JPH0419644B2 - - Google Patents

Info

Publication number
JPH0419644B2
JPH0419644B2 JP59043757A JP4375784A JPH0419644B2 JP H0419644 B2 JPH0419644 B2 JP H0419644B2 JP 59043757 A JP59043757 A JP 59043757A JP 4375784 A JP4375784 A JP 4375784A JP H0419644 B2 JPH0419644 B2 JP H0419644B2
Authority
JP
Japan
Prior art keywords
conductive
pellets
filler
thermoplastic resin
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59043757A
Other languages
Japanese (ja)
Other versions
JPS60189105A (en
Inventor
Toshio Mayama
Hidehiro Iwase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP4375784A priority Critical patent/JPS60189105A/en
Publication of JPS60189105A publication Critical patent/JPS60189105A/en
Publication of JPH0419644B2 publication Critical patent/JPH0419644B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、熱可塑性樹脂の強度に比較して成形
材料の強度を低下させることなく、導電性充填材
が均一に分散でき、成形品を高温に放置してもシ
ールド効果が失われない導電性成形材料に関す
る。
Detailed Description of the Invention [Technical Field of the Invention] The present invention enables conductive fillers to be uniformly dispersed without lowering the strength of the molding material compared to the strength of thermoplastic resins, and molded products can be heated at high temperatures. The present invention relates to a conductive molding material that does not lose its shielding effect even when left in the environment.

[発明の技術的背景とその問題点] 近年、外部の妨害電波から電子回路を保護し、
かつ発振回路等から発生する不要な電波を外部に
漏洩するのを防止するために、電子機器の筐体を
電磁波シールド材料により形成することが要求さ
れている。このような電磁波シールド材料とし
て、金属や導電性樹脂等が挙げられるが、前者の
金属は優れた電磁波シールド効果を有する反面、
重い、高価である、加工性が悪い等の欠点がある
ため、後者の導電性樹脂の使用が主流となりつつ
ある。樹脂に導電性を付与する方法としては、樹
脂を成形後、導電性塗料を塗布したり、金属を熔
射、メツキしたりして表面に導電層を形成する方
法と、樹脂内部にカーボンや金属の粉末や繊維等
の導電性充填材を添加して成形する内部添加法が
ある。樹脂成形品の表面に導電層を形成する方法
は、工程が増えて量産性に乏しく、また導電層が
長時間の使用により剥がれてしまうという欠点が
あるため、内部添加法に期待が寄せられている。
[Technical background of the invention and its problems] In recent years, electronic circuits have been protected from external interference radio waves,
In addition, in order to prevent unnecessary radio waves generated from oscillation circuits and the like from leaking to the outside, it is required that the housings of electronic devices be made of electromagnetic shielding material. Examples of such electromagnetic shielding materials include metals and conductive resins, but while the former metals have excellent electromagnetic shielding effects,
Due to drawbacks such as being heavy, expensive, and poor processability, the latter type of conductive resin is becoming mainstream. There are two methods of imparting conductivity to resin: forming a conductive layer on the surface by applying conductive paint, spraying or plating metal after molding the resin, and applying carbon or metal inside the resin. There is an internal addition method in which a conductive filler such as powder or fiber is added and molded. The method of forming a conductive layer on the surface of a resin molded product requires many steps and is not suitable for mass production, and also has the disadvantage that the conductive layer peels off after long-term use, so there are high expectations for the internal addition method. There is.

しかしながら、内部添加法にも次のような問題
がある。すなわち、樹脂成形品の強度を低下させ
ることなくかつ成形品を低コストにするためには
導電性充填材の量を極力少なくすることがのぞま
しいが、導電性充填材の量を少なくすると導電性
が低下したり、また成形品を60〜80℃の高温に放
置すると、樹脂と導電性充填材との線膨脹係数の
差および成形歪みによつて導電性充填材どうしの
結合が離れ、導電性が低下し同時にシールド効果
が低下するいわゆる導電性劣化が起つて、著しく
信頼性を損う欠点があつた。
However, the internal addition method also has the following problems. In other words, it is desirable to reduce the amount of conductive filler as much as possible in order to reduce the cost of the molded product without reducing its strength, but if the amount of conductive filler is reduced, the conductivity will decrease. If the molded product is left at a high temperature of 60 to 80℃, the bond between the conductive fillers separates due to the difference in linear expansion coefficient between the resin and the conductive filler and molding distortion, causing the conductivity to deteriorate. At the same time, so-called conductivity deterioration occurs, in which the shielding effect decreases, resulting in a drawback that significantly impairs reliability.

