JPS5975927A - Production of conductive composition material - Google Patents

Production of conductive composition material

Info

Publication number
JPS5975927A
JPS5975927A JP57185956A JP18595682A JPS5975927A JP S5975927 A JPS5975927 A JP S5975927A JP 57185956 A JP57185956 A JP 57185956A JP 18595682 A JP18595682 A JP 18595682A JP S5975927 A JPS5975927 A JP S5975927A
Authority
JP
Japan
Prior art keywords
aluminum
fibers
glass fiber
fiber
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57185956A
Other languages
Japanese (ja)
Inventor
Keiichiro Ishii
石井 敬一郎
Kenichi Suzuki
憲一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP57185956A priority Critical patent/JPS5975927A/en
Priority claimed from JP18595682U external-priority patent/JPS5989630U/en
Priority claimed from JP21554282A external-priority patent/JPS59107734A/en
Priority to DE19833344670 priority patent/DE3344670A1/en
Publication of JPS5975927A publication Critical patent/JPS5975927A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/02Advancing work in relation to the stroke of the die or tool
    • B21D43/04Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
    • B21D43/05Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work specially adapted for multi-stage presses
    • B21D43/057Devices for exchanging transfer bars or grippers; Idle stages, e.g. exchangeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/14Particular arrangements for handling and holding in place complete dies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press Drives And Press Lines (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a composite material which is easy to handle and excellent in moldability, heat resistance, and toughness and has high electrical conductivity, by sandwiching a specified resin coat film having an intermediate layer comprising an aluminum fiber/glass fiber mixture between films and then effecting impregnation and deforming. CONSTITUTION:A film is coated with a composition of an unsaturated polyester or vinyl ester resin. Then, 2.5-25mm.-long aluminum fiber and 10-100mm.-long glass fiber in amounts to provide an aluminum fiber content >=5%, and a glass fiber content >=10%, a content of fibers <=60% and an aluminum fiber/glass fiber ratio of 0.2-1 are scattered over the surface of the coat film so that the both of the fibers may be mixed uniformly and randomly. Then, thereupon another film coated with the above composition is laid thereupon with its coat composition side situated down, and the impregnation and defoaming are effected.

Description

【発明の詳細な説明】 本発明は高強度で、かつ高導電性を有する熱硬化性樹脂
成形材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a thermosetting resin molding material having high strength and high conductivity.

その目的とするところは、取扱い作業が容易で、成形性
、耐熱性、強靭性に優れ、かつ高度の導電性を有する成
形用複合材料を提供するにある。
The purpose is to provide a molding composite material that is easy to handle, has excellent moldability, heat resistance, and toughness, and has a high degree of electrical conductivity.

近年軽量化、製造工程の合理化、コストダウン等のため
、金属のプラスチック材料への代替が活発に進められて
いるが、プラスチックは電気と熱の伝導性に欠けている
In recent years, metals have been actively replaced by plastic materials in order to reduce weight, rationalize manufacturing processes, and reduce costs, but plastics lack electrical and thermal conductivity.

そのためこれが原因で電磁障害等の新たな問題が発生し
ている。これに対し金属溶射、導電性塗料による塗装等
の対策が講じられ℃いるが、2次加工であること、剥離
脱落による危険性もあること等から、2次加工を要しな
い金属との複合材料が種々提案されている。
Therefore, new problems such as electromagnetic interference are occurring due to this. Countermeasures such as metal spraying and coating with conductive paint have been taken to counter this problem, but since it is secondary processing and there is a risk of peeling off, composite materials with metals that do not require secondary processing are used. Various proposals have been made.

代表的なものに金属繊維を熱可塑性樹脂に混線した成形
材料がある。しかしこれは混線、成形工程を通して金属
繊維の破断が著しく、その特徴を生かしきれていない。
A typical example is a molding material in which metal fibers are mixed with thermoplastic resin. However, this method does not take full advantage of its characteristics because of crosstalk and severe breakage of the metal fibers during the molding process.

アルミニウムコートガラス繊維を混入したシートモール
ディングコンパウンド(以下SMCという)、バルクモ
ールディングコンパウンド(以下BMCという)も公知
であるが、アルミニウムコ−トガ2ス繊維が高価であり
、樹脂との接着性が悪いため、補強効果に゛欠けている
Sheet molding compounds (hereinafter referred to as SMC) and bulk molding compounds (hereinafter referred to as BMC) containing aluminum coated glass fibers are also known, but aluminum coated glass fibers are expensive and have poor adhesion to resin. , it lacks reinforcing effect.

