TW463314B - Forming method of borderless contact to avoid the loss of field oxide layer - Google Patents

Forming method of borderless contact to avoid the loss of field oxide layer Download PDF

Info

Publication number
TW463314B
TW463314B TW89125264A TW89125264A TW463314B TW 463314 B TW463314 B TW 463314B TW 89125264 A TW89125264 A TW 89125264A TW 89125264 A TW89125264 A TW 89125264A TW 463314 B TW463314 B TW 463314B
Authority
TW
Taiwan
Prior art keywords
gate
layer
semiconductor substrate
patent application
field
Prior art date
Application number
TW89125264A
Other languages
Chinese (zh)
Inventor
You-Sheng Yan
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW89125264A priority Critical patent/TW463314B/en
Application granted granted Critical
Publication of TW463314B publication Critical patent/TW463314B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The present invention provides a forming method of borderless contact to avoid the loss of field oxide layer, which comprises the following steps: first, providing a semiconductor substrate which has a first gate and a second gate located on an active region, and which has an field oxide region; next, forming a nitride layer on the first gate, the second gate, field oxide region and semiconductor substrate; etching back the nitride layer to form a first spacer and a second spacer located on the sidewall of the first gate, the second gate, respectively, and retaining some nitride layer on part of the field oxide region; forming a silicide layer on the first gate and the second gate and the exposed semiconductor substrate; forming an inter-dielectric layer covering the filed oxide region, the first gate, the second gate, and the semiconductor substrate; and forming a contact on part of the silicide layer.

Description

463314 五、發明說明α) 5 -1發明領域: 本發明係有關於一種形成接觸窗的方法,特別是避免 場氧化層損失之無邊界接觸窗的形成方法。 5 - 2發明背景: 一般的積體電路,就是把特定電路所需的各種電子元 件及線路,縮小並製作在大小僅及數平方公分,或更小面 積上的一種電子產品。由於積體電路被廣泛的使用在各相 關行業上,使得其需求量快速且大量地增加,特別是應用 於與電腦硬體有關的資訊產業。而且隨著電子、資訊、通 訊產品輕薄短小快的趨勢,大型積體電路(L S I )與極大型 積體電路(VLSI )及超大型積體電路(ULSI ),也陸續被發展 出來。在超大型積體電路(U LSI)製程中,電子元件密度往 往達數千萬到數十億個以上,這是由於使用的最小線寬愈 來愈小所導致的結果。無庸置疑地,即使在下一個世紀中 ,積體電路仍是扮演一關鍵性的角色,且對其需求是有增 無減的。 在習知技藝上,請參照第一 A至一 F圖,下列的敘述將 解釋一種形成接觸窗結構的習知方法。463314 V. Description of the invention α) 5 -1 Field of the invention: The present invention relates to a method for forming a contact window, especially a method for forming a borderless contact window which avoids the loss of a field oxide layer. 5-2 Background of the Invention: A general integrated circuit is a type of electronic product that is reduced to a variety of electronic components and circuits required for a specific circuit in a size of only a few square centimeters or less. Because integrated circuits are widely used in various related industries, their demand has increased rapidly and in large quantities, especially in the information industry related to computer hardware. In addition, with the trend of light, thin, short, and fast electronics, information, and communication products, large integrated circuits (L S I), very large integrated circuits (VLSI), and very large integrated circuits (ULSI) have also been developed. In the ultra-large-scale integrated circuit (U LSI) process, the density of electronic components often reaches tens of millions to billions or more. This is the result of the minimum line width used being smaller and smaller. Undoubtedly, even in the next century, integrated circuits will still play a key role, and their demand will continue to increase. In terms of conventional techniques, please refer to the first diagrams A to F. The following description will explain a conventional method of forming a contact window structure.

463314 五、發明說明(2) 如第一 A圖所示,首先在習知接觸窗結構的製造過程 中,提供一半導體底材1 0。半導體底材上1 0具有一第一閘 極1 2 A位於半導體底材1 0表面上,一場氧化層1 1位於半導 體底材1 0内且露出場氧化層1 1的一表面,一第二閘極1 2B 位於半導體底材1 0表面上與所露出的場氧化層1 1的表面, 一氮化層1 3位於半導體底材1 0表面上,且其中半導體底材 1 〇具有一接合區域1 5。 接著,如第一 B圖,以乾蝕刻(或濕蝕刻)蝕刻部份的 氮化層23,以形成第一閘極1 2A之一第一間隙壁1 3A與第二 閘極1 2 B的第二間隙壁1 3 B。 進行上述蝕刻步驟之後,所形成的結果如第一 C圖。 若此處,氮化矽覆蓋層於内介電氧化層之下,在蝕刻無邊 界接觸窗時,若未小心控制製程條件,即無法如中止層一 般之作用,如第一 C圖之標記1 0 0。則場氧化層區域1 1將會 深挖,且產生接點短路的問題。故以上之習知技術有加強 改善之必要。 如第一 D圖,覆蓋一金屬石夕化物層1 6於第一閘極1 2 A與 第二閘極1 2 B的頂端表面上與露出的半導體底材表面,但 不遮蓋場氧化層2 1表面,以形成一金屬石夕化物區域1 6。 如第一 E圖,覆蓋一氣化石夕層1 7於金屬砂化物層1 6的463314 V. Description of the invention (2) As shown in the first A diagram, first, in the manufacturing process of the conventional contact window structure, a semiconductor substrate 10 is provided. 10 on the semiconductor substrate has a first gate electrode 12A on the surface of the semiconductor substrate 10, a field oxide layer 11 is located in the semiconductor substrate 10 and a surface of the field oxide layer 11 is exposed, a second The gate electrode 12B is located on the surface of the semiconductor substrate 10 and the surface of the exposed field oxide layer 11; a nitride layer 13 is located on the surface of the semiconductor substrate 10, and the semiconductor substrate 10 has a bonding area 1 5. Next, as shown in FIG. 1B, a portion of the nitride layer 23 is etched by dry etching (or wet etching) to form one of the first gate electrode 12A, the first gap wall 13A, and the second gate electrode 12B. The second partition wall 1 3 B. After the above-mentioned etching step is performed, the result formed is the first C picture. If the silicon nitride cover layer is under the inner dielectric oxide layer, when the borderless contact window is etched, if the process conditions are not carefully controlled, it cannot function as a stop layer, as marked 1 in Figure C. 0 0. Then, the field oxide layer region 11 will be dug deep, and the problem of contact short circuit will occur. Therefore, it is necessary to strengthen and improve the above-mentioned conventional technologies. As shown in the first figure D, a metal oxide layer 16 is covered on the top surface of the first gate electrode 12 A and the second gate electrode 12 B and the surface of the exposed semiconductor substrate, but the field oxide layer 2 is not covered. 1 surface to form a metal lithoxide region 16. As shown in the first E diagram, a layer of gasification stone layer 17 and metal sand layer 16 are covered.

第5頁 463314 五、發明說明(3) 頂端表面上與場氧化層2 1表面上以形成一金屬砂化物區域 16° 跟著,如第一 F圖,平坦且均勻形成一内介電層1 8覆 蓋於氮化妙層17的表面上。 繼續仍如第一 F圖,形成一接觸窗1 9於半導體底材1 0 的金屬矽化物區域1 6上,且接觸窗1 9相鄰於場氧化層區域 11與第一間隙壁13A之間。 最後仍如第一 F圖,填入一金屬於接觸窗1 9内,藉以 | 形成無邊界接觸窗。此時,在習知技藝中,由於場氧化層 無任何的保護,故無法避免場氧化層的失去,使得鎮金屬 的填入會產生巨大的接合遺漏(Junction Leak)與其他缺 陷的問題d且習知技藝亦會引起金屬石夕化物的減少(PoorPage 5 463314 V. Description of the invention (3) The top surface and the field oxide layer 21 are formed on the surface to form a metal sanding area 16 °. As shown in the first F diagram, an internal dielectric layer is formed evenly and uniformly. 8 Covering the surface of the nitride layer 17. Continuing as in the first F diagram, a contact window 19 is formed on the metal silicide region 16 of the semiconductor substrate 10, and the contact window 19 is adjacent to the field oxide layer region 11 and the first gap wall 13A. . Finally, as in the first F picture, a metal is filled in the contact window 19 to form a borderless contact window. At this time, in the conventional art, since the field oxide layer has no protection, the loss of the field oxide layer cannot be avoided, so that the filling of the town metal will cause a huge problem of junction leakage and other defects. Know-how can also cause a decrease in metal oxides (Poor

