JPS5974676A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS5974676A
JPS5974676A JP18511482A JP18511482A JPS5974676A JP S5974676 A JPS5974676 A JP S5974676A JP 18511482 A JP18511482 A JP 18511482A JP 18511482 A JP18511482 A JP 18511482A JP S5974676 A JPS5974676 A JP S5974676A
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor device
metal
insulating
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18511482A
Other languages
Japanese (ja)
Inventor
Satoshi Konishi
小西 「さとし」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18511482A priority Critical patent/JPS5974676A/en
Publication of JPS5974676A publication Critical patent/JPS5974676A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To contrive to speed up circuit actions in an SOS MOSFET by a method wherein a source and a drain region are formed only in the neighborhood of a channel region, and a metallic layer is provided in contact with both these regions. CONSTITUTION:The n<+> type source and the drain region 35 and 36 are provided, at a fixed position on a sapphire substrate 21, by alienation each other with a channel region 34 sandwiched therebetween. The metal contained semiconductor layers 37 and 37 are so provided on said substrate 21 as to contact the regions 35, 36 and a field oxide film 25, and a gate electrode 27' which contains the same metal that is contained in the layers 37 is provided on the region 34 via a gate oxide film 31. Further, an insulation wall 30 is provided around this electrode 27'. By the MOSFET of this structure, the regions 35 and 36 are formed only in the neighborhood of the region 34, the layers 37 and 37 formed in contact with the regions 35 and 36, and therefore the electric resistances of the regions 35 and 36 can be effectively reduced. Further, since a metal is introduced to the electrode 27', the electric resistances of a gate and a gate electrode reduce, and accordingly the speed-up of circuit actions can be contrived.

Description

【発明の詳細な説明】 本発明は、絶縁性基体上の半導体層の膜抵抗を改良した
半導体装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device in which the film resistance of a semiconductor layer on an insulating substrate is improved, and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、SOS MOS型トランジスタとしては例えば第
1し]に示すものが知られている。図中の1はザファイ
ア基板である。この基板1上にはフィールド酸化膜2に
より四重れたn中型のソース。
Conventionally, as an SOS MOS type transistor, for example, the one shown in [1] is known. 1 in the figure is a Zaphire substrate. On this substrate 1 is a four-layered n-medium type source with a field oxide film 2 .

ドレイン領域3,4が形成されている。これらソース,
ドレイン領域3,4間にはp型のチャンネル領域5が設
けられている。前記ソース。
Drain regions 3 and 4 are formed. These sources,
A p-type channel region 5 is provided between the drain regions 3 and 4. Said source.

ドレイン領域3,4及びチャンネル領域5上にはケ゛ー
ト酸化膜6が設けられ、このダート酸化膜6」二の前記
チャンネル領域5に対応する部分にはダート電極7が設
けられている。こうしだ構造のSOS MOS型トラン
ジスタは、ソース,ドレイン領域3,4がサファイア基
板1上に形成されているだめ、バルクシリコン基板から
なるMOS型トランジスタと比べ.、p−n接合容量が
小さくなり、もって寄生容量が減って回路動作を高速化
できる利点を有する。
A dirt oxide film 6 is provided on the drain regions 3, 4 and the channel region 5, and a dirt electrode 7 is provided in a portion of the dirt oxide film 6'2 corresponding to the channel region 5. The SOS MOS transistor with the Koushida structure has the source and drain regions 3 and 4 formed on the sapphire substrate 1, so it is different from the MOS transistor made of a bulk silicon substrate. , the pn junction capacitance is reduced, which has the advantage of reducing parasitic capacitance and speeding up circuit operation.

一方、ソース,ドレイン領域3,4および配線領域(図
示せず)となる半導体層の電気抵抗値は、その膜抵抗(
ρ8)に依存し、該膜抵抗は半導体層の深さく1)に反
比例する。即ち、ρsocr となる。しかしながら、ρ8を下げるために第2図図示
のバルク形のMOS )ランノスタの如くp型Si基板
8表面に設けられたn中型のソース,ドレイン,領域9
,10およびn中波散層による配線層(図示せず)中の
不純物を再拡散させてLを大きくするという方法はSO
S MOS型トランジスタでは実施できない。なお、第
2図中11はフィールド酸化膜、12はダート酸化膜、
13はデート電極を示す。このことは、最近、SOSM
OS型トランジスタが微細化されるに伴なって半導体層
の厚みが薄くなり、もってソース,ドレイン領域3,4
のρ8が大きくなる傾向にあることから一層大きな問題
である。
On the other hand, the electrical resistance value of the semiconductor layer that becomes the source and drain regions 3 and 4 and the wiring region (not shown) is determined by its film resistance (
ρ8), and the film resistance is inversely proportional to the depth of the semiconductor layer 1). That is, ρsocr. However, in order to lower ρ8, the bulk type MOS shown in FIG.
, 10 and n, the method of increasing L by re-diffusing impurities in the wiring layer (not shown) using a diffusion layer is SO.
This cannot be implemented with SMOS type transistors. In addition, in FIG. 2, 11 is a field oxide film, 12 is a dirt oxide film,
13 indicates a date electrode. Recently, SOSM
As OS type transistors are miniaturized, the thickness of the semiconductor layer becomes thinner and the source and drain regions 3 and 4 become thinner.
This is an even bigger problem since ρ8 tends to increase.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、絶縁性基体
を有するMOS型トランジスタにおいて、ソース,ドレ
イン領域の電気抵抗を減少して、回路動作の高速化を達
成できる半導体装置及びその製造方法を提供することを
目的とするものである。
The present invention has been made in view of the above circumstances, and provides a semiconductor device and a method for manufacturing the same, which can reduce the electrical resistance of the source and drain regions in a MOS transistor having an insulating substrate, thereby increasing the speed of circuit operation. The purpose is to provide