金属繊維をSMC,BMCに混入するアイてイアも提案
はされているが、比較的長い金属繊維はまりも状に固ま
ったり、樹脂の金属繊維への含浸性が悪かったり、金型
内での流動性を著しく阻害する等の問題があって実施は
容易でなかった。
A method of mixing metal fibers into SMC and BMC has been proposed, but relatively long metal fibers tend to harden into a ball shape, have poor impregnation of the resin into the metal fibers, and have problems with flow within the mold. Implementation was not easy due to problems such as severe sexual harassment.

本発明者らは、取扱い作業が容易で、成形性、耐熱性、
強靭性に優れ、かつ高度の導電性を有する成形用複合材
料を得るために鋭意検討した結果、本発明を完成するに
至った。
The present inventors have found that it is easy to handle, has good moldability, heat resistance,
As a result of intensive studies to obtain a composite material for molding that has excellent toughness and high conductivity, the present invention has been completed.

本発明は、フィルム上に不飽和ポリエステル又はビニル
エステル樹脂の配合物を塗布し、その上に2.5〜25
諺のアルミニウム繊維と10〜100mのガラス繊維と
を、アルミニウム繊維の含有率が5%以上で、ガラス繊
維の含有率が10%以上で、繊維の全含有率が60%以
下になるよ5に、アルミニウム繊維/ガラス繊維の比が
0.2〜I Kなるように、かつ両者がランダムに均一
に混在するように散布し、もう一枚の上記の配合物を塗
布したフィルムな配合物を下にして上から重ね合わせ、
含浸、脱泡させることを特徴とするものである。
The present invention involves applying a blend of unsaturated polyester or vinyl ester resin onto the film and applying 2.5 to 25
The proverbial aluminum fiber and 10-100m of glass fiber can be combined into 5 cases where the aluminum fiber content is 5% or more, the glass fiber content is 10% or more, and the total fiber content is 60% or less. , the aluminum fibers/glass fibers were spread so that the ratio was 0.2 to IK, and both were mixed randomly and uniformly, and another film-like composition coated with the above composition was placed on the bottom. and overlap it from above,
It is characterized by impregnation and defoaming.

不飽和ポリエステル又はビニルエステル樹脂の配合物は
通常SMCに用いられる配合のものでよい。
The unsaturated polyester or vinyl ester resin formulation may be of a formulation commonly used in SMC.

フィルムも養生後、剥がし易いものであればよい。The film may also be of any material as long as it is easy to peel off after curing.

アルミニウム繊維はびびり振動切削法で製造される表面
が平滑でないものが好ましい。繊維の表面が平滑なもの
に比べ繊維どうしのからみ合いが生じ易く、即ち繊維が
接触して導電路を形成し易く、高度の導電性を得るのに
有利である。
Preferably, the aluminum fibers are manufactured by a chatter vibration cutting method and have non-smooth surfaces. Compared to fibers with smooth surfaces, the fibers are more likely to become entangled with each other, that is, the fibers are more likely to come into contact with each other to form a conductive path, which is advantageous for obtaining a high degree of conductivity.

しかしアルミニウム繊維が短過ぎると作業性は良くなる
が、繊維の接触による導電路の形成が減少し高度の導電
性が得られない。たとえ長いアルミニウム繊維を用いて
も成形品になるまでの途中の工程で切断し、短くなって
も同様に高度の導電性は得られない。
However, if the aluminum fibers are too short, workability is improved, but the formation of conductive paths due to contact between the fibers is reduced, and a high degree of conductivity cannot be obtained. Even if long aluminum fibers are used, they are cut during the process of forming a molded product, and even if the fibers are shortened, high conductivity cannot be obtained.

一方、長過ぎると繊維どうしのからみ合いが強固になり
、解すのが大変で作業性が著しく悪化する。均一散布が
困難であり、金型内での流動性を著しく阻害する。
On the other hand, if the length is too long, the intertwining of the fibers will become strong, making it difficult to unravel and significantly reducing workability. Uniform dispersion is difficult and fluidity within the mold is significantly inhibited.