Salicide Formation) d上述這些缺點皆非次微米元件之 設計生產時所樂見。 | \ 對於0. 1 8,或更小的製程,接觸窗製程是使得設計尺 | 寸(d e s i g n r u 1 e )縮小化的關鍵技術。但是,要控制製程 空間係相當困難的,且特別係在介層窗形成製程中。因此 良好的微影解析度(防止對準誤差)與高介層窗蝕刻選擇比 係接觸窗製程的關鍵因素。 4 6 3314 五、發明說明(4) 5 - 3發明目的及概述: 鑒於上述之發明背景中,傳統的製程所產生的諸多缺 點,本發明係提供一種形成接觸窗的方法,可獲得較大的 製程空間。 本發明之目的就是在提供一種具有接點之製程,且能 完全被氮化矽層保護。 本發明之目的,在提供一種製程具有避免場氧化層的 失去,使得鶴金屬的填入不會產生接合遺漏(J u n c t i ◦ η Leak)的問題與不會產生其他缺陷的問題。且亦改善金屬 矽化物減少的問題。 在本發明之較佳實施例中,提供一種避免場氧化層損 失之無邊界接觸窗的形成方法,共包含了下列步驟: 首先,提供一半導體底材,半導體底材具有一第一閘 極位與一第二閘極於一主動區域,且具有一場氧化區域。 再形成一氮化層於第一閘極、第二閘極、場氧化區域 及半導體底材上。於是,形成一光阻層遮蓋住部份場氧化 區域。Salicide Formation) d. None of the above disadvantages are pleasing to the design and production of sub-micron components. | \ For the process of 0.1 8 or smaller, the contact window process is the key technology to reduce the design rule | inch (d e s i g n r u 1 e). However, it is quite difficult to control the process space, and especially in the process of forming the interlayer window. Therefore, the good lithography resolution (prevents misalignment) and the high-layer window etching selection ratio are the key factors for the contact window process. 4 6 3314 V. Description of the invention (4) 5-3 Purpose and summary of the invention: In view of the many shortcomings of the traditional process in the above background of the invention, the present invention provides a method for forming a contact window, which can obtain a larger Process space. The object of the present invention is to provide a process with contacts, which can be completely protected by a silicon nitride layer. The purpose of the present invention is to provide a manufacturing process which avoids the loss of the field oxide layer, so that the filling of crane metal does not cause the problem of joint leakage (J u n c t i ◦ η Leak) and the problem of no other defects. It also improves the problem of reduced metal silicide. In a preferred embodiment of the present invention, a method for forming a borderless contact window that avoids the loss of a field oxide layer is provided. The method includes the following steps: First, a semiconductor substrate is provided. And a second gate is in an active area and has a field oxidation area. A nitride layer is formed on the first gate, the second gate, the field oxide region, and the semiconductor substrate. Thus, a photoresist layer is formed to cover a part of the field oxidation region.

4 633 14 五、發明說明(5) 回蝕刻氮化層以形成一第一間隙壁與一第二間隙壁分 別位於第一閘極、第二閘極之一側壁,且殘留氮化層於部 份場氧化區域上。 除去光阻層。形成一金屬矽化物層於第一閘極與第二 閘極的上與露出的半導體底材。 形成一内介電層覆蓋場氧化區域上、第一閘極與第二 閘極上與半導體底材上。及最後形成一接觸窗於部份金屬 矽化物層上。 為讓本發明之上述說明與其他目的,特徵和優點更能 明顯易懂,下文特列出較佳實施例並配合所附圖式,作詳 細說明。 5 - 4發明詳細說明 以下是本發明的描述。本發明的描述會先配合以一示 範結構做參考。一些變動和本發明的優點會在之後描述。 製造的較佳方法會於隨後討論。 _再者,雖然本發明以數個實施例來教導,但這些描述4 633 14 V. Description of the invention (5) Etching the nitride layer back to form a first gap wall and a second gap wall are located on one side wall of the first gate and the second gate, respectively, and the remaining nitride layer Part of the field oxidation area. Remove the photoresist layer. A metal silicide layer is formed on the first gate and the second gate and the exposed semiconductor substrate. An internal dielectric layer is formed to cover the field oxidation region, the first gate and the second gate, and the semiconductor substrate. Finally, a contact window is formed on a part of the metal silicide layer. In order to make the above description and other objects, features and advantages of the present invention more comprehensible, the preferred embodiments are listed below and described in detail with the accompanying drawings. 5-4 Detailed Description of the Invention The following is a description of the invention. The description of the present invention will first be made with reference to an exemplary structure. Some variations and advantages of the invention will be described later. The preferred method of manufacture will be discussed later. _ Furthermore, although the present invention is taught in several embodiments, these descriptions

第8頁 4 633 14 五、發明說明(6) 不會限制本發明的範圍或應用。而且,雖然這些例子使用 氧化矽,應該明瞭的是氧化矽的部份可能會被取代。因此 ,本發明的半導體元件不會限制結構的說明。這些元件包 括證明本發明和呈現的較佳實施例之實用性和應用性。且 即使本發係藉由舉例的方式以及舉出一個較佳實施例來描 述,但是本發明並不限定於所舉出之實施例。此外,凡其 它未脫離本發明所揭示之精神下所完成之等效改變或修飾 ,均包含在本發明之申請專利範圍内。應以最廣之定義來 解釋本發明之範圍,藉以包含所有這些修飾與類似結構。 本發明此種避免場氧化層損失(Los s )之一無邊界接觸 窗的形成方法,包含了下列步驟: 參照第二A圖,首先,提供一由矽晶片形成之半導體 底材2 0,半導體底材2 0上具有一由多晶矽形成之第一閘極 2 2 A位於半導體底材2 0表面上,一由氧化矽形成之場氧化 層2 1位於半導體底材2 0内且露出場氧化層2 1的表面,一由 多晶矽形成之第二閘'極22B位於半導體底材20表面上與所 露出的場氧化層2 1的表面,一由氮化矽形成之l化層2 3位 於半導體底材表面2 0上,且半導體底材2 0具有一接合區域 (Junct i on)25 ° 繼續,參照第二:B圖,以傳統微影製程形成一光阻層 6 0於氮化層2 3表面上且對準場氧化層2 1的上方。如此可在Page 8 4 633 14 V. Description of the invention (6) Does not limit the scope or application of the invention. Also, although these examples use silicon oxide, it should be clear that the silicon oxide portion may be replaced. Therefore, the semiconductor element of the present invention does not limit the description of the structure. These elements include proof of the utility and applicability of the present invention and the preferred embodiments presented. And even though the present invention is described by way of example and a preferred embodiment, the present invention is not limited to the illustrated embodiment. In addition, all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention are included in the scope of patent application of the present invention. The scope of the invention should be construed in its broadest definition, so as to encompass all such modifications and similar structures. The method for forming a borderless contact window, which avoids field oxide layer loss (Loss) according to the present invention, includes the following steps: Referring to FIG. 2A, first, a semiconductor substrate 20 formed of a silicon wafer is provided. The substrate 20 has a first gate electrode 2 2 formed of polycrystalline silicon on the surface of the semiconductor substrate 20, and a field oxide layer 21 formed of silicon oxide is located in the semiconductor substrate 20 and the field oxide layer is exposed. On the surface of 21, a second gate electrode 22B formed of polycrystalline silicon is located on the surface of the semiconductor substrate 20 and the surface of the exposed field oxide layer 21, and a siliconized layer of silicon nitride 2 3 is located on the semiconductor bottom. On the material surface 20, and the semiconductor substrate 20 has a junction area (Junct i on) of 25 °. Continue, referring to the second: Figure B, forming a photoresist layer 6 0 on the nitride layer 2 3 by the traditional lithography process. On the surface and aligned above the field oxide layer 21. So available