〔発明のイ既要〕[Existing requirements of the invention]

本願の第1の発明は、絶縁性基体上に互いに離間して第
1導電型のソース,ドレイン領域を設け、さらに該ソー
ス,ドレイン領域に接触するように金属含有半導体領域
を設け、前記ソース,ドレイン領域間の第2導型のチャ
ンネル領域上にケ゛ート酸化膜を介して前記金属含有半
導体領域に含まれる金属と同じ金属を含むダート電極を
設け、更にこのダート電極の周囲に絶縁壁を設けること
によって、ソース、ドレイン領域とケ゛−ト電極の電気
抵抗を減少し、もって回路動作の高速化を図ったもので
ある。
The first invention of the present application provides source and drain regions of a first conductivity type spaced apart from each other on an insulating substrate, and further provides a metal-containing semiconductor region so as to be in contact with the source and drain regions. A dirt electrode containing the same metal as that contained in the metal-containing semiconductor region is provided on the second conductivity type channel region between the drain regions via a gate oxide film, and an insulating wall is further provided around the dirt electrode. This reduces the electrical resistance of the source and drain regions and the gate electrode, thereby increasing the speed of circuit operation.

本願の第2の発明は、絶縁性基体上に半導体層を形成し
だ後膣半導体層上にケ゛−ト絶縁膜を介し、てダート電
極を形成し、とのケゝ−ト電極をマスクとして前記半導
体層に不純物をドーピングし、ケ8−ト電極の周囲に絶
縁壁を設け、前記ダート電極と絶縁壁をマスクとして前
記半導体層に金属原子を導入し、更に熱処理を施して半
導体層にソース、ドレイン領域を夫々離間して形成する
とともに、ソース、ドレイン領域に接触する金属含有半
導体領域並びに該金属と同じ金属を含むケ゛−ト電極を
形成することによって、ソース、ドレイン領域とケ8−
ト電極の電気抵抗を減少し、もって回路動作の高速化を
図ったものである。
In the second invention of the present application, after forming a semiconductor layer on an insulating substrate, a dirt electrode is formed on the vaginal semiconductor layer with a gate insulating film interposed therebetween, and the gate electrode is used as a mask. The semiconductor layer is doped with impurities, an insulating wall is provided around the dirt electrode, metal atoms are introduced into the semiconductor layer using the dirt electrode and the insulating wall as a mask, and heat treatment is performed to form a source in the semiconductor layer. By forming the source and drain regions separately from each other, and forming a metal-containing semiconductor region in contact with the source and drain regions and a gate electrode containing the same metal as the metal, the source and drain regions are separated from each other.
The electrical resistance of the front electrode is reduced, thereby increasing the speed of circuit operation.

さらに本願のが1と第2の発明に卦けるケ゛−ト電極周
囲の絶縁壁は、金属原子含廟ケ゛−トとソース、ドレイ
ン領域に接しで形成した金属原子含有半導体層との距離
を大きく保つためのものであり、これによって製造工程
中に生成された金属原子の酸化物などによる残渣物が、
r −トとソース、ドレイン間の電気的短絡を防ぎ、本
発明によるSO8MOS形トランジスタの信頼性を向上
させる効果を持つものである。
Furthermore, the insulating wall around the gate electrode according to the first and second inventions of the present application increases the distance between the metal atom-containing gate and the metal atom-containing semiconductor layer formed in contact with the source and drain regions. As a result, residues such as oxides of metal atoms generated during the manufacturing process are
This has the effect of preventing electrical short circuits between the r-gate, the source, and the drain, and improving the reliability of the SO8MOS type transistor according to the present invention.

〔発明の実施例〕[Embodiments of the invention]

本発明を’I SO8基板を用いたMO8型トランジス
タに適用した場合について第3図(a)〜(f)及び第
4図に基づいて説明する。
A case where the present invention is applied to an MO8 type transistor using an ISO8 substrate will be explained based on FIGS. 3(a) to 3(f) and FIG. 4.

