JPH0456446B2 - - Google Patents

Info

Publication number
JPH0456446B2
JPH0456446B2 JP58178084A JP17808483A JPH0456446B2 JP H0456446 B2 JPH0456446 B2 JP H0456446B2 JP 58178084 A JP58178084 A JP 58178084A JP 17808483 A JP17808483 A JP 17808483A JP H0456446 B2 JPH0456446 B2 JP H0456446B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
cluster
gas
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58178084A
Other languages
Japanese (ja)
Other versions
JPS6072218A (en
Inventor
Hitoshi Hasegawa
Tomihiro Yonenaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17808483A priority Critical patent/JPS6072218A/en
Publication of JPS6072218A publication Critical patent/JPS6072218A/en
Publication of JPH0456446B2 publication Critical patent/JPH0456446B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Description

【発明の詳細な説明】 (ア) 発明の技術分野 本発明は半導体装置あるいは電子部品での薄膜
を形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (A) Technical Field of the Invention The present invention relates to a method for forming a thin film in a semiconductor device or electronic component.

(イ) 技術の背景 薄膜は、半導体装置での絶縁層、電極配線層な
どあるいは薄膜素子である薄膜トランジスタ
(TFT)、抵抗素子(例えば、サーメツト)、容量
素子、磁性薄膜素子、超電導薄膜素子などに使用
されており、一般的に基板上に真空蒸着、スパツ
タリング、イオンプレーテイング、気相反応など
によつて得られる所定性質の膜である。
(b) Background of the technology Thin films are used in insulating layers, electrode wiring layers, etc. in semiconductor devices, and thin film elements such as thin film transistors (TFTs), resistive elements (e.g., cermets), capacitive elements, magnetic thin film elements, superconducting thin film elements, etc. It is a film with predetermined properties that is generally obtained on a substrate by vacuum evaporation, sputtering, ion plating, gas phase reaction, etc.

本発明は上述した各種薄膜形成方法における真
空蒸着法から発展した反応性蒸着法をさらに発展
させた薄膜形成方法に関するものである。
The present invention relates to a thin film forming method that is a further development of the reactive vapor deposition method developed from the vacuum vapor deposition method among the various thin film forming methods described above.

(ウ) 従来技術と問題点 反応性蒸着法においては、抵抗加熱、電子ビー
ム加熱などによつて蒸発させた蒸着物質と反応性
ガスとを反応させて基板上に所定の薄膜を形成す
る。例えば、窒化アルミニウム(AlN)膜を形
成する場合には、Alを電子ビーム又はヒーター
によつて加熱し蒸発させてAlビームを形成し、
NH3ガス雰囲気中にて1000ないし1200℃の温度
に加熱された基板〔例えば、シリコン(Si)基
板〕を加熱しておくわけである。この基板加熱温
度では半導体装置の製造過程で先に形成された不
純物導入領域のプロフイルが広がつてしまい、ま
た、加熱冷却での熱膨張係数の差による内部応
力・歪が大きい。この方法では薄膜形成に必要な
エネルギ(反応エネルギを含む)が基板の熱エネ
ルギに依存しているために高温にならざるえなか
つた。
(C) Prior Art and Problems In the reactive vapor deposition method, a predetermined thin film is formed on a substrate by reacting a vapor deposition material evaporated by resistance heating, electron beam heating, etc. with a reactive gas. For example, when forming an aluminum nitride (AlN) film, Al is heated and evaporated with an electron beam or heater to form an Al beam,
A substrate (for example, a silicon (Si) substrate) is heated to a temperature of 1000 to 1200°C in an NH 3 gas atmosphere. At this substrate heating temperature, the profile of the impurity introduced region formed earlier in the manufacturing process of the semiconductor device becomes wider, and internal stress and strain due to differences in thermal expansion coefficients during heating and cooling are large. In this method, the energy required to form a thin film (including reaction energy) depends on the thermal energy of the substrate, so the temperature must be high.

(エ) 発明の目的 本発明の目的は、基板の加熱温度を従来1000℃
以上であつたものを800℃以下にして反応性蒸着
法による薄膜形成を行なうことである。
(iv) Purpose of the invention The purpose of the present invention is to reduce the heating temperature of the substrate to 1000°C.
The method is to form a thin film using a reactive vapor deposition method at a temperature below 800°C.

