JPS5976418A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS5976418A
JPS5976418A JP57186756A JP18675682A JPS5976418A JP S5976418 A JPS5976418 A JP S5976418A JP 57186756 A JP57186756 A JP 57186756A JP 18675682 A JP18675682 A JP 18675682A JP S5976418 A JPS5976418 A JP S5976418A
Authority
JP
Japan
Prior art keywords
evaporation
evaporation material
rod
heated
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57186756A
Other languages
Japanese (ja)
Inventor
Sunao Matsubara
松原 直
Juichi Shimada
嶋田 寿一
Nobuo Nakamura
信夫 中村
Masatoshi Utaka
正俊 右高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57186756A priority Critical patent/JPS5976418A/en
Publication of JPS5976418A publication Critical patent/JPS5976418A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a thin film of high purity at wide region from low vacuum degree to super high vacuum degree, by a method wherein high-frequency heating system is adopted, and evaporation material itself is heated to evaporate the evaporation material. CONSTITUTION:Top end of a rod evaporation material 1 standing upright is heated by a high-frequency coil 3. Then a substrate 4 is installed above the material 1. Top end of the heated rod 1 is melted into liquid state thereby a melted liquid 2 is formed. When an evaporation film is formed on surface of the substrate 4, a shutter 8 is opened. The formed evaporation film has similar purity to that of the rod evaporation material. Since the material 1 serves also as suscepter for the melted liquid 2 and has the same material property as the melted liquid 2, quality of the evaporation material is maintained well. Evaporation source in this method not only has high purity but also acts at even high gas pressure, for example, at hydrogen gas atmosphere of about 10<-2>Torr.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜の製造方法に関し、詳しくは棒状にした蒸
発材料の一方の先端を高周波加熱方式により加熱して、
蒸着する薄膜の製造法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for producing a thin film, and more specifically, the present invention relates to a method for manufacturing a thin film, and more specifically, heating one tip of a rod-shaped evaporation material using a high-frequency heating method.
This invention relates to a method for producing a thin film to be deposited.

〔従来技術〕[Prior art]

従来、一般的な蒸着法として、抵抗加熱蒸着法、電子ビ
ーム蒸着法およびスパッタ蒸着法などが知られている。
Conventionally, resistance heating evaporation, electron beam evaporation, sputter evaporation, and the like are known as general evaporation methods.

これらの中で、超高真空(〜10−10torr )か
ら低真空(〜10torr )の広範囲の真空中で蒸着
できる方法は、抵抗加熱蒸着法程度である。抵抗加熱方
式による蒸着法は、蒸発される材料を高温加熱するため
に、蒸発材料とは異なシ、かつ、よシ高融点材料を加熱
源として加熱昇温し、間接的に蒸発材料を加熱、蒸着し
ていた。しかし、この方式では高融点材料と蒸発材料と
の反応が生ずるのはさけられず、蒸発材料の純度の低下
をまねき、ひいては、蒸着膜質の純度低下となっていた
。そのため、高融点材料は、蒸発材料との反応によ、!
71回まだは複数回の使用で交換しなければならないの
が常であった。また電子ビーム蒸着法では、高純度の薄
膜が得られるが、真空度1O−5torr程度以上の雰
囲気ガスや反応ガス中で用いることは出来なかった。
Among these methods, resistance heating vapor deposition is the only method that can perform vapor deposition in a wide range of vacuum conditions, from ultra-high vacuum (~10-10 torr) to low vacuum (~10 torr). In the vapor deposition method using the resistance heating method, in order to heat the material to be evaporated to a high temperature, a material with a higher melting point that is different from the evaporating material is used as a heat source to raise the temperature, indirectly heating the evaporating material, It was vapor deposited. However, in this method, a reaction between the high melting point material and the evaporation material cannot be avoided, leading to a decrease in the purity of the evaporation material, which in turn leads to a decrease in the purity of the deposited film. Therefore, high melting point materials react with vaporized materials!
71 times It was common for the device to have to be replaced after multiple uses. Further, although a highly pure thin film can be obtained by the electron beam evaporation method, it cannot be used in an atmospheric gas or a reaction gas with a degree of vacuum of about 10-5 torr or higher.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、抵抗加熱方式や電子ヒーム蒸着方式に
変わるものとして、高周波加熱方式を採用し、かつ蒸発
材料自体の加熱により蒸発材料を蒸着することにより、
真空度10−1ltorr程度以上の雰囲気ガスや反応
ガス中において、高純度の薄膜で得る方法を提供するこ
とにある。
The purpose of the present invention is to adopt a high-frequency heating method as an alternative to the resistance heating method or the electronic beam evaporation method, and to deposit the evaporation material by heating the evaporation material itself.
The object of the present invention is to provide a method for obtaining a highly pure thin film in an atmospheric gas or a reaction gas having a degree of vacuum of about 10 -1 ltorr or higher.