〔1〕捷ず、サファイア基体2ノ上にシリコンをエピタ
キシャル成長させて半導体層22を形成した後、この半
導体層22上に・Zソファ用の熱酸化膜23.Si3N
4膜(図示せず)を順次形成した。つづいて、フィール
ド領域となる部分を除< 5j3N4膜上にレノスト膜
を形成した後、ケミカルドライエツチング(C,D、E
、)法により露出する5i5N4膜を除去して5t6N
4/#ターン24を形成した(第3図(、)図示)。次
に、513N4パターン24をマスクとして熱酸化膜2
3を除去するとともに半導体層22を厚み方向に約棒除
去した後、熱酸化を行なってフィールド酸化膜25を形
成した(第3図(b)図示)。
[1] After forming the semiconductor layer 22 by epitaxially growing silicon on the sapphire substrate 2 without cutting, a thermal oxide film 23 for the Z sofa is formed on the semiconductor layer 22. Si3N
Four films (not shown) were sequentially formed. Next, after forming a Renost film on the 5j3N4 film excluding the portion that will become the field region, chemical dry etching (C, D, E
, ) method to remove the exposed 5i5N4 film and form 5t6N.
A 4/# turn 24 was formed (as shown in FIG. 3(, )). Next, using the 513N4 pattern 24 as a mask, the thermal oxide film 2 is
After removing the semiconductor layer 22 in the thickness direction, thermal oxidation was performed to form a field oxide film 25 (as shown in FIG. 3(b)).

〔11〕次に、813N4パターン24と熱酸化膜23
を剥離した後、熱酸化処理を施して半導体層22上にケ
゛−ト酸化膜となる薄い酸化膜26を形成した。つづい
て、全面に多結晶シリコン層(図示せず)を蒸着した後
、パターニングして多結晶シリコンからなるケ゛−ト電
極27を形成した。次いで、前記ダート電極27をマス
クとして前記半導体層22にリンなどのn型不純物イオ
ンをイオン注入してソース、ドレイン領域となるn中型
のイオン注入層28.28を形成した後、全面にCVD
−酸化膜29を形成した(第3図(c)図示)。この後
、反応性イオンエツチング(R,I 、E)法により、
前記CVD−酸化膜29及び薄い酸化膜26を異方性エ
ツチングし、ダート電極27の周囲のみに酸化膜29を
残存させて絶縁壁30を形成するとともにダート酸化膜
3ノを形成した。しかる後、上方からモリブデンMOを
イオン注入して前記半導体層22及びダート電極27に
夫々金属含有半導体領域となるMOイオン注入層32.
33を夫々形成した(第3図(d)図示)。
[11] Next, 813N4 pattern 24 and thermal oxide film 23
After peeling off, a thin oxide film 26, which will become a gate oxide film, is formed on the semiconductor layer 22 by thermal oxidation treatment. Subsequently, a polycrystalline silicon layer (not shown) was deposited on the entire surface and then patterned to form a gate electrode 27 made of polycrystalline silicon. Next, using the dirt electrode 27 as a mask, n-type impurity ions such as phosphorus are ion-implanted into the semiconductor layer 22 to form an n-medium ion-implanted layer 28.28 that will become the source and drain regions, and then the entire surface is subjected to CVD.
- An oxide film 29 was formed (as shown in FIG. 3(c)). After this, by reactive ion etching (R, I, E) method,
The CVD oxide film 29 and thin oxide film 26 were anisotropically etched to leave the oxide film 29 only around the dirt electrode 27 to form an insulating wall 30 and a dirt oxide film 3. Thereafter, molybdenum MO is ion-implanted from above to form an MO ion-implanted layer 32. which becomes a metal-containing semiconductor region into the semiconductor layer 22 and dirt electrode 27, respectively.
33 (as shown in FIG. 3(d)).

[iii 〕次に、熱処理を施しだ。この結果、半導体
層22に形成されたイオン注入層28は深さ方向及び横
方向′に拡散しチャンネル領域34を介I7てn中型の
ソース、ドレイン領域35.36となり、同半導体層2
2中のMOイオン注入層32も同様に拡散して基体21
表面に達するモリブデンの濃度がI X 10 ”7c
m3以上のMO含有半導体層37 、37となった。こ
の際、MO含有半導体層37の比抵抗は約0.1 mΩ
・副となる。この値は、ソー艮、ドレイン領域35.3
6の比抵抗が約2.5+y+Ω・mであるのに対し、約
1/25の大きさである。なお、モリブデンの濃度が1
×1016/c77+3未満の場合、MO含有半導体層
37の電気抵抗を充分減少できんい。まだ、同時にMo
イオンはケ゛−ト電極27中に厚み方向に拡散してダー
ト電極27はMO含有ダート電極27′となり、これに
よってケ゛−ト電極27の電気抵抗も下がる。その電気
抵抗の下がり方は、ソース。
[iii] Next, heat treatment was performed. As a result, the ion-implanted layer 28 formed in the semiconductor layer 22 diffuses in the depth direction and the lateral direction', and becomes n medium-sized source and drain regions 35 and 36 through the channel region 34.
The MO ion-implanted layer 32 in 2 is similarly diffused to the base 21.
The concentration of molybdenum that reaches the surface is I x 10 ”7c
The resulting MO-containing semiconductor layers 37, 37 had a thickness of m3 or more. At this time, the specific resistance of the MO-containing semiconductor layer 37 is approximately 0.1 mΩ.
・Become a deputy. This value is 35.3 in the drain area.
While the specific resistance of No.6 is about 2.5+y+Ω·m, it is about 1/25th of that. Note that the concentration of molybdenum is 1
If it is less than x1016/c77+3, the electrical resistance of the MO-containing semiconductor layer 37 cannot be sufficiently reduced. Still, at the same time Mo
The ions are diffused in the thickness direction into the gate electrode 27, and the dirt electrode 27 becomes an MO-containing dirt electrode 27', thereby reducing the electrical resistance of the gate electrode 27. The way the electrical resistance decreases is the source.