[発明の目的] 本発明の目的は、上記の欠点を解消するために
なされたもので、熱可塑性樹脂の強度を低下させ
ることなく充填材を均一に分散させ、また高温の
環境下においても導電性が低下しないシールド効
果の優れた導電性成形材料を提供しようとするも
のである。
[Object of the Invention] The object of the present invention was to eliminate the above-mentioned drawbacks, and it is possible to uniformly disperse the filler without reducing the strength of the thermoplastic resin, and to maintain conductivity even in high-temperature environments. The purpose of this invention is to provide a conductive molding material with excellent shielding effect without deterioration in properties.

[発明の概要〕 本発明は、前記の目的を達成すべく鋭意研究を
重ねた結果、導電性劣化防止充填材を加えること
によつて目的が達成されることを見出したもので
ある。
[Summary of the Invention] As a result of extensive research to achieve the above-mentioned object, the present invention has discovered that the object can be achieved by adding a conductive deterioration-preventing filler.

即ち本発明は、 熱可塑性樹脂と導電性充填材と導電性劣化防止
充填材とを主成分とし、熱可塑性樹脂に対して導
電性充填材5〜40重量%、導電性劣化防止充填材
0.3〜10重量%がそれぞれ配合され、長繊維状の
前記導電性充填材を束ねたものの表面に熱可塑性
樹脂層を形成一体化しペレツト状に切断してなる
マスターペレツト、又は長繊維状の前記導電性充
填材と長繊維状の前記導電性劣化防止充填材とを
束ねたものの表面に熱可塑性樹脂層を形成一体化
しペレツト状に切断してなる混合マスターペレツ
トが混合されていることを特徴とする導電性成形
材料である。
That is, the present invention mainly consists of a thermoplastic resin, a conductive filler, and a conductive anti-deterioration filler, and the thermoplastic resin contains 5 to 40% by weight of the conductive filler and the conductive anti-deterioration filler.
0.3 to 10% by weight of each of the above-mentioned conductive fillers in the form of long fibers, a thermoplastic resin layer is formed on the surface of a bundle of the conductive fillers, which is then cut into pellets to form a master pellet; A mixed master pellet is mixed therein, which is obtained by forming a thermoplastic resin layer on the surface of a bundle of conductive filler and the conductive deterioration prevention filler in the form of long fibers, and cutting the bundle into pellets. It is an electrically conductive molding material.

本発明に用いる熱可塑性樹脂としては、ポリス
チレン樹脂、ABS樹脂、ポリプロピレン樹脂、
変性PPO樹脂、PPE樹脂等が挙げられる。これ
らの樹脂はペレツト状にしてそのままナチユラル
ペレツトにしたり、導電性充填材を被覆し、ある
いは導電性劣化防止充填材を被覆して用いる。充
填材を被覆する場合は、ナチユラルペレツトの樹
脂と導電性充填材を被覆する樹脂或は導電性劣化
防止充填材を被覆する樹脂とが同一であつてもよ
くまた異なる樹脂を用いてもよい。
Thermoplastic resins used in the present invention include polystyrene resin, ABS resin, polypropylene resin,
Examples include modified PPO resin and PPE resin. These resins may be used in the form of pellets, such as natural pellets as they are, coated with a conductive filler, or coated with a conductive deterioration-preventing filler. When covering the filler, the resin of the natural pellets and the resin that covers the conductive filler or the resin that covers the conductive deterioration prevention filler may be the same or different resins may be used. .

本発明に用いる導電性充填材としては、長繊維
状の銅繊維、アルミニウム繊維等が挙げられ、こ
れらの繊維は細いほどよい。細いほど樹脂中の単
位重量当りの繊維本数をあげることができ、かつ
導電性がよくシールド効果をあげることができ
る。この繊維は100〜50000本程度の束として使用
される。長繊維状導電性充填材は勿論このまま使
用できるが束ねた表面に熱可塑性樹脂層を形成一
体化しペレツト状に切断してマスターペレツトと
して使用したり、長繊維状導電性充填材と導電性
劣化防止充填材とを束ねた表面に熱可塑性樹脂を
形成一体化しペレツト状に切断してなる混合マス
ターペレツトとして使用される。
Examples of the conductive filler used in the present invention include long fiber copper fibers and aluminum fibers, and the thinner these fibers are, the better. The thinner the fibers, the higher the number of fibers per unit weight in the resin, and the better the conductivity and the better the shielding effect. This fiber is used in bundles of about 100 to 50,000 fibers. The long fiber conductive filler can of course be used as is, but it is also possible to form a thermoplastic resin layer on the bundled surface and cut it into pellets to use as a master pellet, or to remove the long fiber conductive filler and the conductivity deterioration. A thermoplastic resin is formed on the surface of a bundle of preventive fillers and is then cut into pellets to be used as a mixed master pellet.