4 633 1 4 五、發明說明(7) 下一步驟中,產生所需的保護層。 參照第二C圖,透過光阻層6 0,以傳統乾蝕刻法蝕刻 未被光阻層6 0遮蓋之部份的氮化層2 3,形成一位於場氧化 層上的保護場氧化區域2 3 C,且形成第一閘極2 2 A之第一間 隙壁2 3 A與第二閘極2 2 B的第二間隙壁2 3 B。很明顯地,保 護場氧化區域2 3 C可遮蓋住並具保.護場氧化層2 1之作用^ 參照第二D圖,本發明中之較佳實施例係採用傳統電 漿乾蝕刻法除去光阻層6 0。 參照第二E圖,以傳統化學氣相沉積法(CVD)形成與覆 蓋一金屬石夕化物層2 6,如石夕化敵與石夕化鈷於第一閘極2 2 A 與第二閘極2 2 B的頂端表面上與露出的半導體底材2 0表面 以形成一金屬石夕化物區域2 6。 參照第二F圖,平坦且均勻形成一内介電層2 7,如硼 | 磷矽玻璃(BPSG)覆蓋於保護場氧化區域23C的表面上,與 | 覆蓋於第一間極22A與第二閘極22B的表面上與半導體底材 2 0的表面上。此處與習知技藝相比較,並不需要再加上氮 丨 化石夕中止層。 丨 繼續仍參照第二F圖,形成一接觸窗2 8於半導體底材 2 0的金屬矽化物區域2 6上,且所形成的接觸窗2 8相鄰於保4 633 1 4 V. Description of the invention (7) In the next step, the required protective layer is generated. Referring to the second figure C, the nitride layer 2 3 that is not covered by the photoresist layer 60 is etched by the conventional dry etching method through the photoresist layer 60 to form a protective field oxidation region 2 on the field oxide layer. 3 C, and a first partition wall 2 3 A of the first gate electrode 2 2 A and a second partition wall 2 3 B of the second gate electrode 2 2 B are formed. Obviously, the protective field oxide region 2 3 C can be covered and protected. The role of the protective field oxide layer 21 1 ^ Referring to the second figure D, the preferred embodiment of the present invention uses a conventional plasma dry etching method to remove light Resist layer 6 0. Referring to FIG. 2E, a metal chemical oxide layer 26 is formed and covered by a conventional chemical vapor deposition (CVD) method, such as Shi Xihua Di and Shi Xi Cobalt on the first gate 2 A and the second gate. The top surface of the electrode 2 2 B and the exposed surface of the semiconductor substrate 20 form a metal oxide region 26. Referring to the second F diagram, an inner dielectric layer 27 is formed flat and uniform, such as boron | phosphosilicate glass (BPSG) covering the surface of the protective field oxidation region 23C, and | covering the first inter-electrode 22A and the second The surface of the gate electrode 22B is on the surface of the semiconductor substrate 20. Compared with the conventional technique, there is no need to add nitrogen 丨 fossil evening stop layer.丨 Still referring to the second F diagram, a contact window 28 is formed on the metal silicide region 26 of the semiconductor substrate 20, and the formed contact window 28 is adjacent to the protection

第10頁 4 633 1 4 五、發明說明¢8) 護場氧化區域2 3 C與第一閘極2 2 A之間。 最後,仍參照第二F圖,以傳統化學氣相沉積法填入 一金屬,如鎢金屬於接觸窗2 8内,此時,由於前述保護場 氧化區域2 3 C的保護,避免場氧化層2 1的失去,使得鎢金 屬的填入不會產生接合遺漏(J u n c t i ο n L e a k )的問題。故 | 可藉不減少氧化層而形成無邊界接觸窗(Borderless |Page 10 4 633 1 4 V. Description of the invention ¢ 8) Between the field oxidation zone 2 3 C and the first gate electrode 2 2 A. Finally, referring to the second F diagram, a metal, such as tungsten, is filled into the contact window 28 by a conventional chemical vapor deposition method. At this time, the field oxide layer is avoided due to the protection of the protective field oxide region 2 3 C. The loss of 21 makes the filling of tungsten metal not to cause the problem of missing joints (J uncti ο n Leak). Therefore, a borderless contact window can be formed without reducing the oxide layer.

Contact)0 IContact) 0 I

I 故本發明係提供一種形成接觸窗的方法,其優點有:| 具有接點之製程,且能被完全氮化矽層保護,且避免 場氧化層的失去,使得鶴金屬的填入不會產生接合遺漏( Junction Leak)的問題與不會產生其他缺陷的問題。且亦 改善金屬矽化物減少的問題。 附帶一提的是,關於氧化層的形成方法而言,在積體 電路製程中,二氧化矽層的成長是一項不可或缺的步驟。 依石夕基材消耗與否來區分,形成氧化絕緣層的方法,包括 消耗石夕基材的熱氧化層成長及非消耗性的氧化層沉積。前 者是將硬基材置於含氧氣氛下,在碎表面氧化形成一層二 氧化矽。由於該層二氧化矽會消耗部份的矽表層,我們將 之歸類為消耗性氧化性成長。至於後者,則是藉由反應氣 ! 體沉積的方法,在矽基材表面沉積絕緣層。由於形成該絕I Therefore, the present invention provides a method for forming a contact window, which has the advantages of: | It has a contact process, and can be protected by a complete silicon nitride layer, and avoids the loss of the field oxide layer, so that the filling of the crane metal will not Problems that cause junction leaks and problems that do not cause other defects. It also improves the reduction of metal silicide. Incidentally, with regard to the method for forming the oxide layer, the growth of the silicon dioxide layer is an indispensable step in the integrated circuit manufacturing process. According to whether the Shixi substrate is consumed or not, the method for forming an oxide insulating layer includes the growth of a thermal oxide layer and the non-consumable oxide layer deposition of the Shixi substrate. In the former, a hard substrate is placed in an oxygen-containing atmosphere and oxidized on the broken surface to form a layer of silicon dioxide. Since this layer of silicon dioxide consumes part of the silicon surface layer, we classify it as consumable oxidative growth. As for the latter, it is through reaction gas! Bulk deposition method, depositing an insulating layer on the surface of a silicon substrate. Because the formation of the absolute

463314 五、發明說明(9) 緣層不會消耗矽表層,我們將之歸類為非消耗性氧化層沉 積。故以下就上述兩種氧化層形成方法分別描述之。 由於矽表層對氧分子有高的親和力(affinity)。將石夕 晶片表面在曝露在含氧的氣氛下,很容易形成一層氧化層 。將矽晶片置於爐管中,再升到適當溫度,通入氧氣或水 蒸氣等含氧的氣體,便可以在矽晶片上成長上一層與矽材 料附著性良好,且絕緣性佳的二氧化矽。所以矽晶片的表 面通常都會由一層SiO所覆蓋。這層因為空氣裏的氧及水 分子所自然形成的S i 0 2,則稱為"原始氧化(n a t i v e ο X i d e 二氧化矽 (S i 0 2)中,矽原子與氧原子藉共用價電子 的方式形成共價鍵。在氧化的過程中,S i - S i 0妁介面會 由矽表面移向内部。而基本上,矽的熱氧氧化,是由三個 相串聯的步驟所形成的,它們分別是: 1.氣相(gas phase)内的氧分子傳遞到固有氧化層表 面的流量(F 1 u X )。 2 .於固有氧化層表面的氧分子,藉擴散效應通過S i 0 2 並到達Si與SiO的介面 (interface)。 3.為抵達Si-Si02介面的氧分子與矽進行SiO妁生成反463314 V. Description of the invention (9) The marginal layer does not consume the silicon surface layer, and we classify it as non-consumable oxide layer deposition. Therefore, the following two methods for forming the above-mentioned oxide layers are described separately. Because the silicon surface layer has a high affinity for oxygen molecules (affinity). When the surface of Shi Xi wafer is exposed to an oxygen-containing atmosphere, an oxide layer is easily formed. The silicon wafer is placed in a furnace tube, and then raised to a proper temperature, and an oxygen-containing gas such as oxygen or water vapor is passed into the silicon wafer to grow a layer of dioxide with good adhesion to the silicon material and good insulation. Silicon. Therefore, the surface of a silicon wafer is usually covered by a layer of SiO. In this layer, S i 0 2 formed naturally by oxygen in the air and water molecules is called " native ο X ide silicon dioxide (S i 0 2), where silicon atoms and oxygen atoms borrow a common price. Covalent bonds are formed electronically. During the oxidation process, the Si-Si 0 妁 interface moves from the silicon surface to the inside. Basically, the thermal oxygen oxidation of silicon is formed by three steps connected in series. They are: 1. The flow rate (F 1 u X) of the oxygen molecules in the gas phase to the surface of the intrinsic oxide layer. 2. The oxygen molecules on the surface of the intrinsic oxide layer pass through the Si through the diffusion effect. 0 2 and reach the interface between Si and SiO. 3. Oxygen molecules and silicon are reacted with SiO to generate Si-Si02 interface.

