mitsubishi Electric Corp Manufacture of semiconductor device
WO2020116340A1 (en) * 2018-12-07 2020-06-11 東レ株式会社 Method for producing semiconductor element and method for producing solar cell
CN113169248A (en) * 2018-12-07 2021-07-23 东丽株式会社 Method for manufacturing semiconductor element and method for manufacturing solar cell
JPWO2020116340A1 (en) * 2018-12-07 2021-10-14 東レ株式会社 Manufacturing method of semiconductor elements and manufacturing method of solar cells

Similar Documents

Publication Publication Date Title
US4523213A (en) MOS Semiconductor device and method of manufacturing the same
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
JPS63305546A (en) Manufacture of semiconductor integrated circuit device
JPS5976475A (en) Manufacture of mos semiconductor device
JPH1032330A (en) Manufacture of lateral mos transistor
JPS62266829A (en) Formation of shallow junction layer
JPH0831601B2 (en) Method for manufacturing semiconductor device
JPS5978575A (en) Manufacture of mos type semiconductor device
JPS59161870A (en) Manufacture of semiconductor device
JPS60161671A (en) Manufacture of mos semiconductor device
US6207520B1 (en) Rapid thermal anneal with a gaseous dopant species for formation of lightly doped regions
JPH01179455A (en) Manufacture of semiconductor device
JPS62266830A (en) Formation of shallow junction layer
JPS62120081A (en) Manufacture of mos semiconductor device
JPH065679B2 (en) Method for manufacturing MOS semiconductor device
JPS63302566A (en) Manufacture of mos semiconductor device
JPS6213026A (en) Manufacture of semiconductor device
JPS61251131A (en) Manufacture of semiconductor device
JPS59103353A (en) Manufacture of semiconductor device
JPS61125165A (en) Manufacture of semiconductor device
JPS61289668A (en) Manufacture of semiconductor device
JPH04271128A (en) Manufacture of semiconductor device
JPS63144575A (en) Manufacture of semiconductor device
JPH03222435A (en) Manufacture of semiconductor device
JPH05110004A (en) Manufacture of semiconductor device