本発明に用いる導電性劣化防止充填材として
は、ガラス繊維、炭素繊維、ステンレス繊維、又
はスズ、ニツケル、アルミニウム等の金属層を有
するガラス繊維若しくは炭素繊維等が挙げられ
る。これらはそのまま使用されることは勿論であ
るが表面に熱可塑性樹脂層を有する強化ペレツト
として使用される。
Examples of the conductive deterioration-preventing filler used in the present invention include glass fiber, carbon fiber, stainless steel fiber, or glass fiber or carbon fiber having a metal layer such as tin, nickel, or aluminum. These can of course be used as they are, but they can also be used as reinforced pellets having a thermoplastic resin layer on the surface.

次に導電性充填材と導電性劣化防止充填材との
配合量について説明する。
Next, the blending amounts of the conductive filler and the conductive deterioration preventing filler will be explained.

導電性充填材は、熱可塑性樹脂に対して5〜40
重量%配合することが必要である。5重量%未満
では十分な導電性が得られず、40重量%を超える
と樹脂強度が低下しまた成形性が悪くなり好まし
くない。導電性劣化防止充填材は、熱可塑性樹脂
に対して0.3〜10重量%配合することが必要であ
る。0.3重量%未満又は10重量%を超えると高温
(70℃)における成形品の導電性が低下し好まし
くないからである。
The conductive filler is 5 to 40 for thermoplastic resin.
It is necessary to mix the amount by weight. If it is less than 5% by weight, sufficient conductivity cannot be obtained, and if it exceeds 40% by weight, the resin strength will decrease and moldability will deteriorate, which is not preferable. The conductive deterioration-preventing filler needs to be blended in an amount of 0.3 to 10% by weight based on the thermoplastic resin. This is because if it is less than 0.3% by weight or more than 10% by weight, the conductivity of the molded product at high temperature (70° C.) will decrease, which is undesirable.

本発明の導電性成形材料は、熱可塑性樹脂と導
電性充填材と導電性劣化防止充填材とからなり、
導電性劣化防止充填材を配合することにより導電
性の劣化を防止することができた。その理由は、
導電性劣化防止充填材を加えることによつて熱可
塑性樹脂の線膨脹係数が小さくなるからである。
また導電性劣化防止充填材の表面に金属層を有せ
しめその導電性を導電性充填材の導電性に近づけ
ることによつて、全体として高い導電性を得るこ
とができる。またこれらをペレツト化することに
よつて、樹脂中に充填材が均一に分散し優れたシ
ールド効果を得ることができる。
The conductive molding material of the present invention is composed of a thermoplastic resin, a conductive filler, and a conductive deterioration-preventing filler,
Deterioration of conductivity could be prevented by blending the filler to prevent conductivity deterioration. The reason is,
This is because the linear expansion coefficient of the thermoplastic resin becomes smaller by adding the conductive anti-deterioration filler.
Further, by providing a metal layer on the surface of the conductive deterioration-preventing filler and bringing its conductivity close to that of the conductive filler, high conductivity can be obtained as a whole. Furthermore, by pelletizing these materials, the filler is uniformly dispersed in the resin and an excellent shielding effect can be obtained.

本発明の導電性成形材料は、熱可塑性樹脂と導
電性充填材と導電性劣化防止充填材とを混合して
成形材料としてもよいが、前記マスターペレツト
と強化ペレツトと、或は混合マスターペレツトと
ナチユラルペレツトとを適宜量配合することによ
り、極めて容易に配合でき工程も大幅に短縮でき
大変有利である。
The conductive molding material of the present invention may be a molding material by mixing a thermoplastic resin, a conductive filler, and a conductive deterioration prevention filler, but it may be made by mixing the above-mentioned master pellets and reinforcing pellets, or a mixed master pellet. By blending appropriate amounts of pellets and natural pellets, it is extremely easy to blend and the process can be greatly shortened, which is very advantageous.