アルミニウム繊維の長さが2.5〜251111.好ま
しくは3〜20 Mのものはまりも状に固まり易いけれ
ども、篩にのせ振動を与えると一定の割合で解れ、かえ
って均一散布に好都合である。
The length of the aluminum fiber is 2.5 to 251111. Preferably, those with a concentration of 3 to 20 M tend to harden into lumps, but when placed on a sieve and subjected to vibration, they loosen at a certain rate, which is rather convenient for uniform dispersion.

アルミニウム繊維の太さは10〜200μ扉程度のもの
が良い。
The thickness of the aluminum fiber is preferably about 10 to 200 μm.

アルミニウム繊維の含有率は5重量%以上、好ましくは
7重量%以上が良い。少な過ぎると導電性は低下する。
The content of aluminum fibers is preferably 5% by weight or more, preferably 7% by weight or more. If it is too small, the conductivity will decrease.

多過ぎると樹脂の含浸性が悪く、金型内での流動性も著
しく低下し、アルミニウム繊維どうしのからみ合った稠
密部分とアルミニウム繊維の無い部分とを生じ、著しく
不均質なものとなる。また、多過ぎても導電性が更に良
くなるというものではない。これは繊維の全含有率およ
びアルミニウム繊維/ガラス繊維の比の上限で制限され
る。
If the amount is too large, the impregnating properties of the resin will be poor, and the fluidity within the mold will also be significantly reduced, resulting in dense areas where aluminum fibers are intertwined with each other and areas with no aluminum fibers, resulting in extremely non-uniformity. Further, even if the amount is too large, the conductivity will not be improved. This is limited by the upper limit of the total fiber content and the aluminum fiber/glass fiber ratio.

アルミニウム繊維は、導電性の付与材ではあるが、引張
り、曲は等の機械強度に対する補強効果が之しい。高強
度、強靭性を得るためには、ガラス繊維の併用が不可欠
である。
Aluminum fiber is a conductive material, but it has a poor reinforcing effect on mechanical strength such as tensile strength and bending strength. In order to obtain high strength and toughness, it is essential to use glass fiber in combination.

ガラス繊維は通常SMCに用いられるものでよい。The glass fibers may be those commonly used in SMC.

勿論不飽和ポリエステル又はビニルエステル樹脂との接
着性を良くするための表面処理をしたものが好ましい。
Of course, it is preferable to use a surface treatment to improve adhesion to unsaturated polyester or vinyl ester resin.

ガラス繊維の長さは10〜IQ□w、好ましくは12〜
50諺が良い。短か過ぎると補強効果に欠け、長過ぎる
と金型内での流動性を悪化させ、成形品が不均質になり
易い。
The length of the glass fiber is 10~IQ□w, preferably 12~
50 proverbs are good. If it is too short, the reinforcing effect will be lacking, and if it is too long, the fluidity within the mold will deteriorate and the molded product will likely become non-uniform.

ガラス繊維の含有率は10重量%以上、好ましくは15
重量%以上が良い。
The content of glass fiber is 10% by weight or more, preferably 15% by weight.
Weight % or higher is better.

少な過ぎると補強効果に欠け、多過ぎると含浸性が悪く
、金型内での流動性も低下する。上限は繊維の全含有率
およびアルミニウム繊維/ガラス繊維の比によって制限
される。アルミニウム繊維とガラス繊維の全含有率は6
0重量%以下、好ましくは50重量%以下が良い。
If it is too small, the reinforcing effect will be lacking, and if it is too large, the impregnating property will be poor and the fluidity within the mold will also be reduced. The upper limit is limited by the total fiber content and the aluminum fiber/glass fiber ratio. The total content of aluminum fiber and glass fiber is 6
It is preferably 0% by weight or less, preferably 50% by weight or less.

高度の導電性を得るためには、成形品内に均一なアルミ
ニウム繊維層を形成することが望ましいが、アルミニウ
ム繊維はガラス繊維に比べ含浸性が悪く、金型内での流
動性が非常に悪い。
In order to obtain a high degree of conductivity, it is desirable to form a uniform layer of aluminum fibers within the molded product, but aluminum fibers have poor impregnation properties compared to glass fibers and have very poor fluidity within the mold. .

そのため成形品にはアルミニウム繊維の稠密部分と不在
部分とを生じ、著しく不均質なものになり易い。
As a result, the molded product has areas where the aluminum fibers are dense and areas where the aluminum fibers are absent, and the product tends to be extremely non-uniform.