第12頁 4 633 彳 4 五、發明說明(10) 應0 當氧化層有相當厚度時’氧在s i 〇朽的擴散常數會相 對變低’因為氧的擴散能力不足,Si-SiO介面的氧分子 濃度將趨於零,而S i 0表面的含氧量也因此將與氣相内的 含氧濃度相當,此時的氧化速率將由氧分子在二氧化石夕中 的擴放速率所主導’又稱為diffusion control case。反 之’在氧化層厚度很薄的狀況下,氧分子在S i 〇钓擴散係 丨 數相對於S i 0是足夠大時’此時的氧化速率將由氣氛中的 i 氧分子浪度及氧化反應常數所主導’又稱為reaction control case ° j ί 在極大型積體電路(ULS I)技術中,有很多沈積氧化層 的方法’ 一般而言這些方法可以分類為兩個不同的反應機 構:化學氣相沈積法(Chemical vapor deposition,CVD) 和物理氣相沈積法(Physical vapor deposition,PVD)。 這兩種技術將分述如後。 化學氣相沈積法(CVD):化學氣相沈積法定義為氣相反 | 應物’經由化學反應’在基板表面形成一非揮發性的固態 j 薄膜。這是最常在半導體製程中使用的技術。通常化學氣! 相沈積法必須包含有下列五個步驟: 1.反應物傳輸到基板表面;Page 12 4 633 彳 4 V. Description of the invention (10) should be 0 When the oxide layer has a considerable thickness, 'the diffusion constant of oxygen at si is relatively low' because of the insufficient oxygen diffusion capacity, the oxygen at the Si-SiO interface The molecular concentration will approach zero, and the oxygen content on the surface of S i 0 will therefore be comparable to the oxygen concentration in the gas phase. At this time, the rate of oxidation will be dominated by the rate of expansion of the oxygen molecules in the dioxide. Also called diffusion control case. On the contrary, when the thickness of the oxide layer is very thin, when the number of oxygen molecules in the Si 〇 fishing diffusion system is sufficiently large relative to Si 0, the oxidation rate at this time will be determined by the oxygen molecular wave length and the oxidation reaction in the atmosphere. Dominated by constants, also known as reaction control case ° j ί In very large integrated circuit (ULS I) technology, there are many methods for depositing oxide layers. Generally speaking, these methods can be classified into two different reaction mechanisms: chemical Chemical vapor deposition (CVD) and physical vapor deposition (PVD). These two technologies will be described later. Chemical Vapor Deposition (CVD): Chemical vapor deposition is defined as the opposite phase of the gas | The reactant 'forms a chemical reaction' to form a non-volatile solid j film on the substrate surface. This is the technology most commonly used in semiconductor processes. Usually chemical gas! The phase deposition method must include the following five steps: 1. The reactants are transferred to the substrate surface;

第13頁 4633 1 4 五、發明說明(11) 2 .吸附或化學吸附到基板表面; | 3. 經基板表面催化起異質間的化學反應; 4. 氣相生成物脫離基板表面;及 5. 生成物傳輸離開基板表面。 這連續的化學氣相沈積步驟在實際的應用中,化學反 應後所生成的固態材料不僅在基板表面(或非常靠近)發生 (即所謂的異質間反應),也會在氣相中反應(即所謂的同 I 質反應)。而關於異質間反應,因為這樣的反應只會選擇 | 性在有加熱的基板上發生,而且能生成品質好的薄膜。相 反的,同質反應會形成欲沈積物質的氣相顆粒,造成很差 的黏著性及擁有很多的缺陷,且密度低的薄膜。此外,如 此的反應將會消耗掉很多的反應物而導致沈積速率的下降 丨 。因此在化學氣相沈積法的應用中,一項很重要的因素是| 異質間反應遠比同質反應易於發生。 ! 最常用的化學氣相沈積法有常壓化學氣相沈積法( Atmospheric-pressure CVD,APCVD)、低壓化學氣相沈積 法(Low-pressure CVD,LPCVD)和電II輔助化學氣相沈積 法(Plasma-enhanced CVD,PECVD),而這三種化學氣相沈 | 積法的優、缺點及應用的地方如表8 - 2所示(1 0 )。由表中 j 可以看出低壓化學氣相沈積法擁有很均勻的階梯覆蓋性、 丨 很好的組成成份和結構的控制、很高的沈積速率及輸出量 、及很低的製程成本。再者低壓化學氣相沈積法並不需要Page 13 4633 1 4 V. Description of the invention (11) 2. Adsorption or chemisorption onto the substrate surface; | 3. Catalyze a chemical reaction between the heterogeneous materials via the substrate surface; 4. The gas phase product detaches from the substrate surface; and 5. The product is transferred away from the substrate surface. In this continuous chemical vapor deposition step, in practical applications, the solid material generated after the chemical reaction not only occurs on the surface of the substrate (or very close to it) (the so-called heterogeneous reaction), but also reacts in the gas phase (ie So-called homogeneous reactions). Regarding the inter-heterogeneous reaction, because such a reaction can only be selected on a heated substrate, and can produce a good-quality film. In contrast, the homogeneous reaction will form gas-phase particles of the substance to be deposited, resulting in poor adhesion and a low density film with many defects. In addition, such a reaction will consume a lot of reactants and cause a reduction in the deposition rate. Therefore, in the application of chemical vapor deposition, an important factor is that heterogeneous reactions are far easier to occur than homogeneous reactions. ! The most commonly used chemical vapor deposition methods are Atmospheric-pressure CVD (APCVD), Low-pressure CVD (LPCVD), and Electric II-assisted chemical vapor deposition ( Plasma-enhanced CVD (PECVD). The advantages, disadvantages, and applications of these three chemical vapor deposition methods are shown in Table 8-2 (1 0). From the table j, it can be seen that the low pressure chemical vapor deposition method has very uniform step coverage, good composition and structure control, high deposition rate and output, and low process costs. Furthermore, low pressure chemical vapor deposition is not required.

第14頁 4 6 33 1 4 五、發明說明(12) 載子氣體,因此大大降低了顆粒污染源。因此低壓化學氣 相沈積法被廣泛地應用在高附加價值的半導體產業中,用 以作薄膜的沈積。 在矽的磊晶成長過程中,使用低壓的目的在於減小自 : 動摻雜(來自基板本身的雜質)的效應,而這正是常壓化學 氣相磊晶成長的最主要問題在未來元件尺寸愈作愈小的 情況下’製程溫度必需降低,而低壓化學氣相沈積法的最 嚴重問題是他的製程溫度稍高,而電漿輔助化學氣相沈積 法即是一種合適的方法,可以解決這個問題,將留待稍後 討論。’ !Page 14 4 6 33 1 4 V. Description of the invention (12) The carrier gas greatly reduces the source of particulate pollution. Therefore, the low-pressure chemical vapor deposition method is widely used in the high-value-added semiconductor industry for thin film deposition. During the epitaxial growth of silicon, the purpose of using low voltage is to reduce the effect of auto-doping (impurities from the substrate itself), and this is the most important problem of atmospheric pressure chemical vapor phase epitaxial growth in future components When the size is getting smaller, the process temperature must be lowered, and the most serious problem of low pressure chemical vapor deposition is that its process temperature is slightly higher. Plasma-assisted chemical vapor deposition is a suitable method. Solving this problem will be discussed later. ‘!

I iI i

I 關於物理氣相沈積法(PVD ),物理氣相沈積法和化學 | 氣相沈積法的沈積機構不同,化學氣相沈積法的沈積速率 | 和沈積溫度呈正比遞增的關係,但物理氣相沈積法正好相 1 反’亦即沈積的溫度愈高,沈積的速率反而下降。物理氣 相沈積技術通常使用在如下的三種方法,分述如后: 1.熱蒸發技術(Evaporation Technology):這是最早 | 期鍍薄膜的方法之一,首先需把欲鍍上的材料氣化,這通 常使用熱阻絲、電子槍(Electron-gun, E-gun)或雷射等 ,在真空的腔體中完成,然後把這些氣化的蒸鍍材料傳輸 至欲鍍膜的基板上,再經由凝結的過程沈積在基板上。I About physical vapor deposition (PVD), physical vapor deposition and chemical | vapor deposition have different deposition mechanisms. The deposition rate of chemical vapor deposition | is proportional to the deposition temperature, but the physical vapor phase The deposition method happens to be phase 1 instead, that is, the higher the deposition temperature, the lower the deposition rate. Physical vapor deposition technology is usually used in the following three methods, which are described in the following: 1. Evaporation Technology: This is one of the earliest | phase coating methods. First, the material to be plated needs to be gasified. This is usually done with a thermal resistance wire, Electron-gun (E-gun) or laser, etc. in a vacuum cavity, and then these vaporized evaporation materials are transferred to the substrate to be coated, and then The process of coagulation is deposited on the substrate.

