JPH042767A - Production of thin film - Google Patents
Production of thin filmInfo
- Publication number
- JPH042767A JPH042767A JP10405390A JP10405390A JPH042767A JP H042767 A JPH042767 A JP H042767A JP 10405390 A JP10405390 A JP 10405390A JP 10405390 A JP10405390 A JP 10405390A JP H042767 A JPH042767 A JP H042767A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- thin film
- plasma
- base material
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000463 material Substances 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000010408 film Substances 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims description 7
- 239000011364 vaporized material Substances 0.000 claims description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 3
- -1 polyethylene terephthalate Polymers 0.000 abstract description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 abstract description 3
- 239000005020 polyethylene terephthalate Substances 0.000 abstract description 3
- 229920005591 polysilicon Polymers 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 229920000307 polymer substrate Polymers 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は基材上に薄膜を形成する薄膜の製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a thin film, which forms a thin film on a substrate.
(従来の技術)
薄膜および薄膜材料は、エレクトロニクス分野をはじめ
として、多くの分野で用いられている。(Prior Art) Thin films and thin film materials are used in many fields including the electronics field.
化合物薄膜の製造方法としては、物理蒸着法、化学堆積
法、液相成長法などが知られている。Physical vapor deposition, chemical deposition, liquid phase growth, and the like are known as methods for producing compound thin films.
物理蒸着法には、真空蒸着法、スパッタリング法などが
よく知られている。Vacuum evaporation, sputtering, and the like are well known physical vapor deposition methods.
(発明が解決しようとする課題)
従来のよく知られている薄膜成性としてのスパッタリン
グ法は、成膜された薄膜と基材との付着強度は大きいが
堆積(成膜)速度が小さく量産性に乏しいものといえる
。真空蒸着法は、堆積速度は比較的大きく量産性に適用
し易いが、出−来た薄膜と基材との付着強度が小さい欠
点を有している。(Problems to be Solved by the Invention) The conventional sputtering method for forming thin films has a high adhesion strength between the formed thin film and the base material, but the deposition (film formation) speed is low and it is difficult to mass-produce. It can be said that there is a lack of Although the vacuum deposition method has a relatively high deposition rate and is easy to apply to mass production, it has the disadvantage that the adhesion strength between the resulting thin film and the substrate is low.
また化学堆積法としてCVD法がよ(知られているが堆
積速度が小さい。またCVD法は、化学反応を十分に生
じせしめるためには、−船釣には基材等を高温にする必
要があり、従って高分子等の比較的低融点の基材を使用
することが出来ないことになる。In addition, the CVD method is known as a chemical deposition method, but the deposition rate is low.Also, in order to cause a sufficient chemical reaction, the CVD method requires that the base material, etc., be heated to a high temperature for boat fishing. Therefore, it is not possible to use a base material with a relatively low melting point such as a polymer.
(課題を解決するための手段)
本発明は、従来法のような高温に基材を加熱する必要が
少なく、比較的低温で、しかも大きい薄膜の堆積速度で
、かつ基材と形成薄膜との付着強度も比較的大きい等の
薄膜物性の優れた化合物の薄膜を製造する方法を提供す
るものである。すなわち本発明は、基材上に複数種類の
材料を反応させて化合物の薄膜を形成するに際して、蒸
気化した材料(A)とプラズマ中に導入した気体状の他
の材料(B)とを、同一チャンバーに導き基材上に(A
)と(Ill)との反応した薄膜を形成せしめることを
特徴とする薄膜製造方法である。(Means for Solving the Problems) The present invention eliminates the need to heat the substrate to a high temperature as in the conventional method, and achieves a relatively low temperature, a high thin film deposition rate, and a bond between the substrate and the formed thin film. The present invention provides a method for producing a thin film of a compound with excellent thin film properties such as relatively high adhesion strength. That is, in the present invention, when forming a thin film of a compound by reacting multiple types of materials on a substrate, a vaporized material (A) and another gaseous material (B) introduced into a plasma, into the same chamber and onto the substrate (A
) and (Ill) are reacted to form a thin film.
本発明は、基材上に、蒸気化した第1の材料(A)と、
プラズマ中に導入した気体状の材料(B)とを(結果と
して(B)から発生するラジカルとを)、基材上に同時
に導くことで、(A)と(B)とを反応させ、(A)と
(B)とから反応した化合物の薄膜を形成するものであ
る。The present invention includes a vaporized first material (A) on a base material,
By simultaneously guiding the gaseous material (B) introduced into the plasma (and the radicals generated from (B) as a result) onto the base material, (A) and (B) are allowed to react, and ( A thin film of a compound reacted with A) and (B) is formed.