次に図面を用いて説明する。 Next, it will be explained using drawings.

長繊維状導電性充填材2を束ねた表面に熱可塑
性樹脂層1を被覆形成一体化し押圧してペレツト
状に切断してなるマスターペレツトAを示したも
のが第1図である。マスターペレツトの形状は、
断面が円形、楕円形、偏平形等に必要に応じて変
形させることができ、特に制限はない。導電性劣
化防止充填材3を束ねた表面に熱可塑性樹脂層1
を被覆形成一体化し押圧してペレツト状に切断し
た強化ペレツトBを示したのが第2図である。第
3図には長繊維状導電性充填材2と導電性劣化防
止充填材3とを束ねた表面にマスターペレツトA
および強化ペレツトBと同様にして熱可塑性樹脂
層1を被覆形成してなる混合マスターペレツトC
を示した。これらのペレツトA,B,Cと熱可塑
性樹脂のみからなるナチユラルペレツトとを組合
せ混合して容易に導電性成形材料を得ることがで
きる。
FIG. 1 shows a master pellet A obtained by integrally covering and integrally forming a thermoplastic resin layer 1 on the surface of a bundle of long fibrous conductive fillers 2, pressing it, and cutting it into pellets. The shape of the master pellet is
The cross section can be transformed into a circular, elliptical, flattened shape, etc. as necessary, and there are no particular limitations. A thermoplastic resin layer 1 is placed on the surface where the conductive deterioration prevention filler 3 is bundled.
Fig. 2 shows a reinforced pellet B obtained by integrally forming a coating, pressing it, and cutting it into pellets. Figure 3 shows a master pellet A on the surface of a bundle of long fiber conductive filler 2 and conductive anti-deterioration filler 3.
and a mixed master pellet C formed by coating the thermoplastic resin layer 1 in the same manner as the reinforced pellet B.
showed that. A conductive molding material can be easily obtained by combining and mixing these pellets A, B, and C with natural pellets made only of thermoplastic resin.

[発明の効果] 以上説明したように、本発明の導電性成形材料
は、導電性劣化防止充填材を配合することによつ
て熱可塑性樹脂の強度を低下させることなく充填
材を均一に分散させ、また高温の環境下でも導電
性を低下させることなくシールド効果の優れた成
形材料であり、それに加えて極めて容易な工程で
成形材料とすることができる。
[Effects of the Invention] As explained above, the conductive molding material of the present invention is capable of uniformly dispersing the filler without reducing the strength of the thermoplastic resin by blending the conductive deterioration-preventing filler. Moreover, it is a molding material with excellent shielding effect without reducing conductivity even in high-temperature environments, and in addition, it can be made into a molding material through an extremely easy process.

[発明の実施例] 次に本発明の実施例について説明する。本発明
は以下の実施例に限定されるものでない。
[Embodiments of the Invention] Next, embodiments of the present invention will be described. The present invention is not limited to the following examples.

実施例 直径50μmの長尺の銅繊維を300本束ねて、そ
の表面にポリスチレン樹脂を薄く被覆形成一体化
して直径約2mmとし、次いで押圧して偏平形と
し、長さ5mmにカツテイングしてマスターペレツ
トを得た。次に直径8μmの長尺の炭素繊維を
10000本束ねてポリスチレン樹脂を薄く被覆し押
圧偏平形とし、長さ5mmにカツテイングして強化
ペレツトを得た。こうして得られたマスターペレ
ツト80重量部と強化ペレツト3重量部更にポリス
チレン樹脂からなるナチユラルペレツト100重量
部を機械的に混合して導電性成形材料を製造し
た。この成形材料を用いて成形品を得て電磁波シ
ールド効果を測定したところ、500MHzで40dBで
あつた。成形品には導電性充填材が均一に分散し
ており、70℃1000時間後の電磁波シールド効果を
測定したところ40dBで劣化はみられなかつた。
Example: 300 long copper fibers with a diameter of 50 μm are bundled, the surface of which is coated with a thin layer of polystyrene resin, and the diameter is approximately 2 mm.Then, the fibers are pressed into a flat shape, cut into a length of 5 mm, and made into master pellets. I got the trick. Next, a long carbon fiber with a diameter of 8 μm was
10,000 pellets were bundled, thinly coated with polystyrene resin, pressed into a flat shape, and cut into 5 mm lengths to obtain reinforced pellets. A conductive molding material was prepared by mechanically mixing 80 parts by weight of the master pellets thus obtained, 3 parts by weight of reinforced pellets, and 100 parts by weight of natural pellets made of polystyrene resin. When a molded product was obtained using this molding material and the electromagnetic shielding effect was measured, it was 40 dB at 500 MHz. The conductive filler is uniformly dispersed in the molded product, and when the electromagnetic shielding effect was measured after 1000 hours at 70°C, it was 40 dB with no deterioration.