第15頁 4 633 1 4 五、發明說明(13) 2. 分子束蟲晶(Molecular beam epitaxy, MBE):這 是一種在極高的真空下,經由非常精細的微調,成長單晶 薄膜的方法,最常被應用和廣泛研究的是在三五族半導體 上成長·層或數層蟲晶薄膜5或是在妙基板上成長碎錯蟲 晶,被蒸發出來的材料以非常快的速度,被傳輸到基板表 面(因在極高的真空環境下)。那些低蒸氣壓的摻雜物質和 矽即能確保在低溫的基板表面,凝結沈積出所要的薄膜。 | t 3. 藏鍍(Sputtering):這個製程包含了撞擊離子和電 | 極板表面原子的動量轉換,而從電極表面噴出欲蒸鍵的材 料,然後沈積在基板表面。不像熱蒸發技術,濺鍍的製程 | 非常容易控制而且適用於任何材料,例如金屬、絕緣體、 i 半導體、合金等。 化學氣相沈積法的反應器的設計和操作,會因不同的 要求而不同,因此這些反應器可以不同的方式分類。一種 分類法是依對晶片加熱的方式來區別,另一種是依反應腔 體内的壓力來分類(常壓或是低壓)。對晶片的加熱方式可| 分成以下四類: iPage 15 4 633 1 4 V. Description of the invention (13) 2. Molecular beam epitaxy (MBE): This is a method for growing single crystal thin films through very fine trimming under extremely high vacuum. The most commonly applied and extensively studied is the growth of three or five semiconductors. • Layers or layers of worm crystal thin film 5 or growth of broken worm crystals on wonderful substrates. The evaporated material is Transfer to substrate surface (due to extremely high vacuum environment). Those low vapor pressure dopants and silicon can ensure that the desired film is condensed and deposited on the substrate surface at low temperature. t 3. Sputtering: This process involves impinging ions and momentum conversion of the atoms on the surface of the electrode. The material of the bond to be vaporized is ejected from the electrode surface and then deposited on the surface of the substrate. Unlike thermal evaporation technology, the sputtering process is very easy to control and suitable for any material, such as metals, insulators, i semiconductors, alloys, etc. The design and operation of chemical vapor deposition reactors will vary according to different requirements, so these reactors can be classified in different ways. One classification is based on the way the wafer is heated, and the other is based on the pressure in the reaction chamber (normal pressure or low pressure). The method of heating the wafer can be divided into the following four categories: i

I 1. 熱阻絲加熱方式; | 2. 射頻(RF)感應加熱方式; ! 3. 電漿(plasma)加熱方式 4. 光能加熱方式I 1. Thermal resistance wire heating method; | 2. Radio frequency (RF) induction heating method;! 3. Plasma heating method 4. Light energy heating method

第16頁 4 633 1 4 五、發明說明(14)Page 16 4 633 1 4 V. Description of the invention (14)

I 所加的能量可能轉換至反應氣體本身或是基板上。當 使用包圍反應腔體熱阻絲線圈加熱方式時,除了晶片本身 外,反應腔體的爐壁也會被加熱,因此如此的設計稱作" 熱壁反應器"(hot-wall reactors)。在這種系統中所蒸链 j 的薄膜,除了會在基板上,也會在爐壁上生成。這意味著 I 如此的設計,必須經常清洗爐管,以避免微塵粒污染。 |The energy added by I may be converted into the reaction gas itself or on the substrate. When using the heating resistance wire coil heating method surrounding the reaction chamber, in addition to the wafer itself, the furnace wall of the reaction chamber will also be heated. Therefore, this design is called " hot-wall reactors " (hot-wall reactors) . In this system, the thin film of the chain j will not only be formed on the substrate, but also on the furnace wall. This means that in such a design, the furnace tube must be cleaned frequently to avoid contamination by dust particles. |

I 另一方面,藉由射頻感應或在反應器内裝紅外線、紫 外線加熱燈管來引入熱源,將只會對晶片和晶片的載具加 ! 熱,而不會對反應腔的爐壁加熱,如此的設計稱作π冷壁 丨 反應器'"(cold-wall reactors),然而,在一些的冷壁反 應器的系統中,還是會發生爐壁被加熱的情形,所以就必 須藉著冷卻爐壁(通入冷卻循環水)的方式來降低或避免 jI On the other hand, the introduction of a heat source by radio frequency induction or the installation of infrared and ultraviolet heating lamps in the reactor will only increase the wafer and the carrier of the wafer! Heat without heating the furnace wall of the reaction chamber, such a design is called π cold-wall reactors (cold-wall reactors), however, in some cold-wall reactor systems, it still occurs The furnace wall is heated, so it must be reduced or avoided by cooling the furnace wall (through cooling water)

I 在爐壁上反應或沈積薄膜。反應爐管的幾何形狀由反應壓 丨 力和熱源供應方式嚴格限制著,而且這是影響輸出量( throughput)的一個重要因素。因為常壓反應器的操作在” | 物質傳輸限制"(m a s s -1 r a n s ρ 〇 r ΐ - Π m i t,將在下一節,沈 | 積的影響參數中討論)區域,因此它的腔體設計必須使每 丨 一片晶片表面有相等的流量。所以晶片絕不會以垂直且彼 丨 此非常靠近的方式來擺置,而寧可採取平躺水平的方式來 擺置,但是此種設計有一非常嚴重的問題,即易被掉落的 微塵粒污染=> 而低壓化學氣相沈積法的爐管設計不會受到 | 在π物質傳輸限制"區域内反應的限制,因此它的幾何形狀 jI react or deposit a film on the furnace wall. The geometry of the reactor tube is strictly limited by the reaction pressure and the heat supply mode, and this is an important factor affecting the throughput. Because the operation of the atmospheric reactor is in the "| mass transfer limit" (mass -1 rans ρ 〇 ΐ-Π mit, which will be discussed in the next section, the parameters of the Shen | product), the cavity design must be Make each piece of wafer have equal flow on the surface. So the wafers will never be placed vertically and very close to each other, but rather placed horizontally, but this design has a very serious The problem is that it is easy to be contaminated by falling dust particles = > The design of the furnace tube of the low pressure chemical vapor deposition method will not be limited by the reaction in the region of the π material transport limit " so its geometry j

第17頁 4 633 1 4 五、發明說明(15) 可設計成使每批的晶片數達到 一片垂直擺置,片與片之間的 因此一個石英製的晶片戴舟, 。然而因為低壓化學氣相沈積 (surface-reaction-1imited 此它的反應器設計必須有很好 一米 以釐 ο 可幾2 片有過 晶只超 ,以放 值可可 大離次 最距一 著 接 片 晶 Λν AH 片 反 ’ 面論^, >討Η 在一度 作Τ溫 操夂積 是f沈 法彳的 制 限 應 域 區 常壓化學氣相沈積(APCVD)的反應器是第一個被微電 | 子工業所使用的設備,常壓下的化學氣相沈積反應器很容 丨 易設計,並擁有很快的反應速率,但是它對氣相反應(g a s -phase reaction)很敏感,而且它所反應生成的薄膜有很 差的階梯覆蓋性(’step coverage),又因為常壓反應器是 | 操作在"物質傳輸限制M區域,所以反應物流必須很均勻的 i 傳送至所有基板的每一部份,這個製程的優點是沈積出的 ; 薄膜非常均勻,但它缺點是因為副產物含有氣化氫,會傷 I 害到底下已成長好的薄膜,如複晶矽。 |Page 17 4 633 1 4 V. Description of the invention (15) It can be designed so that the number of wafers in each batch reaches a vertical position, and a quartz wafer is worn between the wafers. However, because of the low-pressure chemical vapor deposition (surface-reaction-1imited), its reactor design must have a good one meter to centimeters. However, there are only two pieces of crystals that are supercrystalline, so the value of the cocoa can be separated from the next one. Lamellar Λν AH Lamellar Inverse ^, > Discussing that the once-in-time atmospheric pressure chemical vapor deposition (APCVD) reactor, which is the limiting temperature region of the T-temperature operation product, is the first method to be microelectrically charged. The equipment used in the sub-industry. The chemical vapor deposition reactor at atmospheric pressure is easy to design and has a fast reaction rate, but it is sensitive to gas-phase reactions and it The thin film produced by the reaction has poor step coverage, and because the atmospheric pressure reactor is operated in the " substance transfer restriction M region, the reaction stream must be uniformly transmitted to each of all substrates. In part, the advantages of this process are deposited; the film is very uniform, but its disadvantage is that the by-products contain hydrogenated hydrogen, which will damage the grown thin film, such as polycrystalline silicon. |

電漿輔助化學氣相沈積系統(PECVD)是靠射頻感應所 IPlasma-assisted chemical vapor deposition (PECVD)

I 產生的熾熱放電,並且把能量轉換到反應氣體上,所以它 I 的基板溫度比常壓或低壓化學氣相沈積法來得低許多,低 溫沈積是電漿輔導化學氣相沈積法最主要的優點。事實上 ,電漿輔導化學氣相沈積法提供了一種在基板上鍍膜的方 法,而且沒有在鍍膜時熱穩定性的問題。此外,電漿輔助 化學氣相沈積法能增進鍍膜的速率,比只使用靠熱反應來 丨The hot discharge generated by I, and the energy is converted to the reaction gas, so the substrate temperature of I is much lower than that of atmospheric pressure or low pressure chemical vapor deposition. Low temperature deposition is the main advantage of plasma-guided chemical vapor deposition. . In fact, plasma-assisted chemical vapor deposition provides a method for coating films on substrates without the problems of thermal stability during coating. In addition, the plasma-assisted chemical vapor deposition method can increase the rate of coating, which is higher than using only thermal reaction.