しかし上記のものをアルミニウム繊維/ガラス繊維の比
が0.2〜IK、好ましくはO73〜0.8になるよう
に、かつ両者がランダムに均一に混在するように散布す
ることによって、金型内での均一な流動が維持され、成
形品の不均質化を防ぐことができる。
However, by scattering the above materials so that the ratio of aluminum fiber/glass fiber is 0.2 to IK, preferably O73 to 0.8, and so that both are randomly and uniformly mixed, it is possible to This maintains uniform flow and prevents non-uniformity of the molded product.

アルミニウム繊維/ガラス繊維の比が小さ過ぎると導電
性が低下し、大き過ぎると流動性が悪化し、成形品の不
均質化が著しくなり、ボイドも発生し易くなる。
If the aluminum fiber/glass fiber ratio is too small, the conductivity will decrease, and if it is too large, the fluidity will deteriorate, the molded product will become significantly heterogeneous, and voids will easily occur.

アルミニウム以外の金属繊維、例えば銅、黄銅、ニッケ
ル、ステンレス等の繊維も使用出来るが、単独では比重
が大きくなるので好ましくない。
Metal fibers other than aluminum, such as fibers of copper, brass, nickel, stainless steel, etc., can also be used, but they are not preferred because their specific gravity increases when used alone.

導電性粉末、例えばアルミニウム粉末、カーボンブラッ
ク等の併用はアルミニウム繊維の表面露出を隠蔽する効
果があって望ましい。
The combined use of conductive powder, such as aluminum powder and carbon black, is desirable since it has the effect of hiding the surface exposure of the aluminum fibers.

本発明の方法で含浸、脱泡されたシートは養生後成形用
複合材料として供され、圧縮成形によって所望の成形品
となる。
The sheet impregnated and defoamed by the method of the present invention is used as a composite material for molding after curing, and is formed into a desired molded product by compression molding.

本発明の製造方法によって得られた成形用複合材料は取
扱い作業が容易で成形性も良好である。
The moldable composite material obtained by the manufacturing method of the present invention is easy to handle and has good moldability.

これを用いた成形品は耐熱性、強靭性、伝熱性に優れ、
かつ高度の導電性を有し、電磁シールド性に優れている
。各種電子機器のハウジングに非常に有用である。
Molded products using this material have excellent heat resistance, toughness, and heat conductivity.
It also has a high degree of conductivity and excellent electromagnetic shielding properties. Very useful for housings of various electronic devices.

なお上記のアルミニウム繊維、ガラス繊維および不飽和
ポリエステル又はビニルエステル樹脂ヲ主成分とするB
MC用配合物をニーダーで混合し、移送成形又は射出成
形用に供することもできる。
In addition, B whose main components are the above-mentioned aluminum fibers, glass fibers, and unsaturated polyester or vinyl ester resins.
The MC formulation can also be mixed in a kneader and subjected to transfer molding or injection molding.

しかしアルミニウム繊維、ガラス繊維が大巾に短かくな
っているため、本発明のものに比べると導電性、機械強
度ともに低下している。
However, since the aluminum fibers and glass fibers are significantly shorter, both the electrical conductivity and the mechanical strength are lower than those of the present invention.

次に実施例をあげて具体的に説明する。Next, a specific explanation will be given with reference to examples.

実施例1〜3 ポリエチレンフィルム上に不飽和ポリエステル(犬日本
インキ製、ポリライトPS−260M)100部、炭酸
カルシウム100部、t・ブチルパーベンゾエート1部
および酸化マグネシウム1部からなる配合物を500 
El/rr?塗布し、その上にシラン処理のガラス繊維
とアルミニウム繊維(アイシン精機製、アイシンメタル
ファイバー)とを、同時に、ランダムに均一に散布する
。その上にもう一枚の上記の配合物を塗布したポリエチ
レンフィルムを、配合物を下にして重ね合わせ、含浸、
脱泡させて40℃、48時間養生してSMCを得た。
Examples 1 to 3 500 parts of a blend consisting of 100 parts of unsaturated polyester (Polylite PS-260M manufactured by Inu Nippon Ink), 100 parts of calcium carbonate, 1 part of t-butyl perbenzoate and 1 part of magnesium oxide was deposited on a polyethylene film.
El/rr? Then, silane-treated glass fibers and aluminum fibers (manufactured by Aisin Seiki, Aisin Metal Fiber) are simultaneously and randomly and uniformly scattered thereon. On top of that, another polyethylene film coated with the above formulation is placed on top with the formulation side down, impregnated,
It was degassed and cured at 40°C for 48 hours to obtain SMC.