比較例 直径約50μmの長尺の銅繊維を300本束ねて、
その表面にポリスチレン樹脂を薄く被覆一体化し
て直径約2mmとし、長さ5mmにカツテイングして
マスターペレツトを得た。マスターペレツト80重
量部に対してポリスチレン樹脂からなるナチユラ
ルペレツト100重量部を機械的に混合して導電性
成形材料を製造した。この成形材料を用いて成形
品を得た。この成形品の電磁波シールド効果は、
初期には500MHzで40dBであつたが、70℃1000時
間加熱後の電磁波シールド効果は15dBに劣化し
た。
Comparative example: 300 long copper fibers with a diameter of about 50 μm are bundled,
The surface of the pellet was coated with a thin layer of polystyrene resin to give a diameter of approximately 2 mm, and the pellet was cut into a length of 5 mm to obtain a master pellet. A conductive molding material was produced by mechanically mixing 100 parts by weight of natural pellets made of polystyrene resin with 80 parts by weight of master pellets. A molded article was obtained using this molding material. The electromagnetic shielding effect of this molded product is
Initially, it was 40dB at 500MHz, but after heating at 70℃ for 1000 hours, the electromagnetic shielding effect deteriorated to 15dB.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いるマスターペレツトの断
面図、第2図は本発明に用いる強化ペレツトの断
面図、第3図は本発明に用いる混合マスターペレ
ツトの一部拡大切欠断面図である。 1……熱可塑性樹脂層、2……長繊維状導電性
充填材、3……導電性劣化防止充填材。
Fig. 1 is a cross-sectional view of the master pellet used in the present invention, Fig. 2 is a cross-sectional view of the reinforced pellet used in the present invention, and Fig. 3 is a partially enlarged cutaway cross-sectional view of the mixed master pellet used in the present invention. . 1... Thermoplastic resin layer, 2... Long fibrous conductive filler, 3... Conductive deterioration prevention filler.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂と導電性充填材と導電性劣化防
止充填材とを主成分とし、熱可塑性樹脂に対して
導電性充填材5〜40重量%、導電性劣化防止充填
材0.3〜10重量%がそれぞれ配合され、長繊維状
の前記導電性充填材を束ねたものの表面に熱可塑
性樹脂層を形成一体化しペレツト状に切断してな
るマスターペレツト、又は長繊維状の前記導電性
充填材と長繊維状の前記導電性劣化防止充填材と
を束ねたものの表面に熱可塑性樹脂層を形成一体
化しペレツト状に切断してなる混合マスターペレ
ツトが混合されていることを特徴とする導電性成
形材料。 2 導電性劣化防止充填材が、ガラス繊維、炭素
繊維、ステンレス繊維、又はスズ、ニツケル、ア
ルミニウム等の金属層を有するガラス繊維若しく
は炭素繊維である特許請求の範囲第1項記載の導
電性成形材料。 3 マスターペレツトと、導電性劣化防止充填材
を束ねたものの表面に熱可塑性樹脂層を形成一体
化しペレツト状に切断してなる強化ペレツトとが
混合されている特許請求の範囲第1項又は第2項
記載の導電性成形材料。 4 マスターペレツトと、強化ペレツトと、熱可
塑性樹脂のナチユラルペレツトとが混合されてい
る特許請求の範囲第3項記載の導電性成形材料。 5 混合マスターペレツトと、熱可塑性樹脂のナ
チユラルペレツトとが混合されている特許請求の
範囲第1項又は第2項記載の導電性成形材料。
[Scope of Claims] 1 The main components are a thermoplastic resin, a conductive filler, and a conductive deterioration prevention filler, and the conductive filler is 5 to 40% by weight and the conductive deterioration prevention filler is based on the thermoplastic resin. 0.3 to 10% by weight of each of the above-mentioned conductive fillers in the form of long fibers, a thermoplastic resin layer is formed on the surface of a bundle of the conductive fillers, which is then cut into pellets to form a master pellet; A mixed master pellet is mixed therein, which is obtained by forming a thermoplastic resin layer on the surface of a bundle of conductive filler and the conductive deterioration prevention filler in the form of long fibers, and cutting the bundle into pellets. conductive molding material. 2. The conductive molding material according to claim 1, wherein the conductive deterioration-preventing filler is glass fiber, carbon fiber, stainless fiber, or glass fiber or carbon fiber having a metal layer such as tin, nickel, or aluminum. . 3. Claim 1 or 3, in which master pellets are mixed with reinforcing pellets formed by forming a thermoplastic resin layer on the surface of a bundle of conductive anti-deterioration fillers and cutting the pellets into pellets. The conductive molding material according to item 2. 4. The conductive molding material according to claim 3, wherein master pellets, reinforcing pellets, and natural pellets of thermoplastic resin are mixed. 5. The conductive molding material according to claim 1 or 2, wherein the mixed master pellets and natural thermoplastic resin pellets are mixed.
JP4375784A 1984-03-09 1984-03-09 Conductive molding material Granted JPS60189105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4375784A JPS60189105A (en) 1984-03-09 1984-03-09 Conductive molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4375784A JPS60189105A (en) 1984-03-09 1984-03-09 Conductive molding material