本発明の別の目的は、半導体装置の製造過程に
て既に形成された不純物導入領域の拡大を押えか
つ加熱冷却に伴つて発生する内部応力・歪を小さ
くすることのできる薄膜形成方法を提供すること
である。
Another object of the present invention is to provide a thin film forming method that can suppress the expansion of an impurity-introduced region that has already been formed in the manufacturing process of a semiconductor device and can reduce internal stress and strain that occur due to heating and cooling. That's true.

(オ) 発明の構成 上述の目的およびその他の目的が、加熱して蒸
発させた蒸着物質と反応性ガスとを反応させて基
板上に薄膜を形成する薄膜形成方法において、反
応性ガスを噴射ノズルから高真空中へ噴射するこ
とによつてクラスタのビームとし、これをイオン
化しかつ加速して基板へ向け、そしてこの基板へ
向かつてくる蒸着物質とこの基板表面上および表
面付近にて反応させることを特徴とする薄膜形成
方法によつて達成される。
(E) Structure of the Invention The above-mentioned object and other objects provide a thin film forming method in which a thin film is formed on a substrate by reacting a heated and evaporated deposition material with a reactive gas. A beam of clusters is produced by injecting the cluster into a high vacuum, ionizes and accelerates the beam, directs it toward the substrate, and causes it to react on and near the surface of the substrate with the evaporated material directed toward the substrate. This is achieved by a thin film forming method characterized by the following.

クラスタとは反応性ガスの分子が500ないし
2000個集つた塊状分子集団であり、分子相互は緩
く結合しており、イオン化されやすい。なお、イ
オン化されるときにはクラスタ全体で1個の分子
のみがイオン化されれば良い。
A cluster is a group of 500 or 500 reactive gas molecules.
It is a cluster of 2000 molecules, and the molecules are loosely bonded to each other and easily ionized. Note that when ionizing, only one molecule in the entire cluster needs to be ionized.

反応性ガスを噴射ノズルから高真空中(例え
ば、10-4〜10-7Torr程度)へ噴射することによ
つてクラスタのビームとすることができ、このク
ラスタを電子(electron)シヤワーでイオン化し
てプラスに帯電するとクラスタ・イオン・ビーム
とすることができる。このイオン化したクラスタ
を加速電極を利用して加速することで、このクラ
スタに大きな運動エネルギを持たせることができ
る。従来は薄膜形成エネルギが主として熱エネル
ギであつたのに、その一部をクラスタの有する運
動エネルギおよびイオンの電荷の力に置き換える
ことができるので、基板の加熱温度を800℃以下
にすることが可能となる。
A beam of clusters can be created by injecting reactive gas into a high vacuum (for example, around 10 -4 to 10 -7 Torr) from an injection nozzle, and this cluster can be ionized with an electron shower. When the ion beam is positively charged, it becomes a cluster ion beam. By accelerating this ionized cluster using an accelerating electrode, it is possible to give this cluster a large amount of kinetic energy. Conventionally, the energy for forming thin films was mainly thermal energy, but part of that can be replaced by the kinetic energy of the clusters and the force of the ion's charges, making it possible to reduce the heating temperature of the substrate to 800°C or less. becomes.

本発明に係る薄膜形成方法によつて、AlN、
SiO2、TaN、TiN、Ta2O5、Si3N4、Nb2O5など
の薄膜を半導体装置の一部として、あるいは、薄
膜素子の一部として形成することができる。反応
性ガスとしては酸素(O2)、窒素(N2)ガス、
NH3ガスなどが使用でき、蒸着物質には、Al、
Si、Ta、Nb、Hfなどが使用できる。
By the thin film forming method according to the present invention, AlN,
Thin films of SiO 2 , TaN, TiN, Ta 2 O 5 , Si 3 N 4 , Nb 2 O 5 and the like can be formed as part of a semiconductor device or as part of a thin film element. Reactive gases include oxygen (O 2 ), nitrogen (N 2 ) gas,
NH 3 gas etc. can be used, and the vapor deposition substances include Al,
Si, Ta, Nb, Hf, etc. can be used.