本発明における第1の材料は、(すなわち(A)は)特
に限定はされないが好ましいものとしては、Li1Be
s BN C1Na5 Mg1Al、St、PN Sl
に1Ca1SC1Tt、V% Cr1Mn1Fe1Co
x NUN Cu1Zn1 Ins Ga)Ges A
S、Ses Y、Zrs NblMo、PdlAg1C
d1Sbv TelTblMo5 PdlAg1 ca
N Sbs Tet DVN HOlSn。The first material in the present invention (that is, (A)) is not particularly limited, but is preferably Li1Be.
s BN C1Na5 Mg1Al, St, PN Sl
1Ca1SC1Tt, V% Cr1Mn1Fe1Co
x NUN Cu1Zn1 Ins Ga) Ges A
S, Ses Y, Zrs NblMo, PdlAg1C
d1Sbv TelTblMo5 PdlAg1 ca
N Sbs Tet DVN HOlSn.
P blB ilS r OlS i 02 カラtニ
ル群の内、少なくとも一種類からなるものであり、本発
明における第2の材料、すなわち(B)は、特に限定は
されないが、好ましいものとしてはH2、N2.02、
F2、C12,5iH4、B(CH3)3、NH3、C
H4、C2H2、PH3、B2H8からなる群の内少な
くとも一種類からなるものである。P blB ilS r OlS i 02 The second material in the present invention, that is, (B), is not particularly limited, but is preferably H2, N2. .02,
F2, C12,5iH4, B(CH3)3, NH3, C
It consists of at least one type from the group consisting of H4, C2H2, PH3, and B2H8.
より具体的に本発明を説明する。第1図は本発明におけ
る1例の装置の概略を示す図である。The present invention will be explained more specifically. FIG. 1 is a diagram schematically showing an example of a device according to the present invention.
チャンバ13、チャンバ2は真空ライン(ガス排気口)
を有しており、チャンバ内を大気圧より低圧にすること
ができる。チャンバz1内部には第Iの材料を入れるた
めの“るつぼ”5.が設けられており、このるつぼは、
EBガン6、(電子銃)または抵抗加熱装置により加熱
され、中の材料は蒸気となる。第1の材料を2種以上使
用するときは、5、は2ヶ以上設けることにより対応す
る。Chamber 13 and chamber 2 are vacuum lines (gas exhaust ports)
The pressure inside the chamber can be lower than atmospheric pressure. Inside the chamber z1 is a "crucible" for containing the I-th material5. is provided, and this crucible is
It is heated by an EB gun 6 (electron gun) or a resistance heating device, and the material inside becomes vapor. When two or more types of first materials are used, 5 is handled by providing two or more.
るつぼ上部には、基材3.が基材ホルダー4.にょって
支持されている。基材ホルダー4.は任意の角度θで固
定されている。さらに基材および基材ホルダーは、ヒー
ター12.によって加熱されてもよいが、但し基材が高
分子フィルムのような高分子基材であるときは、勿論、
基材に損傷のおよぼさないように制御されねばならない
。At the top of the crucible, there is a base material 3. is the base material holder 4. It is supported by Nyo. Base material holder 4. is fixed at an arbitrary angle θ. Further, the substrate and the substrate holder are connected to the heater 12. However, when the base material is a polymer base material such as a polymer film, of course
It must be controlled so as not to cause damage to the substrate.
一方、第2の材料、すなわち(B)はチャンバ1゜内に
、ガス導入口11.から導入される。導入された第2の
材料は、マイクロ波電源9.(通常は2゜45GHz程
度)により発生するマイクロ波が導波管10.を通り第
2の材料と接することにより、励起されプラズマが発生
する。この発生したプラズマは、好ましい適応として、
コイル8.により磁場にとじこめられ、そのラジカル濃
度が高められる、この際の磁場の磁束密度は100〜3
000ガウスが好ましい。On the other hand, the second material, namely (B), is introduced into the chamber 1° through the gas inlet 11. introduced from. The second material introduced is a microwave power source 9. (usually around 2°45 GHz) microwaves generated by the waveguide 10. When the material passes through the material and comes into contact with the second material, it is excited and generates plasma. This generated plasma, as a favorable adaptation,
Coil 8. The radicals are confined in the magnetic field and the concentration of the radicals is increased. At this time, the magnetic flux density of the magnetic field is 100~3
000 Gauss is preferred.
このプラズマ中で発生したラジカルと、るつぼで蒸気化
された第1の材料とが同時に基材上、または基材近傍に
供給され、反応し、基材上に化合物の薄膜が堆積する。The radicals generated in this plasma and the first material vaporized in the crucible are simultaneously supplied onto the base material or near the base material, react, and deposit a thin film of the compound on the base material.