〔発明の概要〕[Summary of the invention]

高周波加熱を用いた蒸着法としては、第1図に示した様
に、るつぼ10の中に蒸発材料11を添加し、るつぼ1
0の外側から高周波加熱用コイル12で、蒸発材料11
を直接的あるいは間接的に加熱して蒸着が行なわれてい
た。この方式では少なくとも、るつぼ10と蒸発材料1
1とが高温加熱状態で反応し、蒸発材料および形成され
た蒸着膜質の純度低下を寸ねき、抵抗加熱蒸着方式と同
様な欠点を有する。
As shown in FIG. 1, the vapor deposition method using high-frequency heating involves adding an evaporation material 11 into a crucible 10,
evaporation material 11 from the outside of 0 with high frequency heating coil 12.
Vapor deposition was performed by heating directly or indirectly. In this method, at least the crucible 10 and the evaporated material 1
This method has the same drawbacks as the resistance heating vapor deposition method, as it reacts with 1 under high temperature heating, which almost impairs the purity of the evaporation material and the quality of the deposited film formed.

本発明は、高周波加熱蒸着方式において、るつほを使用
しないで蒸発材料を蒸着させることに特徴がある。すな
わち、棒状蒸発材料の一方の先端だけを高周波加熱で加
熱昇温し、蒸発させるものである。
The present invention is characterized in that the evaporation material is deposited using a high-frequency heating evaporation method without using a melting method. That is, only one tip of the rod-shaped evaporation material is heated and heated by high-frequency heating to evaporate it.

〔実施例〕〔Example〕

以下、本発明を実施例を参照して詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 第2図は、本発明の1実施例を示し、直立したシリコン
の棒状蒸発材料1の上部先端を、高周波コイル3で加熱
している状態を示しである。このれている。ペルジャー
5内の真空度の制御は、ガス導入系6からのガス量の制
御および真空系7による排気量の制御によって行なった
。加熱されたシリコン棒1の先端は、融解され液体状態
となって融液2が形成される。適度に加熱されたシリコ
ン融液2はその表面張力によシ棒状先端から流れ落ちる
ことがないように液温度が制御される。基板4の面上に
、蒸着シリコン膜を形成するときは、シャッター8を開
放して行なわれる。形成されたシリコン蒸着膜は、棒状
蒸発材料と同程度の純度のものが得られた。薄膜形成に
伴なう蒸発材料の補給は、本発明では棒状蒸発材料1を
上方に上げることによシ実現できる。棒状蒸発材料1は
、シリコン融液2のサセプターとしての作用もあシ、か
つシリコン融液2と同材質であるため、蒸発材料の品質
は良好に維持できる。
Embodiment 1 FIG. 2 shows an embodiment of the present invention, in which the upper tip of an upright silicon rod-shaped evaporation material 1 is heated by a high-frequency coil 3. This is happening. The degree of vacuum in the Pelger 5 was controlled by controlling the amount of gas from the gas introduction system 6 and controlling the amount of exhaust from the vacuum system 7. The tip of the heated silicon rod 1 is melted into a liquid state to form a melt 2. The temperature of the appropriately heated silicon melt 2 is controlled so that it does not flow down from the tip of the rod due to its surface tension. When forming a vapor-deposited silicon film on the surface of the substrate 4, the shutter 8 is opened. The silicon evaporated film thus formed had a purity comparable to that of the rod-shaped evaporated material. In the present invention, replenishment of the evaporation material accompanying thin film formation can be realized by lifting the rod-shaped evaporation material 1 upward. Since the rod-shaped evaporation material 1 also acts as a susceptor for the silicon melt 2 and is made of the same material as the silicon melt 2, the quality of the evaporation material can be maintained at a good level.