さらに、通常のクラスタイオンビーム蒸着法で
は、クラスタ化物質を坩堝に入れて蒸気化し、該
坩堝のノズルから噴射しなければならない。その
ために、特に高融点物質(すなわち、低蒸気圧物
質)、さらには坩堝(通常はカーボン坩堝を使用)
との反応性の強い金属をクラスタ化することは難
しい。本発明では、反応性クラスタイオンビーム
蒸着法での反応による化合物となるガス成分側と
蒸着物質成分側とで、ガス成分側をクラスタ化す
るので、蒸着物質成分側を通常の真空蒸着法によ
つて溶融蒸発させることができる。真空蒸着法で
あれば、電子ビームの電子銃加熱をも採用でき、
高温加熱や坩堝との反応性の問題は大幅に緩和さ
れる。
Furthermore, in the conventional cluster ion beam deposition method, the clustered material must be placed in a crucible, vaporized, and injected from a nozzle of the crucible. For this purpose, especially high melting point substances (i.e. low vapor pressure substances) and even crucibles (usually carbon crucibles are used)
It is difficult to cluster metals that are highly reactive with In the present invention, since the gas component side is clustered between the gas component side, which becomes a compound due to the reaction in the reactive cluster ion beam evaporation method, and the vapor deposition material component side, the vapor deposition material component side is formed by the normal vacuum evaporation method. It can be melted and evaporated. With the vacuum evaporation method, electron gun heating using an electron beam can also be used.
The problems of high temperature heating and reactivity with crucibles are greatly alleviated.

(カ) 発明の実施例 本発明に係る薄膜形成方法に従つてAlN膜をSi
基板状に次のようにして形成する。
(F) Embodiments of the invention An AlN film is formed using Si according to the method of forming a thin film according to the present invention.
It is formed into a substrate shape as follows.

アルミニウム(Al)を蒸発物質として電子ビ
ームを用いて溶融蒸発させる。このときには反応
容器内の圧力を約10-6Torrに維持する。反応ガ
スとしてN2ガスをSi基板の方へ向けてノズルよ
り噴射してクラスタのビームとする。電子シヤワ
ーにてクラスタをイオン化した後、2kvの加速電
圧にてクラスタを加速する。Si基板の温度を約
500℃に保持したままで、この基板上に約100n
m/分の蒸着速度でAlN薄膜が形成できる。
Aluminum (Al) is melted and evaporated using an electron beam as an evaporation material. At this time, the pressure inside the reaction vessel is maintained at approximately 10 -6 Torr. N 2 gas as a reactive gas is injected from a nozzle toward the Si substrate to form a cluster beam. After ionizing the clusters with an electronic shower, the clusters are accelerated with an acceleration voltage of 2 kV. The temperature of the Si substrate is approximately
Approximately 100n on this substrate while keeping it at 500℃
AlN thin films can be formed at a deposition rate of m/min.

SiO2膜を形成する場合には、シリコン(Si)
を蒸発物質として電子ビームを用いて溶融蒸発さ
せる。反応ガスとして酸素(O2)ガスを高真空
の反応容器内に噴射してクラスタのビームとし、
イオン化し、Si基板上にSiO2膜を成膜できる。
なお、Siは蒸気圧が低く、坩堝中で加熱し、クラ
スタ蒸着しようとするならば、2000℃前後の高温
加熱が必要となり、一方このような温度では坩堝
材料(カーボン)との反応が生じてしまう問題が
ある。本発明の方法であれば、反応ガスのO2(酸
素)をクラスタ化しておくので、Siを電子ビーム
蒸発させることができ、坩堝加熱の問題はない。
When forming a SiO 2 film, silicon (Si)
is melted and evaporated using an electron beam as an evaporative substance. Oxygen (O 2 ) gas is injected as a reaction gas into a high vacuum reaction vessel to form a cluster beam.
It can be ionized and a SiO 2 film can be formed on a Si substrate.
Note that Si has a low vapor pressure, so if you want to heat it in a crucible for cluster deposition, you will need to heat it to a high temperature of around 2000℃, and on the other hand, at such temperatures a reaction with the crucible material (carbon) will occur. There is a problem with it. According to the method of the present invention, since the reactant gas O 2 (oxygen) is clustered, Si can be evaporated with an electron beam, and there is no problem with crucible heating.

(キ) 発明の効果 従来の反応性蒸着法よりも基板の温度を低くし
て薄膜を形成することが本発明によつてできるの
で、基板の高温加熱に伴なう短所を回避すること
ができる。
(g) Effects of the invention The present invention allows formation of a thin film at a lower substrate temperature than in conventional reactive vapor deposition methods, thereby avoiding the disadvantages associated with high-temperature heating of the substrate. .