なお実施例2の配合物には、更にアルミニウム粉20部
を添加した。
Note that 20 parts of aluminum powder was further added to the formulation of Example 2.

比較例1゜ 実施例IK準じて、ガラス繊維とアルミニウム繊維の量
を置き換えてSMCを得た。
Comparative Example 1 SMC was obtained according to Example IK except that the amounts of glass fiber and aluminum fiber were replaced.

比較例2゜ 実施例3と同一組成であるが、実施例3の配合物に、更
にアルミニウム繊維とガラス繊維とをニーダ−で混合し
てBMCを得た。
Comparative Example 2 A BMC having the same composition as Example 3 was obtained by further mixing aluminum fibers and glass fibers with the formulation of Example 3 using a kneader.

比較例3゜ 低収縮性不飽和ポリエステル30部、t・ブチルパーベ
ンゾエート0.3部、ステアリン酸亜鉛1部および炭酸
カルシウム40部の予備混合物と、シラン処理したガラ
ス繊維15部、アルミニウム繊維15部とをニーダ−で
混合してBMCを得た。
Comparative Example 3 Premixture of 30 parts of low-shrinkage unsaturated polyester, 0.3 parts of t-butyl perbenzoate, 1 part of zinc stearate and 40 parts of calcium carbonate, 15 parts of silane-treated glass fibers, 15 parts of aluminum fibers were mixed in a kneader to obtain BMC.

なお実施例1〜3および比較例1〜2の材料は圧縮成形
により、比較例3の材料は射出成形により成形した。そ
の性能は第1表に示した。
The materials of Examples 1 to 3 and Comparative Examples 1 to 2 were molded by compression molding, and the material of Comparative Example 3 was molded by injection molding. Its performance is shown in Table 1.

実施例1〜3の材料は成形性、アルミニウムの分散性が
良好であり、高強度で体積固有抵抗が小さい。即ち高度
の導電性が得られている。
The materials of Examples 1 to 3 have good formability and aluminum dispersibility, high strength, and low volume resistivity. That is, a high degree of conductivity is obtained.

比較例1の材料は金型内での流動性が不均一で悪い。ア
ルミニウムの分散性が悪く、部分的に材料不足の個所が
発生することもある。特性値のバラツキも非常に大きい
The material of Comparative Example 1 had uneven and poor fluidity within the mold. Due to the poor dispersibility of aluminum, some parts may be lacking in material. The variation in characteristic values is also very large.

比較例2〜3の材料は、実施例3に比べ強度、導電性と
もに劣る。
The materials of Comparative Examples 2 and 3 are inferior to Example 3 in both strength and conductivity.

なお、実施例の材料は電磁シールド性、伝熱性にも優れ
ている。
Note that the materials of the examples also have excellent electromagnetic shielding properties and heat conductivity.

Claims (1)

【特許請求の範囲】[Claims] フィルム上に不飽和ポリエステル又はビニルエステル樹
脂の配合物を塗布し、その上に2.5〜25111mの
アルミニウム繊維と10〜ioo mのガラス繊維とを
、アルミニウム繊維の含有率が5%以上で、ガラス繊維
の含有率が10%以上で、繊維の全含有率が60%以下
になるように1  アルミニウム繊維/ガラス繊維の比
が、0.2〜1になるように、かつ両者がランダムに均
一に混在するように散布して、もう一枚の上記の配合物
を塗布したフィルムを配合物を下にして上から重ね合わ
せ、含浸、脱泡させることを特徴とする成形用導電性複
合材料の製造方法。
A blend of unsaturated polyester or vinyl ester resin is applied on the film, on which 2.5-25111 m of aluminum fibers and 10-ioom of glass fiber are applied, with the content of aluminum fibers being 5% or more. The glass fiber content is 10% or more, and the total fiber content is 60% or less.1 The aluminum fiber/glass fiber ratio is 0.2 to 1, and both are randomly uniform. of the conductive composite material for molding, which is characterized in that the film is coated with another film coated with the above-mentioned composition and is layered on top with the composition facing down, impregnated and defoamed. Production method.
JP57185956A 1982-10-25 1982-10-25 Production of conductive composition material Pending JPS5975927A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57185956A JPS5975927A (en) 1982-10-25 1982-10-25 Production of conductive composition material
DE19833344670 DE3344670A1 (en) 1982-10-25 1983-12-09 METHOD AND DEVICE FOR DISCONNECTING AND CONNECTING A TRANSFER ROD OF A TRANSFER PRESS WITH THREE STANDS