ドレインの場合とほぼ同じでぐリンをドーグした場合に
約1〜2mΩ・錆の比抵抗が、MOイオンをさらに注入
することにより約0.1mΩ・国にまで低下する。つづ
いて、全面に層間絶縁膜38を形成した(第3図(e)
図示)次いで、ドレイン領域36及びMo含有ケ゛−ト
電極27′の一部に対する層間絶縁膜38を除去してコ
ンタクトホール39 、.99を形成した後、全面にM
膜を蒸着しパターニングしてM配線40.40を形成し
た。しかる後、全面に保護膜41を形成し、ポンディン
グパッド用の窓開けを行なって508MO8u トラン
ジスタを製造した(第3図(f)及び第4図図示)。な
お、第4図は第3図(f)の平面図であり、第4図から
分るようにソース領域35に接−1するMo含有半導体
層37は配り領域としても用いられている。
The specific resistance of the rust, which is approximately the same as in the case of the drain, is about 1 to 2 mΩ when dogged with phosphorus, but is reduced to about 0.1 mΩ by further implanting MO ions. Subsequently, an interlayer insulating film 38 was formed on the entire surface (Fig. 3(e)).
(as shown) Next, the interlayer insulating film 38 for the drain region 36 and a portion of the Mo-containing gate electrode 27' is removed to form contact holes 39, . After forming 99, M on the entire surface
A film was deposited and patterned to form M wiring 40.40. Thereafter, a protective film 41 was formed on the entire surface, and a window for a bonding pad was opened to manufacture a 508MO8u transistor (as shown in FIGS. 3(f) and 4). Note that FIG. 4 is a plan view of FIG. 3(f), and as can be seen from FIG. 4, the Mo-containing semiconductor layer 37 in contact with the source region 35 is also used as a distribution region.

前述の如く製造されるMO8型トランジスタは、第3図
(f)及び第4図に示す如く、サファイア基体21上の
所定位置にn中型のソース、ドレイン領域35.36を
互いにチャンネル領域34を挾んで離間して設け、同基
体21上にソース。
As shown in FIGS. 3(f) and 4, the MO8 type transistor manufactured as described above has n-medium sized source and drain regions 35 and 36 placed at predetermined positions on the sapphire substrate 21, sandwiching the channel region 34 between them. A source is placed on the same substrate 21 and spaced apart from each other.

ドレイン領域35.36及びフィールド酸化膜25と接
触するようにMo含有半導体層37゜37を設け、チャ
ンネル領域34上にケ゛−ト酸化膜31を介してMo含
有ダート電極27′を設け、更にとのr−)電極27′
の周囲に絶縁壁30を設けた構造となっている。
A Mo-containing semiconductor layer 37.37 is provided in contact with the drain regions 35, 36 and the field oxide film 25, a Mo-containing dirt electrode 27' is provided on the channel region 34 via the gate oxide film 31, and further r-) electrode 27'
It has a structure in which an insulating wall 30 is provided around the .

しかして、前述した構造のMO8型トランジスタによれ
ば、チャンネル領域34の近傍にのみソース、ドレイン
領域35.36が形成され、かつこれらソース、ドレイ
ン領域35 、 s eに比抵抗がこれらソース、ドレ
イン領域35゜36より小さい(01mΩ・cm ) 
Mo含有半導体層、97 、37が接触して形成されて
いるため、従来の不純物を高濃度に拡散した半導体層の
みによるソース、ドレイン領域と比べ本発明方法ではソ
ース、ドレイン領域35.36の電気抵抗を実効的に減
少することができる。さらに、ゲート電極にもへ10が
導入されるためケ・−ト廉びに配線となるダート電極の
電気抵抗も減少する。
According to the MO8 type transistor having the above-described structure, the source and drain regions 35 and 36 are formed only in the vicinity of the channel region 34, and the specific resistance of these source and drain regions 35 and s is higher than that of these source and drain regions. Area smaller than 35°36 (01mΩ・cm)
Since the Mo-containing semiconductor layers 97 and 37 are formed in contact with each other, in the method of the present invention, the electric potential of the source and drain regions 35 and 36 is reduced compared to the conventional source and drain regions formed only from semiconductor layers in which impurities are diffused at a high concentration. The resistance can be effectively reduced. Furthermore, since the gate electrode is also introduced, the electrical resistance of the dirt electrode serving as the gate and wiring is also reduced.