Publications (2)

Publication Number Publication Date
JPS60189105A JPS60189105A (en) 1985-09-26
JPH0419644B2 true JPH0419644B2 (en) 1992-03-31

Family

ID=12672629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4375784A Granted JPS60189105A (en) 1984-03-09 1984-03-09 Conductive molding material

Country Status (1)

Country Link
JP (1) JPS60189105A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168645A (en) * 1985-01-22 1986-07-30 Youbea Le-Ron Kogyo Kk Electrically conductive sliding material composition
JPS6286054A (en) * 1985-10-14 1987-04-20 Kanebo Ltd Electrically conductive resin composition
JPH0794589B2 (en) * 1986-03-12 1995-10-11 電気化学工業株式会社 Antistatic and electromagnetic wave shielding resin composition
JPS6368662A (en) * 1986-09-09 1988-03-28 Mitsubishi Gas Chem Co Inc Electromagnetic wave shielding polyphenylene ether resin composition
JPS6346258A (en) * 1986-08-13 1988-02-27 Mitsubishi Metal Corp Electrically conductive resin composition
JPS6392672A (en) * 1986-10-07 1988-04-23 Mitsubishi Monsanto Chem Co Conductive thermoplastic resin composition
DE4327873A1 (en) * 1993-08-19 1995-02-23 Hoechst Ag Electrically conductive molded body
WO1998021281A1 (en) * 1996-11-14 1998-05-22 Kawasaki Steel Corporation Long glass fiber-reinforced conductive thermoplastic resin molding and process for preparing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152743A (en) * 1979-05-16 1980-11-28 Hitachi Chem Co Ltd Electroconductive resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152743A (en) * 1979-05-16 1980-11-28 Hitachi Chem Co Ltd Electroconductive resin composition

Also Published As

Publication number Publication date
JPS60189105A (en) 1985-09-26

Similar Documents

Publication Publication Date Title
US4882227A (en) Conductive resin composition and molded product using the same
US4816184A (en) Electrically conductive material for molding
JPS58150203A (en) Prastic product with conductive fiber
JP2956875B2 (en) Molding material for electromagnetic shielding
JPS5814457B2 (en) Conductive plastic composition for shielding electromagnetic waves
JPH0419644B2 (en)
JPS5919480B2 (en) radio wave shielding material
JPS61155451A (en) Electrically conductive resin composition
JP2000068117A (en) Electromagnetic wave absorbent and its manufacture
JPH03138808A (en) Electrically conductive resin component material and its moldings
JPS60134500A (en) Electromagnetic wave shielding material
JPS6129083B2 (en)
JPH0319862B2 (en)
JPS624749A (en) Blend type electrically conductive composite material
AU7800287A (en) Electrically conductive material for molding
JPH0647254B2 (en) Conductive resin composition
JPS60189106A (en) Conductive molding material
JPS5975927A (en) Production of conductive composition material
JPS61106654A (en) Electrically conductive resin composition
JPS6394502A (en) Conducting filler and manufacture thereof
JPS63297459A (en) Electrically conductive polymer blend
JPS60162604A (en) Manufacture of conductive pellet
US4254071A (en) Method of preparing electrostatic coating compositions containing an epoxy resin
JPS5968230A (en) Manufacture of conductive composite material
JPH02155724A (en) Manufacture of molded electromagnetic shield product