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP57185956A JPS5975927A (en) 1982-10-25 1982-10-25 Production of conductive composition material
JP18595682U JPS5989630U (en) 1982-12-10 1982-12-10 Transfer bar splitting device
JP21554282A JPS59107734A (en) 1982-12-10 1982-12-10 Method for dividing and connecting transfer bar in three column type transfer press

Publications (1)

Publication Number Publication Date
JPS5975927A true JPS5975927A (en) 1984-04-28

Family

ID=27325659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185956A Pending JPS5975927A (en) 1982-10-25 1982-10-25 Production of conductive composition material

Country Status (2)

Country Link
JP (1) JPS5975927A (en)
DE (1) DE3344670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061239A1 (en) * 1998-05-26 1999-12-02 Takeda Chemical Industries, Ltd. Material for molding thermosetting resin sheet, production process, and molded product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614265A (en) * 1985-07-22 1986-09-30 Danly Machine Corporation Apparatus for automatically splitting transfer feed rails in a transfer feed press
DE3636011A1 (en) * 1986-10-23 1988-04-28 Schuler Gmbh L DEVICE AND METHOD FOR COUPLING AND UNCOUPLING GRIPPER RAIL PARTS IN A TRANSFER PRESS
US6000322A (en) * 1998-01-30 1999-12-14 Verson Transfer press die support
US6023958A (en) * 1998-01-30 2000-02-15 Verson Bridge press
US6101861A (en) * 1998-01-30 2000-08-15 Verson, A Division Of Allied Products Corporation Bridge frame for a transfer press

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503969A (en) * 1982-07-02 1985-03-12 Kabushiki Kaisha Komatsu Seisakusho Device for splitting a pair of segmented transfer bars of a transfer press or the like
US4693361A (en) * 1982-10-05 1987-09-15 Kabushiki Kaisha Komatsu Seisakusho Transfer press

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061239A1 (en) * 1998-05-26 1999-12-02 Takeda Chemical Industries, Ltd. Material for molding thermosetting resin sheet, production process, and molded product
US6592986B1 (en) 1998-05-26 2003-07-15 Mitsui Takeda Chemicals Inc. Material for molding thermosetting resin sheet, production process, and molded product

Also Published As

Publication number Publication date
DE3344670A1 (en) 1984-06-14

Similar Documents

Publication Publication Date Title
JPS58150203A (en) Prastic product with conductive fiber
EP0131067A1 (en) Conductive synthetic resin molding material
JPS58181612A (en) Manufacture of plastic molding having electromagnetic shielding property
US20160176095A1 (en) Variable-thickness elecriplast moldable capsule and method of manufacture
SE452280C (en) ELECTRIC LEADING PLASTIC ARTICLES AND PROCEDURES AND RESOURCES FOR PRODUCING THEREOF
JPS58127761A (en) High specific gravity composite material reinforced with organic fiber
JPH07290449A (en) Sheet like electromagnetic shield molding material and production thereof
US7708920B2 (en) Conductively doped resin moldable capsule and method of manufacture
JPS5975927A (en) Production of conductive composition material
US20140322532A1 (en) Variable-thickness elecriplast moldable capsule and method of manufacture
JPH09116293A (en) Electromagnetic wave shielding material, its manufacture, and its application method
JPH0121788B2 (en)
JPS6129083B2 (en)
JPS58212199A (en) Electromagnetically shielding material
JPS6054967B2 (en) Method of manufacturing conductive plastic
JPH0419644B2 (en)
JPS5922710A (en) Manufacture of electroconductive molding material
JPH03416B2 (en)
JPH0319862B2 (en)
JPH0653688A (en) Molded form for electromagnetic shield
JPS6319543B2 (en)
JP3308748B2 (en) Conductive resin composition
JPS6135228B2 (en)
JPH0666558B2 (en) Manufacturing method of plastic molded products with radio wave reflection and shielding properties
JP2004027097A (en) Thermoplastic resin composition