第18頁 4 ό 33 t 4 五、發明說明(16) 得更快,而且能提供唯一成份及特性的薄膜,但是生產量 、生產力的限制(特別是大尺寸的晶片)、及因鬆散的黏著 性所造成的微塵物污染仍舊是最大的問題。 接 先藉由 區域產 得能量 體如矽 且離子 附這 而且也 的薄膜 子團受 附的反 子的重 並且把 速率由 擁有愈 另外要 下來我們 引入射頻 生自由電 ,當帶有 烷(SiH4) 化,這些 些激發的 很容易在 有很好的 到離子、 應物反應 新排列包 反應後的 基板的溫 少的副產 注意的是 將探討電漿輔助化學氣相沈積的方法,首 場(R F - f i e 1 d)進入低壓的氣體中,在放電 子,於是形成了電漿。電子即從電場中獲 能量的電子和氣體分子碰撞後,反應的氣 、笑氣(N 20 )、氧氣、氮氣等就會分解,並 充滿能量的反應物就會彼此在基板表面吸 原子團,在被吸收後有很高的黏覆係數, 基板表面上遷移,這兩個因素使得鍍出來 一致性。這些被吸附到基板表面的激發原 電子的撞擊,重新排列,並且和其他被吸 1形成新的鍵結,於是薄膜因而生成。原 括了被吸附原子的擴散到穩定的位置上去 副產物(廢物)脫離基板表面,而這脫離的 度決定,基板的溫度愈高,所鍍上的藉膜 物(這些副產物在薄膜裏面將造成缺陷)。 要避免同質的氣相成核反應(homogeneous gas-phase nucleation) >因為這將造成微塵物的污染。 與射頻ί賤锻系統比較,電漿輔助化學氣相沈積系統最 大的不同點在於反應腔體的設計和電極的外貌,在電漿輔Page 18 4 ό 33 t 4 V. Description of the invention (16) is faster and can provide films with unique composition and characteristics, but production capacity, productivity limitations (especially large size wafers), and loose adhesion Contamination by dust is still the biggest problem. In the first place, an energy body such as silicon is produced by the region and the ions attached to this film are also attached to the weight of the countertron and the rate is changed from owning. In addition, we introduce radio frequency to generate free electricity. When charged with alkane (SiH4 These by-products are easy to excite when there are very good by-products of the substrate and the reaction after the reaction of the new array package. The by-products with low temperature are noted. The plasma-assisted chemical vapor deposition method will be discussed. (RF-fie 1 d) enters the low-pressure gas, discharges electrons, and forms a plasma. The electrons, ie, the electrons that get energy from the electric field, collide with the gas molecules. The reacting gas, laugh gas (N 20), oxygen, nitrogen, etc. will decompose, and the reactants filled with energy will attract atomic groups to each other on the substrate surface. After being absorbed, there are high adhesion coefficients and migration on the substrate surface. These two factors make the plating uniform. These excited primary electrons attracted to the substrate surface collide, rearrange, and form new bonds with other attracted atoms, and a thin film is formed. Originally included the diffusion of the adsorbed atoms to a stable position, and the by-products (waste) detached from the surface of the substrate, and the degree of this detachment determines that the higher the temperature of the substrate, the borrowed film (these by-products will Causing defects). It is necessary to avoid homogeneous gas-phase nucleation > because this will cause pollution of fine dust. Compared with the RF base forging system, the biggest difference between the plasma-assisted chemical vapor deposition system is the design of the reaction cavity and the appearance of the electrode.

第19頁 463314 五、發明說明(17) 助化學氣相沈積系統中,接地和接高壓兩電極間電位差, 相對於電漿必須幾乎是相等。在平行板型式反應器的爐壁 ,必需使用鍍上石英、陶瓷或氧化鋁的不銹鋼,以使他們 相對於電漿是浮動的電壓(f 1 〇 a t i n g ρ 〇 t e n t i a 1 ),這麼做 的目的,在於減少反應器爐壁被撞擊和濺鍍,降低在鍍膜 的過程中被微塵物污染。 一個製程 的溫度 均勻的 ,也就 保持固 速就不 ,因此 片晶片 化學氣 片之間 面反應 就是一 沈積速 是說, 定。此 是非常 它的反 上有相 相沈積 的距離 速率限 當它是在表 個很重要的 率,需要有 在任何地方 外,在這個 重要,因為 應的設計 等的反應物 系統中,欲 ,可以很小 制的模式下 面反應 參數, 一個能 ’ 任一 情況下 它們的 就不是 流量。 沈積的 ,那是 速率限制的條件下 要在整個反應器内 保持固定沈積速率 片晶片上的表面溫 ,反應物到達晶片 濃度不會限制沈積 那麼必要設計成能 因此我們可以看出 晶片可以垂直擺置 因為這個系統是操 ,沈積 有一很 的條件 度必須 表面的 的速率 在每一 在低壓 而片與 作在表 在低壓化學氣相沈積法的反應器中,反應壓力約為1 托耳,在此壓力下,反應物氣體的擴散係數約為在常壓下 的一千倍,而這是部份由於壓力降低的平方根的調整,因 此這淨效應是反應物傳輸至基板表面的速率增加超過十倍 ,所以速率限制步驟是表面反應。通常表面反應速率會隨Page 19 463314 V. Description of the invention (17) In the assisted chemical vapor deposition system, the potential difference between the ground and high voltage electrodes must be almost equal to the plasma. In the furnace wall of the parallel plate type reactor, it is necessary to use stainless steel coated with quartz, ceramic or alumina so that they have a floating voltage (f 1 〇ating ρ 〇tentia 1) with respect to the plasma, for the purpose of doing so, The purpose is to reduce the impact and sputtering of the reactor furnace wall, and to reduce the pollution of fine dust during the coating process. The temperature of a process is uniform, so it does not maintain the solid rate. Therefore, the surface reaction between wafers and chemical gases is a deposition rate. This is very far from the limit of the distance rate of phase deposition. When it is a very important rate in the table, it needs to be anywhere. In this important, because of the design of the reactant system, etc., The parameters can be reflected in a small mode, one can't be their flow in either case. For deposition, it is necessary to maintain a fixed deposition rate throughout the reactor. The surface temperature on the wafer is maintained at a constant deposition rate. The concentration of the reactants on the wafer does not limit the deposition. So it must be designed so that the wafer can swing vertically. Because this system is operating, the deposition must have a very high degree of surface rate. In each reactor at low pressure, the reactor pressure is about 1 Torr. Under this pressure, the diffusion coefficient of the reactant gas is about one thousand times under normal pressure, and this is partly due to the adjustment of the square root of the pressure reduction, so the net effect is that the rate of the reactant transport to the substrate surface increases by more than ten Times, so the rate limiting step is a surface reaction. Usually the surface reaction rate varies with