チャンバ内の圧力は、電子銃の動作を安定させるために
、I X 10−3Torr以下であることが好ましい
。The pressure within the chamber is preferably I x 10-3 Torr or less in order to stabilize the operation of the electron gun.
(実施例)
以下に本発明の実施例を示すが本発明はこれらの実施例
に限定されるものではない。(Examples) Examples of the present invention are shown below, but the present invention is not limited to these Examples.
*実施例−1
基材としてポリエチレンテレフタレートヲ用いて、その
表面に半導体膜として水素化アモルファスシリコンを以
下の条件で堆積させた。*Example-1 Polyethylene terephthalate was used as a base material, and hydrogenated amorphous silicon was deposited as a semiconductor film on the surface thereof under the following conditions.
製造条件
真 空 度: I X 10−’Torr第
1 の 材料、ポリシリコン(N型) (s+)第
2 の 材 料 水素ガス(H2)マイクロ波パワー
200W
EBガン出カニ EtKV、 50 C)+A磁 束
密 度:1000ガウス
得られた膜の暗導電率はI X 10−12S−c+a
−’光導電率はI X 10−’S−cm−’であった
。Manufacturing conditions Vacuum degree: I
2 Materials Hydrogen gas (H2) Microwave power
200W EB gun output EtKV, 50 C) + A magnetic flux
Density: 1000 Gauss Dark conductivity of the obtained film is I x 10-12S-c+a
-' photoconductivity was I x 10-'S-cm-'.
*実施例−2
基材としてガラス基板を用いて、その表面に絶縁膜とし
てSiO2膜を以下の条件で堆積させた。*Example-2 A glass substrate was used as a base material, and a SiO2 film was deposited as an insulating film on the surface thereof under the following conditions.
製膜条件
真 空 度: I X 10−5Torr第
1 の材料:ポリシリコン(N型)(Sl)第 2
の 材 料 酸素ガス(02)マイクロ波パワー:12
00W
EBガン出カニ 10 KVN 100 mA磁 束
密 度: 2000ガウス
基 材 温 度: 200℃
得られた膜の導電率は、I X 10−12s−c冨−
1であったO
*比較例−1
基材としてポリエチレンテレフタレートを用いて、その
表面に半導体膜として水素化アモルファスシリコンを以
下の条件で堆積させた。Film forming conditions Vacuum degree: IX 10-5 Torr First material: Polysilicon (N type) (Sl) Second
Material Oxygen gas (02) Microwave power: 12
00W EB gun output 10 KVN 100 mA magnetic flux
Density: 2000 Gauss Base material Temperature: 200°C The conductivity of the obtained film is I x 10-12s-c
1. *Comparative Example-1 Using polyethylene terephthalate as a base material, hydrogenated amorphous silicon was deposited as a semiconductor film on the surface thereof under the following conditions.
このとき比較のためプラズマは発生させなかった。At this time, no plasma was generated for comparison.
製膜条件
真 空 度 : I X 1 0−’Torr
第1の材料:ポリシリコン(N型)
第2の材料:水素ガス
磁 場:なし
得られた膜の暗導電率は、I X 10−”S−c市−
1光導電率はI X 10−”S−c箇−1であり、光
感度は得られなかった。Film forming conditions Vacuum degree: IX10-'Torr
First material: Polysilicon (N type) Second material: Hydrogen gas Magnetic field: None The dark conductivity of the obtained film is I
The photoconductivity was 1 x 10-''Sc-1, and no photosensitivity was obtained.
(発明の効果)
本発明によれば、比較的低温または常温での基材を用い
て、化合物の薄膜を基材上に、製造しうるし、また成膜
されたものの物性においても優れたものが製造しうる。(Effects of the Invention) According to the present invention, a thin film of a compound can be produced on a base material using a base material at a relatively low temperature or room temperature, and the film formed can also have excellent physical properties. Can be manufactured.
第1図は、本発明における1例の装置の概略を示す図で
ある。FIG. 1 is a diagram schematically showing an example of an apparatus according to the present invention.