従って、第1図図示の従来の508MO8型トランジス
タと比べ回路動作の高速化を図ることができる。事実、
本発明により形成しブζSO8MO8型トランジスタに
よる41段のリングオシレータの発振周波数と同じ・ぐ
ターンにおける従来方法により構成したSO8MO8型
トランジスタの周波数とを比較すると、次の表に示す通
りであった。
Therefore, the circuit operation can be made faster than the conventional 508MO8 type transistor shown in FIG. fact,
The oscillation frequency of the 41-stage ring oscillator formed by the SO8MO8 type transistor formed according to the present invention is compared with the frequency of the SO8MO8 type transistor constructed by the conventional method in the same pattern as shown in the following table.

なお、下表において、半導体層へ金属原子を導入する手
段としては、(1)イオン注入法、(2) CVD法+
熱処理、(3)スパッタ蒸着法+熱処理を用い、金属原
子としては白金、モリブデン、パラゾウムを夫々用いた
In the table below, methods for introducing metal atoms into the semiconductor layer include (1) ion implantation method, (2) CVD method+
(3) sputter deposition method + heat treatment, and platinum, molybdenum, and parazoum were used as metal atoms, respectively.

上表より、本発明によるSO8MO8型トランジスタは
、従来のそれと比べ、発振周波数を約1〜4割高くでき
、もって回路動作が約1〜4割速くなることが確認でき
た。
From the above table, it was confirmed that the SO8MO8 type transistor according to the present invention can increase the oscillation frequency by about 10 to 40% compared to the conventional transistor, thereby increasing the circuit operation by about 10 to 40%.

さらに本発明におけるダート電極27周囲の絶縁壁30
は、MOを含有したダート電極27とMo含有半導体層
間の電気的信頼性を向上させる効果をもつものである。
Furthermore, an insulating wall 30 around the dart electrode 27 in the present invention
This has the effect of improving the electrical reliability between the MO-containing dirt electrode 27 and the Mo-containing semiconductor layer.

この絶縁壁30がガい場合は、Moをイオン注入すると
ダート電極27中のMo含有部とソース、ドレイン領域
35゜36と接触するMo含有半導体層37とはダート
酸化膜厚の距離を隔てるだけとなり、その後の熱工程中
においてNo酸化物の残液がf−)酸化1]4% 3J
の仰1壁に生成され招るようにガリ、それによってケゝ
−ト電極27とソース、ドレイン領域、? 5 、36
間の耐圧が劣化する。ケゝ−ト電極、27 fM OB
 t:D Ee緑壁30を6000X (2)膜厚ノC
VD−酸化膜で形成した場合と、絶縁壁を形成しない」
ルプ1合とでは、後者は前者の約40%の歩留り率と々
す、さらに1000時間の初期動作試験では前者はほと
んど不良が々いのに対[2て後者に約20係の不良を生
じた。これによって、本発明のケ8−ト電極周囲の絶縁
壁30はSO8MO8型トランジスタの歩留りを含めた
信頼性を高めることを確認できた。
If this insulating wall 30 is thick, when Mo is ion-implanted, the Mo-containing portion in the dirt electrode 27 and the Mo-containing semiconductor layer 37 in contact with the source and drain regions 35 and 36 are separated by a distance equal to the thickness of the dirt oxide film. During the subsequent thermal process, the residual liquid of No oxide becomes f-) oxidation 1]4% 3J
A gully is generated on the first wall of the gate electrode 27 and the source and drain regions. 5, 36
The withstand voltage between the two ends will deteriorate. Kate electrode, 27 fM OB
t:D Ee green wall 30 at 6000X (2) Film thickness No.C
VD - When formed with oxide film and without forming an insulating wall.
With 1 loop, the latter has a yield rate of about 40% of the former, and in the 1000-hour initial operation test, the former had almost no defects, whereas the latter had about 20 percent of defects. Ta. As a result, it was confirmed that the insulating wall 30 around the gate electrode of the present invention improves the reliability including the yield of the SO8MO8 type transistor.

上記実施例では、絶蘇性基体としてサファイアを用いた
が、これに限らず、例えばスピネルあるいはSi基板上
のSjO膜又はs 13N4 jQを用いてもよい。
In the above embodiments, sapphire was used as the non-sustainable substrate, but the present invention is not limited to this, and for example, spinel, an SjO film on a Si substrate, or s 13N4 jQ may be used.