上記のように本発明における蒸発源は、高純度であるば
かυでなく、電子ビームを用いた蒸発源と異なり、はる
かに高いガス圧力中で動作出来る。
As described above, the evaporation source of the present invention is not a highly pure υ, and unlike an evaporation source that uses an electron beam, it can operate at a much higher gas pressure.

例えば、真空度I Q”” torr程度の水素ガス雰
囲気中でも動作させることが出来、水素を含む高純度の
シリコン膜を容易に形成することが出来た。
For example, it was possible to operate in a hydrogen gas atmosphere with a vacuum degree of IQ"" torr, and a high purity silicon film containing hydrogen could be easily formed.

またこの方法によれば、シラン(SiH4)のグロー放
電分解法などによるシリコン膜形成法に比べてはるかに
速い100人/8ec程度の堆積速度が得られると言う
特徴も合せもつことが認められた。
Additionally, this method has been found to have the characteristic that a deposition rate of about 100 people/8 ec can be obtained, which is much faster than silicon film formation methods such as glow discharge decomposition of silane (SiH4). .

実施例2 第3図は、第2図に示した装置を逆にした構造になって
いる。すなわち、第3図はシリコンの棒状蒸発材料1の
下部先端を、高周波コイル3で加熱している。この場合
、基板4は棒状蒸発材料1の下方に設置される。高周波
コイル3で適度に加熱融解されたシリコン融液2は、該
融液2の表面張力によシ棒状シリコン蒸発材料1から流
れ落ちることはない。薄膜の形成は、実施例1と同様に
して行なわれる。
Embodiment 2 FIG. 3 shows a structure in which the apparatus shown in FIG. 2 is reversed. That is, in FIG. 3, the lower tip of a rod-shaped silicon evaporation material 1 is heated by a high-frequency coil 3. In this case, the substrate 4 is placed below the rod-shaped evaporation material 1 . The silicon melt 2 heated and melted appropriately by the high frequency coil 3 does not flow down from the rod-shaped silicon evaporation material 1 due to the surface tension of the melt 2. The thin film is formed in the same manner as in Example 1.

実施例3 第4図は、1つの高周波加熱用コイル3に対して棒状蒸
発材料1を複数個設けた例を示す。
Example 3 FIG. 4 shows an example in which a plurality of rod-shaped evaporation materials 1 are provided for one high-frequency heating coil 3.

第4図は、加熱融解されている蒸発材料は1個の場合を
示しているが、目的に応じ複数個同時に加熱融解するこ
ともできる。この場合、複数個設置された蒸発材料はい
ずれも同じ素材である必要はなく、異種蒸発材料を設置
することができる。
Although FIG. 4 shows the case where only one evaporation material is heated and melted, a plurality of evaporation materials may be heated and melted simultaneously depending on the purpose. In this case, the plurality of evaporation materials installed need not all be of the same material, and different types of evaporation materials can be installed.

第5図は、第2図に示した蒸発源を1つのペルジャー5
内に複数個設置した例を示し、いずれもシールド板9に
よって蒸発源同士の電気的な相互作用がないように蒸発
源がシールドされている。
FIG. 5 shows the evaporation source shown in FIG.
In each case, the evaporation sources are shielded by a shield plate 9 to prevent electrical interaction between the evaporation sources.

この場合、蒸発源として第4図に示した構造の蒸発源を
設置することもできる。
In this case, an evaporation source having the structure shown in FIG. 4 may be installed as the evaporation source.

第4図および第5図に示した構造の装置は、第3図と同
様に逆の構造の装置にすることも可能である。
The device having the structure shown in FIGS. 4 and 5 can also be made into a device having the opposite structure as in FIG. 3.