Claims (1)
膜を形成するに際して、蒸気化した材料(A)と、プラ
ズマ中に導入した気体状の他の材料(B)とを、同一チ
ャンバに導き、基材上に(A)と(B)との反応した薄
膜を形成せしめることを特徴とする薄膜製造方法。(1) When forming a thin film of a compound by reacting multiple types of materials on a substrate, the vaporized material (A) and the other gaseous material (B) introduced into the plasma are the same. A method for producing a thin film, which comprises introducing the film into a chamber and forming a thin film in which (A) and (B) have reacted on a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10405390A JPH042767A (en) | 1990-04-18 | 1990-04-18 | Production of thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10405390A JPH042767A (en) | 1990-04-18 | 1990-04-18 | Production of thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH042767A true JPH042767A (en) | 1992-01-07 |
Family
ID=14370462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10405390A Pending JPH042767A (en) | 1990-04-18 | 1990-04-18 | Production of thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH042767A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006073237A1 (en) * | 2005-01-03 | 2006-07-13 | Soon Ok Kim | Apparatus and method for forming thin layer on film-shaped polymeric article using ecr-cvd and electron beam |
WO2006073236A1 (en) * | 2005-01-03 | 2006-07-13 | Soon Ok Kim | Apparatus and method for forming thin metal layer on three-dimensional polymeric article using ecr-cvd and electron beam |
CN111945082A (en) * | 2020-07-20 | 2020-11-17 | 山东赢耐鑫电子科技有限公司 | Copper-based palladium coating composite bonding material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5833260A (en) * | 1981-08-21 | 1983-02-26 | Konishiroku Photo Ind Co Ltd | Manufacture of electrophotographic photosensitive receptor |
JPS63213664A (en) * | 1987-03-03 | 1988-09-06 | Mitsubishi Heavy Ind Ltd | Ion plating device |
-
1990
- 1990-04-18 JP JP10405390A patent/JPH042767A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5833260A (en) * | 1981-08-21 | 1983-02-26 | Konishiroku Photo Ind Co Ltd | Manufacture of electrophotographic photosensitive receptor |
JPS63213664A (en) * | 1987-03-03 | 1988-09-06 | Mitsubishi Heavy Ind Ltd | Ion plating device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006073237A1 (en) * | 2005-01-03 | 2006-07-13 | Soon Ok Kim | Apparatus and method for forming thin layer on film-shaped polymeric article using ecr-cvd and electron beam |
WO2006073236A1 (en) * | 2005-01-03 | 2006-07-13 | Soon Ok Kim | Apparatus and method for forming thin metal layer on three-dimensional polymeric article using ecr-cvd and electron beam |
CN111945082A (en) * | 2020-07-20 | 2020-11-17 | 山东赢耐鑫电子科技有限公司 | Copper-based palladium coating composite bonding material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4421592A (en) | Plasma enhanced deposition of semiconductors | |
US5695819A (en) | Method of enhancing step coverage of polysilicon deposits | |
JPS59128281A (en) | Manufacture of silicon carbide coated matter | |
US9177783B2 (en) | Substituted silacyclopropane precursors and their use for the deposition of silicon-containing films | |
JPS643948B2 (en) | ||
JPH01306565A (en) | Formation of deposited film | |
JPS62139876A (en) | Formation of deposited film | |
JPH042767A (en) | Production of thin film | |
JPS62151572A (en) | Deposited film forming device | |
US4609424A (en) | Plasma enhanced deposition of semiconductors | |
KR20130077488A (en) | Method for deposition of silicon carbide | |
JPH04290222A (en) | Manufacture of thin film | |
JPH03104871A (en) | Production of thin film by magnetic field microwave plasma cvd method | |
JPH049458A (en) | Production of thin silicon-containing film | |
JPH04290221A (en) | Manufacture of thin film | |
JPH01104763A (en) | Production of thin metal compound film | |
JP3112796B2 (en) | Chemical vapor deposition method | |
TW463314B (en) | Forming method of borderless contact to avoid the loss of field oxide layer | |
JPS6136371B2 (en) | ||
JPS6299463A (en) | Deposited film formation | |
KR960036155A (en) | P.L.T. Thin film manufacturing method | |
TW202428924A (en) | Method and system for depositing boron nitride | |
JPH01129974A (en) | Chemical vapor phase growing device | |
JPH02194529A (en) | Formation of thin film and apparatus therefor | |
JPS61275198A (en) | Formation of deposition for boron nitride coated film |