上記実施例では、半導体層への不純物のドーピングをイ
オン注入により行なったか、これに限らず、熱拡散でも
よい。また、上記実施例では不純物のイオン注入は、ケ
ゞ−ト電極の周囲に絶縁壁を形成する前に行なったが、
製造方法はこれに限るものではない。例れば、第5図(
a)に示す如く絶縁壁3θを形成して半導体層22及び
ケゝ−ト電極27にMoイオン注入層42.43を形成
した。つづいて、同図(b)に示す如く、リンを半導体
層22にイオン注入した後、リンの拡散係数がMoの拡
散係数よりも大きいことを利用して熱処理を施すことに
よってソース、ドレイン領域35,36、これらソース
、ドレイン領域35.36を接続するMo含有半導体層
37゜37及びMo含有ケ°−ト電極27′を形成して
もよい。このようにすれば、実効チャンネル長を前記ケ
゛−ト電極27′の幅と略同じ長さにできる。
In the above embodiments, impurity doping into the semiconductor layer was performed by ion implantation, but the present invention is not limited to this, and thermal diffusion may also be used. Furthermore, in the above embodiment, impurity ion implantation was performed before forming an insulating wall around the gate electrode.
The manufacturing method is not limited to this. For example, in Figure 5 (
As shown in a), an insulating wall 3θ was formed, and Mo ion implantation layers 42 and 43 were formed on the semiconductor layer 22 and the cathode electrode 27. Subsequently, as shown in FIG. 2B, after ion-implanting phosphorus into the semiconductor layer 22, heat treatment is performed taking advantage of the fact that the diffusion coefficient of phosphorus is larger than that of Mo. , 36, a Mo-containing semiconductor layer 37, 37 and a Mo-containing gate electrode 27' may be formed to connect these source and drain regions 35 and 36. In this way, the effective channel length can be made approximately the same as the width of the gate electrode 27'.

上記実施例では、モリブデンを半導体層へ導入する手段
としてイオン注入法を用いたが、これに限らない。例え
ば、スパッタ蒸着法あるいはCVD法を用いてMo層を
ケ8−ト電極および半導体層を含む絶縁性基体全面に形
成した後、熱処理を施して半導体層へ導入してもよい。
In the above embodiment, the ion implantation method is used as a means for introducing molybdenum into the semiconductor layer, but the method is not limited to this. For example, a Mo layer may be formed on the entire surface of the insulating substrate including the gate electrode and the semiconductor layer using a sputter deposition method or a CVD method, and then heat treated to introduce the Mo layer into the semiconductor layer.

則ち、まず、第6図(、)に示す如く絶縁壁3o及びリ
ンなどのn型不純物イオン注入層28を形成した後、M
O層44をス・クソタ蒸着あるいはCVD法により全面
に形成した。つづいて、同図(b)に示す如く、熱処理
を施してMo層44中のモリブデンを半導体層22及び
ダート電極27に拡散し、Mo含有半導体層45、Mo
含有ケ゛−ト電極27及びソース、ドレイン領域46.
47を形成した後、表面に残存したMo層44を王水で
除去した。このようにすれば、第3図(f)及び第4図
図示のSO8MO8型トランジスタの場合と比較してM
O含有濃度の大きいMo含有半導体層45を形成できる
ため、ソース、ドレイン領域46.47の電気抵抗を一
層小でくできる。
That is, first, as shown in FIG.
An O layer 44 was formed over the entire surface by sinter deposition or CVD. Subsequently, as shown in FIG. 4B, a heat treatment is performed to diffuse molybdenum in the Mo layer 44 into the semiconductor layer 22 and the dirt electrode 27, and the Mo-containing semiconductor layer 45 and Mo
Containing gate electrode 27 and source and drain regions 46.
After forming 47, the Mo layer 44 remaining on the surface was removed with aqua regia. In this way, M
Since the Mo-containing semiconductor layer 45 with a high O content concentration can be formed, the electrical resistance of the source and drain regions 46 and 47 can be further reduced.

上記実施例では、半導体層へ導入したモリブデンの拡散
は熱処理するととにより行々っだが、熱アニールのため
にはこれに限らず、例えば導入したMoイオン注入層に
熱線照射レーザ光照射、電子ビーム照射、イオンビーム
照射を行なってもよい。才だ、上記第3図および第5図
図示の実施例では、Moイオン注入層を基体に達するま
で拡散したが、これに限らず、モリブデンのイオン注入
するときの加速電圧を下げ、かつその後の熱拡散温度も
下げてMo含有半導体層の深さを浅くして基体に到達し
ない状態にしてもよい。
In the above embodiments, the diffusion of molybdenum introduced into the semiconductor layer is carried out by heat treatment, but the method is not limited to this for thermal annealing. Irradiation or ion beam irradiation may also be performed. In the examples shown in FIGS. 3 and 5 above, the Mo ion-implanted layer was diffused until it reached the substrate, but the present invention is not limited to this. The thermal diffusion temperature may also be lowered to make the depth of the Mo-containing semiconductor layer shallower so that it does not reach the substrate.