Claims (1)

【特許請求の範囲】[Claims] 1 加熱して蒸発させた蒸着物質と反応性ガスと
を反応させて基体上に薄膜を形成する薄膜形成方
法において、前記反応性ガスを噴射ノズルから高
真空中へ噴射することによつてクラスタのビーム
とし、これをイオン化しかつ加速して前記基板へ
向け、そしてこの基板へ向かつてくる前記蒸着物
質とこの基板表面上および表面付近にて反応させ
ることを特徴とする薄膜形成方法。
1. In a thin film forming method in which a thin film is formed on a substrate by reacting a heated and evaporated deposition substance with a reactive gas, clusters are formed by injecting the reactive gas into a high vacuum from an injection nozzle. A method for forming a thin film, characterized in that the beam is ionized and accelerated, directed toward the substrate, and reacted with the vapor deposition material directed towards the substrate on and near the surface of the substrate.
JP17808483A 1983-09-28 1983-09-28 Fabrication of thin film Granted JPS6072218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17808483A JPS6072218A (en) 1983-09-28 1983-09-28 Fabrication of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17808483A JPS6072218A (en) 1983-09-28 1983-09-28 Fabrication of thin film

Publications (2)

Publication Number Publication Date
JPS6072218A JPS6072218A (en) 1985-04-24
JPH0456446B2 true JPH0456446B2 (en) 1992-09-08

Family

ID=16042344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17808483A Granted JPS6072218A (en) 1983-09-28 1983-09-28 Fabrication of thin film

Country Status (1)

Country Link
JP (1) JPS6072218A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118518A (en) * 1985-11-19 1987-05-29 Ulvac Corp Formation of compound semiconductor
US6272535B1 (en) 1996-01-31 2001-08-07 Canon Kabushiki Kaisha System for enabling access to a body of information based on a credit value, and system for allocating fees

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898775A (en) * 1972-03-28 1973-12-14
JPS5462776A (en) * 1977-10-27 1979-05-21 Nec Corp Production of compound semiconductor thin films
JPS554719A (en) * 1978-06-22 1980-01-14 Nec Corp Pulse current driving unit for bubble
JPS5625772A (en) * 1979-08-09 1981-03-12 Mieko Kiyozawa Toy for training wearing of cloth for infant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898775A (en) * 1972-03-28 1973-12-14
JPS5462776A (en) * 1977-10-27 1979-05-21 Nec Corp Production of compound semiconductor thin films
JPS554719A (en) * 1978-06-22 1980-01-14 Nec Corp Pulse current driving unit for bubble
JPS5625772A (en) * 1979-08-09 1981-03-12 Mieko Kiyozawa Toy for training wearing of cloth for infant

Also Published As

Publication number Publication date
JPS6072218A (en) 1985-04-24

Similar Documents

Publication Publication Date Title
US5173327A (en) LPCVD process for depositing titanium films for semiconductor devices
US3904505A (en) Apparatus for film deposition
US4374162A (en) Thin-film deposition
JPS60186072A (en) Solar battery structure
JPS59156998A (en) Boron nitride film and its manufacture
JPH0347575B2 (en)
JPH0456446B2 (en)
US3101280A (en) Method of preparing indium antimonide films
JPH0524230B2 (en)
Yang et al. Condensation of metal and semiconductor vapors during nozzle expansion
JP3465848B2 (en) Production method of thin film using organometallic complex
JPS60197730A (en) Formation of polyimide film
JPH0290568A (en) Manufacture of thin film transistor
JPH0243334B2 (en)
US4966095A (en) Apparatus for forming a thin film
JPS6447850A (en) Manufacture of thermoelement
US3783031A (en) Method for producing evaporation inhibiting coating for protection of silicon-germanium and silicon-molybdenum alloys at high temperatures in vacuum
JP2951564B2 (en) Thin film formation method
KR20060084896A (en) Thin film forming method for fabricating semiconductor device and apparatus therefore
JPS5976418A (en) Manufacture of thin film
JPH042767A (en) Production of thin film
JPS62235466A (en) Vapor deposition material generator
JP2579166B2 (en) Plasma CVD apparatus and film forming method
JPS6360271A (en) Evaporating source device for aluminum
KR970011647B1 (en) Formation method of gate oxide for semiconductor