第4図および第5図の構造の装置を用いることにより単
体のみではなく、化合物もしくは多層の蒸着膜を形成す
ることも可能である。
By using the apparatus having the structure shown in FIGS. 4 and 5, it is possible to form not only a single film but also a compound or multilayer vapor deposited film.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば蒸発源である蒸発材料
の純度が索に良好に維持され、かつ蒸発  ・材料と同
程度の純度の膜質が低真空度から超高真空度の広範囲に
わたり形成できる。上記実施例1および実施例2におい
ては、蒸発材料としてシリコンを用いた場合について説
明しだが、シリコン以外の半導体および導体を用いても
同じ効果が得られる。さらに加熱昇温した場合、固体か
ら気体へと変化する昇華性の物質を蒸発材料として使用
しても同じである。この場合は、融液を表面張力によυ
サセプターである蒸発材料棒に保持する必要性がないた
め、蒸着の操作方法はよυ簡単となる。
As described above, according to the present invention, the purity of the evaporation material, which is the evaporation source, is well maintained in the cable, and a film quality comparable to that of the evaporation material is formed over a wide range of degrees from low vacuum to ultra-high vacuum. can. In the first and second embodiments described above, the case where silicon is used as the evaporation material is explained, but the same effect can be obtained by using semiconductors and conductors other than silicon. The same effect can be obtained even if a sublimable substance that changes from solid to gas when the temperature is further heated is used as the evaporation material. In this case, the melt is caused by surface tension υ
Since there is no need to hold the evaporation material in the susceptor, the evaporation process becomes much simpler.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の高周波蒸着装置を示す模式図、第2図
乃至第5図は、それぞれ本発明の異なる実施例を示す模
式図である。 1・・・棒状蒸発材料、2・・・シリコン融液、3・・
・高周波加熱用コイル、4・・・基板、5・・・ペルジ
ャー、6・・・ガス導入系、7・・・真空系、8・・・
シャッター、9・・・シールド板、10・・・るつぼ、
11・・・蒸発材料、12・・・高周波加熱用コイル。 151 図     薗 、。 V 第 3 図 ’′fJ4 ] 第  5  図     − 1山。 4 ノ2 ノJ /I 7 .5 し1
FIG. 1 is a schematic diagram showing a conventional high-frequency vapor deposition apparatus, and FIGS. 2 to 5 are schematic diagrams showing different embodiments of the present invention. 1... Rod-shaped evaporation material, 2... Silicon melt, 3...
・High frequency heating coil, 4... Substrate, 5... Pelger, 6... Gas introduction system, 7... Vacuum system, 8...
Shutter, 9... Shield plate, 10... Crucible,
11... Evaporation material, 12... High frequency heating coil. 151 Figure Sono. V Fig. 3''fJ4] Fig. 5 - Mt. 1. 4 ノ 2 ノ J /I 7 . 5 shi1

Claims (1)

【特許請求の範囲】[Claims] 棒状の蒸発材料の先端を高周波加熱することによシ基板
表面に上記蒸発材料の薄膜を形成することを特徴とする
薄膜の製造方法。
1. A method for producing a thin film, comprising forming a thin film of the evaporation material on the surface of a substrate by high-frequency heating the tip of a rod-shaped evaporation material.
JP57186756A 1982-10-26 1982-10-26 Manufacture of thin film Pending JPS5976418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186756A JPS5976418A (en) 1982-10-26 1982-10-26 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186756A JPS5976418A (en) 1982-10-26 1982-10-26 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPS5976418A true JPS5976418A (en) 1984-05-01

Family

ID=16194083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186756A Pending JPS5976418A (en) 1982-10-26 1982-10-26 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPS5976418A (en)

Similar Documents

Publication Publication Date Title
US4905072A (en) Semiconductor element
CA1052009A (en) Method for fabricating a semiconductor memory device
US3540926A (en) Nitride insulating films deposited by reactive evaporation
JPS59156998A (en) Boron nitride film and its manufacture
US4179528A (en) Method of making silicon device with uniformly thick polysilicon
JPS5884111A (en) Improved plasma deposition for silicon
JPS6223450B2 (en)
JPS5976418A (en) Manufacture of thin film
JP2877764B2 (en) Method for producing tin oxide thin film and gas sensing sensor using the thin film
JPH03122266A (en) Production of thin nitride film
JPH079059B2 (en) Method for producing carbon thin film
JP2881929B2 (en) Manufacturing method of alumina film
JPH04219301A (en) Production of oxide superconductor thin film
CN108598266B (en) Perovskite photoelectric device based on tunneling effect and preparation method thereof
Hilleringmann Deposition Process
JPS61104070A (en) Formation of thin film
JPH08288273A (en) Manufacture of tin barrier film and device therefor
JPH0365501A (en) Preparation of oxide thin film
JPH0456446B2 (en)
JPH048506B2 (en)
JPH026385A (en) Method for forming thin film and apparatus therefor
JPS62213115A (en) Manufacture of polycrystal silicon thin film and device therefor
JPS58110047A (en) Manufacture of semiconductor device
JPS6226869A (en) Manufacture of photovoltaic device
JPH09289341A (en) Formation of thin film and formation of superconducting element