上記実施例では、金属原子としてモリブデンを用いたが
、これに限らず、例えば、タングステン、白金、金、パ
ラジウム、ニッケル、コバルト、鉄、クロム、タンタル
、ニオブ、バナジウム、ハフニウム、ジルコニウム、チ
タン等ヲ用いてもよい。
In the above embodiment, molybdenum was used as the metal atom, but examples include tungsten, platinum, gold, palladium, nickel, cobalt, iron, chromium, tantalum, niobium, vanadium, hafnium, zirconium, titanium, etc. May be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、従来と比べ、ソース
、ドレイン領域とデート電極の電気抵抗を減少して回路
動作を約1〜4割向上することができる半導体装置及び
その製造方法を提供できるものである。
As detailed above, the present invention provides a semiconductor device and a method for manufacturing the same, which can improve circuit operation by about 10 to 40% by reducing the electrical resistance of source and drain regions and date electrodes compared to the conventional one. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のSO8MO8型トランジスタの断面図、
第2図は従来のバルクシリコン基板を用いたMO8型ト
ランジスタの断面図、第3図(a)〜(f)は本発明に
よるSO8MO3型トランジスタの製の平面図、第5図
(a) 、 (b)及び第6図(a)、(b)¥iM発
明の他の実施例であるSO8MO3型トランジスタの製
造方法を工程順に示す断面図である。 21・・・サファイア基体、22・・・半導体層、27
・・・ケゝ−ト電極、27′・・・Mo含有ダート電極
、28・・・n型不純物イオン注入層、29・・・CV
D −酸化膜、30・・・絶縁壁、31・・・ケゝ−ト
酸化膜1、? 2 、 、? 3 、42 、4.3−
 Moイオン注入層、34・・・チャンネル領域、35
.46・・・ソース領域、36.47・・・ドレイン領
域、37.45・・・MO含有半導体層、39・・・コ
ンタクトホール、40・・・A2配線、4ノ・・・保護
膜、44・・・Mo層。 出願人代理人  弁理士 鈴 江 武 彦第10− 7 (a) 第4図 第5図 第6図
Figure 1 is a cross-sectional view of a conventional SO8MO8 type transistor.
FIG. 2 is a cross-sectional view of an MO8 type transistor using a conventional bulk silicon substrate, FIGS. 3(a) to (f) are plan views of an SO8MO3 type transistor according to the present invention, and FIGS. FIGS. 6(a) and 6(b) are cross-sectional views showing a method for manufacturing an SO8MO3 type transistor according to another embodiment of the invention in order of steps. 21... Sapphire base, 22... Semiconductor layer, 27
...Kate electrode, 27'...Mo-containing dirt electrode, 28...N-type impurity ion implantation layer, 29...CV
D - Oxide film, 30... Insulating wall, 31... Kate oxide film 1, ? 2, ? 3, 42, 4.3-
Mo ion implantation layer, 34...channel region, 35
.. 46... Source region, 36.47... Drain region, 37.45... MO-containing semiconductor layer, 39... Contact hole, 40... A2 wiring, 4th... Protective film, 44 ...Mo layer. Applicant's Representative Patent Attorney Takehiko Suzue No. 10-7 (a) Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1 絶縁性基体と、この基体上に互いに離間して設けら
れた第1導電型のソース、ドレイン領域と、前記基体上
にソース、ドレイン領域に接触して設けられた金属含有
半導体領域と、前記ソース、ドレイン領域間の第2導電
型のチャンネル領域上にケ゛−ト酸化膜を介して設けら
れ前記金属含有半導体領域に含まれる金属と同じ金属を
含むケ゛−ト電極と、とのケ8−ト電極の周囲に設けら
れた絶縁壁とを具備することを特徴とする半導体装置。 2 絶縁性基体が、ザファイア、スピネル。 あるいはSt基板上の5IO2膜又は5i5N4朕、の
うちいずれか1つであることを特徴とする特許請求の範
囲第1項記載の半導体装置。 3 金属含有半導体領域が、絶縁性基体に接しているこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
。 4、 金属含有半導体領域に、I X 10 ”7cm
3以上の金属原子が含まれていることを特徴とする特許
請求の範囲第1項記載の半導体装置。 5、絶縁性基体上に半導体層を形成する工程と、この半
導体層上にダート絶縁膜を介してダート電極を形成する
工程と、とのケゝ−ト電極をマスクとして前記半導体層
に不純物を導入する工程と、前記ケ゛−ト電極の周囲に
絶縁壁を設ける工程と、前記ケ゛−ト電極と絶縁壁をマ
スクとして前記半導体層と前記ケ゛−ト電極とに金属原
子を導入する工程と、熱処理を施して半導体層にソース
、ドレイン領域を夫々離間して形成するとともに、ソー
ス、ドレイン領域に接触するように金属含有半導体領域
を形成する工程とを具備することを特徴とする半導体装
置の製造方法。 6 絶縁壁を、ダート電極を含む絶縁性基体上の半導体
層および絶縁層全面に絶縁膜を形成した後、この絶縁膜
を異方的に除去して形成することを特徴とする特許請求
の範囲第5項記載の半導体装置の製造方法。 7 金属原子を半導体層に導入する手段としてイオン注
入法、スパッタ蒸着法、 CVD法のうち少なくとも1
つの方法を用いることを特徴とする特許請求の範囲第5
項記載の半導体装置の製造方法。 8 半導体層に2rfI入した金属原子を拡散する手段
として、加熱、熱線照射、レーザ光照射、電子ビーム照
射、イオンビーム照射のうち少なくとも1つを行なうこ
とを特徴とする特許請求の範囲第5項記載の半導体装置
の製造方法。 9、 絶縁膜を異方的に除去して絶縁壁を形成する工程
において、絶縁膜の異方的除去手段として反応性イオン
食刻法が用いられていること特徴とする特許請求の範囲
第5項記載の半導体装置の製造方法。 10、金属原子が、モリブリデン、タングステン、白金
、金、ハラジウム、ニッケル、コバルト、鉄、クロム、
タンタル、ニオブ、バナジウム、ハフニウム、ジルコニ
ウム、チタンの951種以上であることを特徴とする特
許請求の範囲第5項記載の半導体装置の製造方法。
[Claims] 1. An insulating substrate, a first conductivity type source and drain region provided on the substrate at a distance from each other, and a metal provided on the substrate in contact with the source and drain regions. a gate electrode containing the same metal as the metal contained in the metal-containing semiconductor region and provided on the channel region of the second conductivity type between the source and drain regions via a gate oxide film; , and an insulating wall provided around a gate electrode. 2 The insulating substrate is zaphire or spinel. The semiconductor device according to claim 1, wherein the semiconductor device is one of a 5IO2 film on a St substrate or a 5i5N4 film. 3. The semiconductor device according to claim 1, wherein the metal-containing semiconductor region is in contact with an insulating substrate. 4. In the metal-containing semiconductor region, I x 10”7cm
The semiconductor device according to claim 1, characterized in that the semiconductor device contains three or more metal atoms. 5. A step of forming a semiconductor layer on an insulating substrate, a step of forming a dirt electrode on this semiconductor layer via a dirt insulating film, and adding impurities to the semiconductor layer using the gate electrode as a mask. a step of providing an insulating wall around the gate electrode; a step of introducing metal atoms into the semiconductor layer and the gate electrode using the gate electrode and the insulating wall as a mask; Manufacturing a semiconductor device comprising the steps of applying heat treatment to form source and drain regions in a semiconductor layer separately from each other, and forming a metal-containing semiconductor region in contact with the source and drain regions. Method. 6. Claims characterized in that the insulating wall is formed by forming an insulating film on the entire surface of the semiconductor layer and insulating layer on an insulating substrate including dart electrodes, and then removing this insulating film anisotropically. 6. The method for manufacturing a semiconductor device according to item 5. 7 At least one of ion implantation, sputter deposition, and CVD as a means of introducing metal atoms into the semiconductor layer.
Claim 5, characterized in that two methods are used.
A method for manufacturing a semiconductor device according to section 1. 8. Claim 5, characterized in that at least one of heating, heat ray irradiation, laser light irradiation, electron beam irradiation, and ion beam irradiation is performed as means for diffusing the metal atoms that have entered 2rfI into the semiconductor layer. A method of manufacturing the semiconductor device described above. 9. Claim 5, characterized in that in the step of anisotropically removing the insulating film to form the insulating wall, a reactive ion etching method is used as an anisotropic removing means for the insulating film. A method for manufacturing a semiconductor device according to section 1. 10. Metal atoms include molybdenum, tungsten, platinum, gold, haladium, nickel, cobalt, iron, chromium,
6. The method of manufacturing a semiconductor device according to claim 5, wherein at least 951 types of tantalum, niobium, vanadium, hafnium, zirconium, and titanium are used.
JP18511482A 1982-10-21 1982-10-21 Semiconductor device and manufacture thereof Pending JPS5974676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18511482A JPS5974676A (en) 1982-10-21 1982-10-21 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18511482A JPS5974676A (en) 1982-10-21 1982-10-21 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5974676A true JPS5974676A (en) 1984-04-27