第20頁 4 6 331 4 五、發明說明(18) 著表面反應物濃度的增加而增加,及氣相濃度分佈不均勻 而增加。而這氣相濃度不均勻是因為某處反應物被空乏掉 所造成的,舉一個例子說明這個效應,當晶片被放置在靠 反應物的出氣端時,因而曝露在較低的反應物濃度環境中 ,比進氣端低許多,而造成花爐管的前後端沈積的厚度不 均勻,因此為了沈積薄膜的均勾性,在反應爐管的前後兩 端,沈積的溫度必須正確的調整。. 沈積的製程是落在物質傳輸限制的範圍時,製程溫度 的精密控制就不那麼必要,沈積速率的限制和溫度的關係 | 不是那麼有關,另一方面,在控制反應物於各晶片的擺置 點有相等的氣體流量是最重要的,因為反應物的到達晶片 ί 表面速率,直接正比於反應腔内的濃度梯度,所以要保證 | 在同一片的每個位置有相同的薄膜厚度,反應器的設計必 jPage 20 4 6 331 4 V. Description of the invention (18) The surface reactant concentration increases and the gas phase concentration distribution increases unevenly. This uneven gas phase concentration is caused by the emptying of the reactants somewhere. Take an example to illustrate this effect. When the wafer is placed near the gas outlet of the reactants, it is exposed to a lower concentration of reactants. It is much lower than the inlet end, which causes the thickness of the front and rear ends of the flower furnace tube to be uneven. Therefore, in order to uniformly deposit the thin film, the deposition temperature must be adjusted correctly at the front and back ends of the reaction furnace tube. . When the deposition process falls within the limits of material transport, precise control of the process temperature is not necessary. The relationship between the deposition rate limit and the temperature | is not so relevant. On the other hand, in controlling the reaction It is most important to have equal gas flow at the set points, because the surface velocity of the reactants reaching the wafer is directly proportional to the concentration gradient in the reaction chamber, so it is necessary to ensure that there is the same film thickness at each position on the same sheet. Design

I 需使所有晶片的每一點,都有相等的反應物流量,沈積二 丨 氧化矽的常壓反應器,操作溫度約為4 0 0°C ,是落在物質 | 傳輸限制的區域,所以最廣泛被應用的反應器設計是水平 丨I It is necessary to make each point of all the wafers have equal flow of reactants. The atmospheric pressure reactor for depositing silicon dioxide has an operating temperature of about 400 ° C, which falls in the area of material | transmission restrictions, so the most Widely used reactor design is horizontal 丨

I 擺置晶片的方式,以提供一均勻的氣體供應^ | ί 在電漿輔助化學氣相沈積系統的影響參面,包含有反 丨I The way of placing the wafers to provide a uniform gas supply ^ | ί The impact parameters of the plasma-assisted chemical vapor deposition system include reaction 丨

I 應氣體流量,基板加熱溫度,射頻能量大小等,以下舉兩 j 個例子說明,以電漿輔助化學氣相沈積法,沈積氮化矽、 ! 二氧化矽時參數的影響。實際上,由電漿放電所產生的原 | 子基或原子團,具有很高的活性,常常會造成所沈積的薄 |I should be based on gas flow, substrate heating temperature, radio frequency energy, etc. Two examples are given below. Plasma-assisted chemical vapor deposition is used to deposit silicon nitride. Effect of parameters on silicon dioxide. In fact, the proton radicals or atomic groups produced by plasma discharge are highly active and often cause thin deposits |

第21頁 463314Page 463314

五、發明說明(19) I 膜是否有合乎原子當量(stoichiometric)的問題。因為這 些反應是非常多變而且複雜的,而且副產物或是入射的反 應物常常會被合併入沈積的薄膜中,特別是氫、氮、氧原 I 子等。過度的合併這些原子,將會造成金氟半電晶體的臨 界電壓偏移,由電漿輔助化學氣相沈積法所沈積出來的氮 化矽,其折射射係數變動的範圍非常大,從1. 8到2. 6都有 可能。而此薄膜的絕綠性和崩潰電場隨著不同的沈積條件 j ,變化也非常大。 ! i « 就上述之較佳實施例而言,故本發明為一種避免場氧 i 化層損失之無邊界接觸窗形成的方法,簡言之包含了下列 步驟: 1 t i 首先,提供一半導體底材,半導體底材具有一第一閘 i 極位與一第二間極於一主動區域,且具有一場氧化區域。 丨 i j 再形成一氮化層於第一閘極、第二閘極、場氧化區域 及半導體底材上。於是,形成一光阻層遮蓋住部份場氧化 i 區域。 | ! ! 回蝕刻氮化層以形成一第一間隙壁與一第二間隙壁分 別位於第一閘極、第二閘極之一侧壁,且殘留氮化層於部 份場氧化區域上。 ίV. Description of the invention (19) I Whether the membrane has stoichiometric problems. Because these reactions are very variable and complex, and by-products or incident reactants are often incorporated into the deposited film, especially hydrogen, nitrogen, and oxygen atoms. Excessive merging of these atoms will cause the critical voltage shift of gold-fluorine semi-electric crystals. The refractive index of silicon nitride deposited by plasma-assisted chemical vapor deposition has a very wide range, from 1. 8 to 2.6 are possible. The chlorosis and collapse electric field of this film vary greatly with different deposition conditions j. i «As far as the above-mentioned preferred embodiments are concerned, the present invention is a method for forming a borderless contact window to avoid the loss of the field oxide layer. In brief, it includes the following steps: 1 ti First, a semiconductor substrate is provided. Material, the semiconductor substrate has a first gate i pole position and a second intermediate pole in an active area, and has a field oxidation area.丨 i j further forms a nitride layer on the first gate, the second gate, the field oxide region, and the semiconductor substrate. Therefore, a photoresist layer is formed to cover a part of the field oxidation i region. |! Etching the nitride layer back to form a first spacer wall and a second spacer wall on one of the first gate and the second gate, respectively, and the remaining nitride layer is on the partial field oxidation region. ί

第22頁 463314 五、發明說明(20) 閘極與第 除去光阻層。形成一金屬矽化物層於第 閘極的上與露出的半導體底材。 形成一内介電層覆蓋場氧化區域上、第一閘極與第二 閘極上與半導體底材上。及最後形成一接觸窗於部份金屬 石夕化物層上。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。Page 22 463314 V. Description of the invention (20) Gate and No. removing photoresist layer. A metal silicide layer is formed on the first gate electrode and the exposed semiconductor substrate. An internal dielectric layer is formed to cover the field oxidation region, the first gate and the second gate, and the semiconductor substrate. Finally, a contact window is formed on a part of the metal oxide layer. The above are merely preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention shall be included in the following Within the scope of patent application.

第23頁 4633 1 4 圖式簡單說明 第一 A圖到第一 F圖為傳統形成接觸窗的製程示意圖; 及 第二A圖到第二F圖為本發明形成無邊界接觸窗實施例 圖。 本發明主要部分之代表符號: I 0 :半導體底材 II :場氧化層 1 2 A :第一閘極 1 2 B :第二閘極 1 3 :氮化層 1 3 A :間隙壁 1 3 B :間隙壁 1 5 :接合區域 1 6 :金屬石夕化物 1 7 :氮化層 1 8 :内介電層 1 9 :接觸窗 20:半導體底材 2i :場氧化層 2 2 A :第一閘極 2 2 B :第二間極 2 3 :氮化層 463314 圖式簡單說明 2 3 A :間隙壁 2 3 B :間隙壁 2 3C :保護場氧化層 2 5 :接合區域 2 6 :金屬石夕化物 27 :内介電層 2 8 :接觸窗 6 0 :光阻Page 23 4633 1 4 Schematic illustrations Figures A through F are schematic diagrams of the traditional process for forming a contact window; and Figures A through F are drawings of an embodiment of forming a borderless contact window according to the present invention. Representative symbols of the main part of the present invention: I 0: semiconductor substrate II: field oxide layer 1 2 A: first gate electrode 1 2 B: second gate electrode 13: nitride layer 1 3 A: gap wall 1 3 B : Spacer wall 15: Junction area 16: Metal oxide 17: Nitride layer 1 8: Internal dielectric layer 1 9: Contact window 20: Semiconductor substrate 2i: Field oxide layer 2 2 A: First gate Pole 2 2 B: Second inter electrode 2 3: Nitrided layer 463314 Brief description of the drawing 2 3 A: Spacer wall 2 3 B: Spacer wall 2 3C: Protective field oxide layer 2 5: Junction area 2 6: Metal stone Compound 27: Inner dielectric layer 2 8: Contact window 6 0: Photoresist

第25頁Page 25

Claims (1)