Family

ID=16165103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18511482A Pending JPS5974676A (en) 1982-10-21 1982-10-21 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5974676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308776A (en) * 1991-02-20 1994-05-03 Fujitsu Limited Method of manufacturing SOI semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308776A (en) * 1991-02-20 1994-05-03 Fujitsu Limited Method of manufacturing SOI semiconductor device

Similar Documents

Publication Publication Date Title
JPS59138379A (en) Manufacture of semiconductor device
JPS61226959A (en) Semiconductor device and manufacture thereof
US4354307A (en) Method for mass producing miniature field effect transistors in high density LSI/VLSI chips
US5801086A (en) Process for formation of contact conductive layer in a semiconductor device
JPH0361338B2 (en)
KR950011020B1 (en) Semiconductor device and its making method
KR100289372B1 (en) A method of forming polycide
JPS5974676A (en) Semiconductor device and manufacture thereof
JP3794915B2 (en) Manufacturing method of semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
KR100774114B1 (en) Semiconductor device for integrated injection logic cell and process for fabricating the same
JP3714757B2 (en) Manufacturing method of MIS type semiconductor device
JP3207883B2 (en) Manufacturing method of bipolar semiconductor device
JPH11214620A (en) Semiconductor capacitor, semiconductor device provided with the same and manufacture thereof
JPS62290180A (en) Manufacture of semiconductor device
JP2874885B2 (en) Semiconductor device and manufacturing method thereof
JPS5925273A (en) Semiconductor device and manufacture thereof
JPH02211623A (en) Manufacture of semiconductor device
KR950000657B1 (en) Manufacturing method of semiconductor device
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPS6286752A (en) Manufacture of semiconductor integrated circuit
JPH0247853B2 (en)
JPS625657A (en) Semiconductor integrated circuit device
JPS6182479A (en) Manufacture of semiconductor device
JPS63265448A (en) Manufacture of mos type semiconductor device