463314 六、申請專利範圍 | 1. 一種避免場氧化損失之一無邊界接觸窗的形成方法,至i 少包含: j 提供一半導體底材,該半導體底材具有一第一閘極及 丨 一第二閘極於一主動區域,且具有一場氧化區域; | 形成一氮化層於該第一閘極、該第二閘極、該場氧化 區域及該半導體底枯上, 以一遮罩蓋住部份該場氧化區域,並回#該氮化層以 形成一第一間隙壁與一第二間隙壁分別位於該第一閘極、 該第二閘極之一側壁,且殘留該氮化層於部份該場氧化區i 域上; 丨 形成一金屬破化物層於該第一閘極與該第二閘極上與I 露出的該半導體底材, 丨 形成一内介電層覆蓋於該場氧化區域上、該第一閘極 | 與該第二閘極上與該半導體底材上;及 丨 形成一接觸窗於部份的該金屬矽化物層上。 i 薩 ; I 2. 如申請專利範圍第1項所述之方法,其中該第一閘極至 I 少包含多晶矽。 j 3. 如申請專利範圍第1項所述之方法,其中該場氧化區域 : 至少包含二氧化碎。 : i 4. 如申請專利範圍第1項所述之方法,其中該第二閘極至 丨 少包含多晶矽。 !463314 VI. Scope of patent application | 1. A method for forming a borderless contact window that avoids field oxidation loss, at least i includes: j Provide a semiconductor substrate having a first gate electrode and a first gate electrode The two gates are in an active region and have a field oxidation region; | forming a nitride layer on the first gate, the second gate, the field oxidation region, and the semiconductor substrate, and covering it with a mask Part of the oxidized area of the field, and back to the nitride layer to form a first spacer and a second spacer are located on one side wall of the first gate and the second gate, respectively, and the nitride layer remains On a part of the field oxidation region i; 丨 forming a metal breakdown layer on the first gate and the second gate and the semiconductor substrate exposed by I; 丨 forming an internal dielectric layer covering the field On the oxidized region, on the first gate electrode and on the second gate electrode, and on the semiconductor substrate; and forming a contact window on a portion of the metal silicide layer. i SA; I 2. The method according to item 1 of the scope of patent application, wherein the first gate comprises at least polycrystalline silicon. j 3. The method as described in item 1 of the scope of the patent application, wherein the field oxidation region: includes at least dioxide fragments. : I 4. The method as described in item 1 of the scope of patent application, wherein the second gate contains at least polycrystalline silicon. ! 第26頁 4 6 3 3 1 4 六、申請專利範圍5. 如申請專利範圍第1項所述之方法,其中該氮化層至少 包含氮化矽。6. 如申請專利範圍第1項所述之方法,其中該内介電層至 少包含硼磷矽玻璃(B P S G )。 物 化 砂 屬 金 該 中 其 法 方 之 述 所 項 「:一 第 。 圍結 範化 專含 請包 申少 如至 7 層 物 化 砂 屬 金 亥 =° 中 其 法 方 之 述 所 項 一—i 第。 圍欽 範化 利矽 專含 請包 申少 如至 8 層 至 法 方 成 形 的 窗 觸 接 界 無 1 之 失 損 化 氧 場 免 避: 種含 一包 9 少 第域 一區 有化 具氧 材場 底 一 體有 導具 半且 該, ,域 材區 底動 體主 導一 半於 一極 供閘 提二 第 與 極 化 氧 場 亥 --D、 極 閘二 第 該 ' 極 閘 第; 該上 於材 層底 化體 氮導 一半 成該 形及 域 區 壁 隙 間二 第 ;一 域與 區壁 化隙 氧間 場一 該第 份一 部成 住形 蓋以 遮層 層化 阻氮 光該 一刻 成蝕 彤回 氣 該 留 殘 且 壁 俏 1 之 極 閘 二; 第上 該域 、區 極化; 閘氧層 一場阻 第該光 該份該 於部去 位於除 別層 分化Page 26 4 6 3 3 1 4 VI. Patent Application Range 5. The method described in item 1 of the patent application range, wherein the nitrided layer comprises at least silicon nitride. 6. The method according to item 1 of the scope of patent application, wherein the inner dielectric layer contains at least borophosphosilicate glass (B P S G). The materialized sand belongs to the item of the legal method of the metal: ": the first. The enclosing normalization specifically includes Baoshen Shaoru to 7 layers of materialized sand belongs to the item 1 of the method of the legal method in Jinhai = °. The encyclopedia Fanhuali silicon specially includes Bao Shen Shaoru to the 8th floor to the French-formed window contact boundary without loss of chemical oxygen field avoidance: a type containing a pack of 9 chemical fields in the first region and a chemical field The bottom body is provided with a guide half, and the bottom body of the domain material area is dominated by one pole for the second gate and the polarized oxygen field Hai--D, the second gate and the second pole; the upper gate Nitrogen conductance of the layered layer is half into the shape and the second between the inter-regional wall gaps; a field and the inter-regional interstitial oxygen field; the first part is formed into a cover to cover the layer; and the nitrogen light is etched into the etching Tong Huiqi should remain the pole gate 2 of the left and the pretty one; the polarization of the domain and region is the first; the oxygen layer of the gate blocks the light and the part should be located in the other layer. 第27頁 463314 六、申請專利範園 形成一金屬矽化物層於該第一閘極與該第二閘極上與 露出的該半導體底材; 形成一内介電層覆蓋於該場氧化區域上、該第一閘極 與該第二問極上與該半導體底材上;及 形成一接觸窗於部份該金屬矽化物層上。 1 0 .如申請專利範圍第9項所述之方法,其中該第一閘極至 少包含多晶矽。Page 27 463314 VI. The patent application park forms a metal silicide layer on the first gate and the second gate and the exposed semiconductor substrate; an inner dielectric layer is formed to cover the field oxidation area, The first gate electrode, the second interrogator electrode and the semiconductor substrate; and a contact window is formed on a part of the metal silicide layer. 10. The method according to item 9 of the scope of the patent application, wherein the first gate comprises at least polycrystalline silicon. 第28頁 4 633 1 4 六、申請專利範圍 | 1 6 .如申請專利範圍第9項所述之方法,其中該金屬矽化物 | 層至少包含石夕化鈦。 IPage 28 4 633 1 4 VI. Patent Application Range | 1 6. The method as described in item 9 of the patent application range, wherein the metal silicide | layer contains at least titanium petrified. I 第29頁 IPage 29 I
TW89125264A 2000-11-29 2000-11-29 Forming method of borderless contact to avoid the loss of field oxide layer TW463314B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89125264A TW463314B (en) 2000-11-29 2000-11-29 Forming method of borderless contact to avoid the loss of field oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89125264A TW463314B (en) 2000-11-29 2000-11-29 Forming method of borderless contact to avoid the loss of field oxide layer

Publications (1)

Publication Number Publication Date
TW463314B true TW463314B (en) 2001-11-11

Family

ID=21662107

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89125264A TW463314B (en) 2000-11-29 2000-11-29 Forming method of borderless contact to avoid the loss of field oxide layer

Country Status (1)

Country Link
TW (1) TW463314B (en)

Similar Documents

Publication Publication Date Title
US5695819A (en) Method of enhancing step coverage of polysilicon deposits
US5098865A (en) High step coverage silicon oxide thin films
KR960011015B1 (en) DEPOSITION OF SILICON DIOXIDE FILMS AT TEMPERATURE AS LOW AS 100í• BY LPCVD USING ORGANODISILANE SOURCES
JP3553410B2 (en) Multi-stage CVD for thin film transistors
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
KR20050021506A (en) Bubbler for substrate processing
US4900694A (en) Process for the preparation of a multi-layer stacked junction typed thin film transistor using seperate remote plasma
JP3161394B2 (en) Plasma CVD equipment
JPS62152171A (en) Thin-film transistor
JPH05326413A (en) Method for forming vapor-grown film, semiconductor manufacturing apparatus, and semiconductor device
JPH07230960A (en) Plasma cvd device
JP4319269B2 (en) Thin film formation method by plasma CVD
US5007374A (en) Apparatus for forming thin films in quantity
TW463314B (en) Forming method of borderless contact to avoid the loss of field oxide layer
JP3166379B2 (en) Method and apparatus for manufacturing insulating film
US5013690A (en) Method for deposition of silicon films from azidosilane sources
JP2001003174A (en) Formation of thin film and induction coupling type plasma cvd device
JPH0790591A (en) Microwave plasma cvd system and formation of deposited film
JPH11150283A (en) Manufacture of polycrystalline silicon thin film
JP2630089B2 (en) Microwave plasma processing equipment
JP2004327844A (en) Silicon nitride film, its producing process, and functional device
Hamanaka et al. The effect of pretreatment for SiH4 gas by microwave plasma on Si film formation behavior by thermal CVD
JPH0941147A (en) Plasma cvd method
JP2562686B2 (en) Plasma processing device
JP2682734B2 (en) Dielectric film deposition method and apparatus

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees