JPH02211623A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02211623A
JPH02211623A JP3108289A JP3108289A JPH02211623A JP H02211623 A JPH02211623 A JP H02211623A JP 3108289 A JP3108289 A JP 3108289A JP 3108289 A JP3108289 A JP 3108289A JP H02211623 A JPH02211623 A JP H02211623A
Authority
JP
Japan
Prior art keywords
layer
layers
impurity
pd2si
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3108289A
Other languages
Japanese (ja)
Other versions
JP2886174B2 (en
Inventor
Kyoichi Suguro
恭一 須黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3108289A priority Critical patent/JP2886174B2/en
Publication of JPH02211623A publication Critical patent/JPH02211623A/en
Priority to US07/821,894 priority patent/US5217923A/en
Application granted granted Critical
Publication of JP2886174B2 publication Critical patent/JP2886174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To make a sum of thickness of an alloy layer and an impurity layer amount enough for low resistance processing to provide a shallow impurity layer and to realize a structure suitable for the low resistance processing by forming the alloy layer on a substrate surface, by making the layer have a composition rich in semiconductor and by performing heat treatment for the alloy layer. CONSTITUTION:Ge ions are implanted into a substrate 1 using a laminated film and a field SiO2 film 2 as a mask to form impurity implanted layers 51, 61. Then, a paradium Pd layer 41 is deposited for heat treatment to form Pd2Si layers 53, 63. If heat treatment is further carried out, the Pd2Si layers 53, 63 become PdSi layers 54, 64. B ions are thereafter implanted into form SiPi layers 55, 65 containing impurity. PdSi layers 55, 66 are subjected to partial phase conversion to form Pd2Si layers 57, 67. Although the silicon layers 56, 66 are formed shallow, the Pd2Si layer rises and becomes thick, thereby keeping resistance of a source/drain region low.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は浅い不純物層を有する半導体装置の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device having a shallow impurity layer.

(従来の技術) 近年、コンピューターや通信機器の重要部分には多数の
トランジスタや抵抗等を半導体基板上に集積化して形成
した大規模集積回路(LSI)が多用されている。この
LSIの集積度向上が最近の重要課題の1つであり、L
SIの基本素子例えば電界効果トランジスタ(FET)
の微細化が必要である。そこでFETのゲート長を短く
して占有面積を小さくするが、これに伴って閾値電圧を
変えない様にするためソース・ドレイン領域を浅く形成
する事が要求される。この様なFETを形成する従来方
法を第6図に示して説明する。
(Prior Art) In recent years, large-scale integrated circuits (LSI), which are formed by integrating a large number of transistors, resistors, etc. on a semiconductor substrate, have been frequently used in important parts of computers and communication equipment. Improving the degree of integration of this LSI is one of the recent important issues, and
Basic elements of SI such as field effect transistor (FET)
miniaturization is necessary. Therefore, the gate length of the FET is shortened to reduce the occupied area, but this requires forming the source/drain regions shallowly so as not to change the threshold voltage. A conventional method for forming such an FET will be described with reference to FIG.

1゛ 先で4〜5Ωcmの(100)を主面とするn型シリコ
ン基板(1)上にフィールド酸化膜■を形成する。
One step later, a field oxide film (2) is formed on an n-type silicon substrate (1) having a (100) main surface and having a thickness of 4 to 5 Ωcm.

この酸化膜■に囲まれた領域にゲート酸化膜(3□)、
ドープした多結晶シリコン層(3□)、硅化タングステ
ン層(33)及びSiO□膜(34)を積層したものを
ゲート電極形状にエツチングで加工し、さらにその側壁
に5in2膜(35)を設けてゲート電極■を形成する
In the area surrounded by this oxide film ■, there is a gate oxide film (3□),
A stack of a doped polycrystalline silicon layer (3□), a tungsten silicide layer (33), and a SiO□ film (34) is etched into the shape of a gate electrode, and a 5in2 film (35) is further provided on the side wall. Form a gate electrode (■).

この後DCマグネトロンスパッタ法により全面にN1(
41)を300人堆積する(第6図(a))。
After that, the entire surface was covered with N1 (
41) by 300 people (Figure 6(a)).

次に400℃、30分の条件にてN、ガス中に基板ごと
さらし、N15j2層(5□)、(6,)を形成する。
Next, the entire substrate was exposed to N gas at 400° C. for 30 minutes to form two N15j layers (5□) and (6,).

この熱処理によってN j、S i 2層(57)、(
6□)の底は凹凸形状をなし、広い面積にて下地基板(
1)と接触する(第1図(b))。
By this heat treatment, N j , S i two layers (57), (
The bottom of the base substrate (6□) has an uneven shape and has a wide area.
1) (Fig. 1(b)).

さらに、Bイオンを加速電圧10KeV、ドーズ量5 
XIO”cm”−2の条件にて全面に注入し、NiSi
2層(5□)、(6□)にBイオンを含有させる(第6
図(C))。
Furthermore, B ions were accelerated at a voltage of 10 KeV and at a dose of 5.
NiSi was implanted over the entire surface under the condition of
Contain B ions in the second layer (5□) and (6□) (6th layer)
Figure (C)).

この後、900℃、30分の条件にてN2ガス中に基板
ごとさらすことにより、Ni Si2層(5□)、(6
、)下にBが熱拡散してP+型層(5G)、 (6,)
が形成される。
Thereafter, by exposing the entire substrate to N2 gas at 900°C for 30 minutes, the NiSi2 layers (5□), (6
,) B thermally diffuses below to form a P+ type layer (5G), (6,)
is formed.

こうしてソース領域(ハ)、ドレイン領域0が形成され
、FETが完成する(第6図(d))。
In this way, a source region (c) and a drain region 0 are formed, and the FET is completed (FIG. 6(d)).

この様に、P+型層(56)、 (66)上に低抵抗N
l5x2層(5□) 、 (6G )が設けられ、しか
もこのN15j7層(5□)。
In this way, low resistance N
15x2 layers (5□) and (6G) are provided, and this N15j7 layer (5□).

(6□)は広い面積の凹凸状の底でP+型層(5,)、
 (6,)と接触するため、ソース・トレイン領域(ハ
)、(0の薄層化がなされてもこれらの領域の抵抗が低
く保たれるので、このFETの構造は微細化に適してい
る。
(6□) is a P+ type layer (5,) with a wide area uneven bottom.
The structure of this FET is suitable for miniaturization because the source train region (c) and (0) are in contact with (6,), so the resistance of these regions remains low even when the (0) layer is thinned. .

しかしながら、NiSi2層(5□)、(6□)を形成
した後、これを拡散源にして、Bを下方のシリコン基板
(υへ熱拡散し、P+型層(5□)、(6□)を形成す
るために、このP+型層はどうしてもNiSi2層(5
g)’、 (6,)の位置よりさらに深く形成されてし
まう。従ってこの様なソース・ドレイン領域は合金層で
あるNiSi2層と不純物層であるP+型層の合計の厚
みがこれらの領域の深さになる。
However, after forming the NiSi2 layers (5□) and (6□), using this as a diffusion source, B is thermally diffused into the silicon substrate (υ) below, and the P+ type layers (5□) and (6□) are formed. In order to form this P+ type layer, the NiSi2 layer (5
g)', it is formed deeper than the position (6,). Therefore, the depth of such source/drain regions is the total thickness of the NiSi2 layer, which is an alloy layer, and the P+ type layer, which is an impurity layer.

そこでこれらのソース・ドレイン領域を浅く形成するに
は、合金層の不純物層の合計の厚みを薄くすれば良いが
、さらに薄くすればこれらの領域の抵抗が増大してしま
い、これ以上の薄層化は極めて困難であった。ソース・
ドレイン領域の薄層化ができなければ、FETの高集積
化や高速性等は望めない。
Therefore, in order to form these source/drain regions shallowly, it is possible to reduce the total thickness of the impurity layers in the alloy layer, but if the total thickness of the impurity layers in the alloy layer is made thinner, the resistance of these regions increases, and it is necessary to make the layers thinner. It was extremely difficult to adapt. sauce·
Unless the drain region can be thinned, high integration and high speed of FETs cannot be expected.

(発明が解決しようとする課題) 従来の半導体装置は、合金層とこの下に設けられた導電
型を呈する不純物層を合計の厚みがソース・ドレイン領
域の深さになるため、これ以上薄くすればこの領域の抵
抗が高くなるという問題があった。
(Problems to be Solved by the Invention) In conventional semiconductor devices, the total thickness of the alloy layer and the impurity layer of the conductivity type provided below is the depth of the source/drain region, so it is impossible to make the alloy layer any thinner than this. There was a problem in that the resistance in the tobacco area was high.

本発明は上記問題点に鑑みなされたもので、不純物層を
浅く形成すると共に低抵抗化に適した構造の半導体装置
を容易に形成する事を目的とする。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to easily form a semiconductor device having a structure suitable for forming a shallow impurity layer and reducing resistance.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明は第1の半導体層上
に、該第1の半導体層の構成元素及び金属から成る合金
層を前記第1の半導体層の構成元素がリッチとなる組成
にて形成する工程と、前記合金層に導電型を呈する不純
物を含ませる工程と、前記第1の半導体層と前記合金層
間に、加熱により前記合金層から前記第1の半導体層の
構成元素及び前記不純物を有する第2の半導体層を析出
する工程とを具備する事を特徴とする半導体装置の製造
方法を提供するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an alloy layer made of constituent elements and metals of the first semiconductor layer on the first semiconductor layer. a step of forming the alloy layer with a composition rich in constituent elements; a step of including an impurity exhibiting a conductivity type in the alloy layer; The present invention provides a method for manufacturing a semiconductor device, comprising a step of depositing a second semiconductor layer containing the constituent elements of a first semiconductor layer and the impurities.

(作 用) 基板表面に合金層を形成した後、この層を半導体リッヂ
の組成にしておき、この合金層を熱処理する事によって
、再結晶化させる。この再結晶化過程において不純物層
となる半導体を基板上に析出させる。この不純物層の底
となる深さは、最初に設けた合金層の底の深さと同じ深
さに設けられこれより深くは形成されない。意図的に半
導体成分を合金中に添加して上記の工程を実行した場合
、合金層は最初に設けられた合金層より盛り上がって形
成されるために合金層と不純物層の合計の厚みは低抵抗
化に十分な厚みを保てる。
(Function) After forming an alloy layer on the surface of the substrate, this layer is made to have a composition of a semiconductor ridge, and this alloy layer is recrystallized by heat treatment. In this recrystallization process, a semiconductor that will become an impurity layer is deposited on the substrate. The bottom depth of this impurity layer is the same as the bottom depth of the first alloy layer and is not formed deeper than this. If a semiconductor component is intentionally added to an alloy and the above process is performed, the alloy layer will be formed to be higher than the first alloy layer, so the total thickness of the alloy layer and impurity layer will be low resistance. It maintains sufficient thickness for oxidation.

(実施例) 本発明の詳細を実施例に沿って説明する。(Example) The details of the present invention will be explained along with examples.

第1図は本発明の第1の実施例に系る電界効果トランジ
スタを製造工程順に示した断面図である。
FIG. 1 is a cross-sectional view showing a field effect transistor according to a first embodiment of the present invention in the order of manufacturing steps.

先ず、半導体基板例えば(] 00)を主面とする5Ω
cmのn型シリコン基板■上に熱酸化により0.6μm
厚のフィールド酸化膜■を形成する。この膜に囲まれた
領域的に100人厚0ゲート酸化膜(3□)、ドープし
た多結晶シリコン(32)、DCマグネトロンスパッタ
で形成した硅化タングステン(WSi2. s )膜(
33)及び500人厚C1) CV D −5in2膜
(34)を順次積層して、これをエツチングでゲート形
状に加工したものを形成する。次にこの積層膜とフィー
ルド5in2膜■をマスクにしてGeイオンを加速電圧
30keV、ドーズ量5 X 1014cm−2及び、
BF2イオンを加速電圧10keV、ドーズ量I X 
10”cm−2の条件にて夫々基板(1)に注入し、5
00人厚C1純物注入層(51)。
First, a semiconductor substrate, for example, 5Ω with (] 00) as the main surface.
0.6 μm by thermal oxidation on a cm n-type silicon substrate ■
Form a thick field oxide film. Surrounded by this film are a 100-layer thick 0 gate oxide film (3□), doped polycrystalline silicon (32), and a tungsten silicide (WSi2.s) film formed by DC magnetron sputtering (
33) and 500-person-thickness C1) CV D-5in2 films (34) are sequentially laminated and processed into a gate shape by etching. Next, using this laminated film and the field 5in2 film (2) as a mask, Ge ions were accelerated at a voltage of 30 keV, a dose of 5 x 1014 cm-2, and
BF2 ions are accelerated at a voltage of 10 keV and a dose of I
Injected into each substrate (1) under the condition of 10"cm-2,
00 person thickness C1 pure dopant injection layer (51).

(6,)を形成する。この後ゲート形状に加工した積層
膜の側壁に0.1μm厚の5in2膜(35)を形成す
る(第1図(a))。
Form (6,). Thereafter, a 0.1 μm thick 5in2 film (35) is formed on the side wall of the laminated film processed into the gate shape (FIG. 1(a)).

次いで、1000人厚のパラジウム(Pd)層(41)
を例えばDCマグネトロンスパッタ法により堆積する(
第1図(b))。
Next, a 1000-layer thick palladium (Pd) layer (41)
is deposited by, for example, DC magnetron sputtering (
Figure 1(b)).

さらに、300℃、30分間の熱処理を行うことで、1
400人厚のPd2Si層(5,l)、 (63)を形
成する。(42)は反応せずに残ったPd層である(第
1図(C))。
Furthermore, by performing heat treatment at 300°C for 30 minutes, 1
A Pd2Si layer (5,l), (63) with a thickness of 400 layers is formed. (42) is the Pd layer that remained unreacted (FIG. 1(C)).

その後、この未反応のPd層(4□)をKI+I2溶液
で選択的に除去し、さらに730℃以上例えば750℃
、30分間の熱処理を行うと、Pd、Si層(53)、
 (63)がPdSi層(5,)、、 (6,)となる
様に相転位させシリコンリッチ膜に形成し直す。この際
基板(υが多少食われ、PdSi層(5,)、 (64
)の底は多少深くなる(第1図(d))。
After that, this unreacted Pd layer (4□) is selectively removed with KI+I2 solution, and further heated to 730°C or higher, for example, 750°C.
, after 30 minutes of heat treatment, a Pd, Si layer (53),
Phase transition is performed so that (63) becomes PdSi layers (5,), (6,), and a silicon-rich film is formed again. At this time, the substrate (υ) is slightly eaten away, and the PdSi layer (5,), (64
) becomes somewhat deeper (Fig. 1(d)).

次いで、加速電圧10keV、ドーズ量I X 1.0
” crn−”にてBイオンを注入し不純物含有のPi
Si層(5S)。
Next, the acceleration voltage was 10 keV, and the dose was I x 1.0.
B ions are implanted using "crn-" to form impurity-containing Pi.
Si layer (5S).

(6S)を形成する(第1図(e))。(6S) is formed (Fig. 1(e)).

この後650℃、60分間の熱処理を行うことにより、
PdSi層(5,)、 (6,)を逆相転位させ、Bを
含むシリコン層(56)、 (6G)をシリコン基板ω
上に析出すると共に、Pd2Si層(5□)、(6□)
を形成する。この逆相転位をさせるには600〜700
℃が好ましい。これにより、P十型ソース領域■、ドレ
イン領域■が完成する。このシリコン層(5G)、 (
6,、)はシリコン基板(1)を種にして析出するため
、PdSi (55) 、 (6,)と比べ底の形状及
び深さはほとんど変わらない。
After this, by performing heat treatment at 650°C for 60 minutes,
The PdSi layers (5,) and (6,) are subjected to anti-phase transposition, and the B-containing silicon layers (56) and (6G) are placed on the silicon substrate ω.
Pd2Si layers (5□), (6□) are precipitated on top.
form. 600 to 700 to achieve this reverse phase rearrangement.
°C is preferred. As a result, the P-type source region (2) and drain region (2) are completed. This silicon layer (5G), (
Since PdSi (55) and (6,) are precipitated using the silicon substrate (1) as a seed, the bottom shape and depth are almost the same as those of PdSi (55) and (6,).

またシリコン層(5,)、 (66)とPd2Si層(
5□)、(6□)の界面に凹凸が有るため、この層間の
接触面積は広くソース・ドレイン領域内の低抵抗化に適
する。
Also, silicon layers (5,), (66) and Pd2Si layer (
Since the interface between 5□) and (6□) is uneven, the contact area between these layers is wide and suitable for lowering the resistance in the source/drain region.

この凹凸を顕微鏡で観察したところ、山から谷までの深
さは100Å以上であった。
When this unevenness was observed under a microscope, the depth from the peaks to the valleys was 100 Å or more.

この様にシリコン層(56)、 (6,)は浅く形成さ
れるにも拘わらず、形成されるので、Pd2Si層は盛
り上がってシリコン層とPd2Si層の合計の厚みが厚
く、ソース・ドレイン領域の抵抗は低く保たれる(第1
図(f))。
In this way, the silicon layers (56) and (6,) are formed even though they are formed shallowly, so the Pd2Si layer rises and the total thickness of the silicon layer and the Pd2Si layer becomes thicker, and the source/drain regions are thicker. resistance is kept low (first
Figure (f)).

最後に、全面にCVD法によって層間絶縁膜として5i
n2膜■を形成し、ソース領域0及びドレイン領域0上
に開口を設け、Pd2Si層(57)、(6、)につな
がるAQの電極配線(8)を形成してFETが完成する
(第1図(g))。
Finally, an interlayer insulating film of 5i was applied to the entire surface by CVD.
An FET is completed by forming an n2 film (1), providing openings on the source region 0 and drain region 0, and forming AQ electrode wiring (8) connected to the Pd2Si layers (57), (6,). Figure (g)).

こうして形成されたFETは、その断面を電子顕微鏡で
調べたところ、中間濃度層(5□)、(6□)の深さは
500人、またソース・ドレイン領域0.■がn型基板
表面から1000人程度上桟く形成されていた。この様
なFETではドレイン電流をシリコン基板■の浅い所に
流す様にでき、ゲートの印加電圧によってドレイン電流
を容易に制御できる。
When the cross section of the FET thus formed was examined using an electron microscope, it was found that the depth of the intermediate concentration layers (5□) and (6□) was 500 mm, and the source/drain regions were 0.5 mm deep. (2) was formed about 1000 times above the surface of the n-type substrate. In such an FET, the drain current can be made to flow into a shallow part of the silicon substrate, and the drain current can be easily controlled by the voltage applied to the gate.

これにより、ゲート長0.5μsのFETで相互コンダ
クタンスが従来10100O/mmであったものを18
00ms/mmと大幅に向上する事ができた。
As a result, the mutual conductance of a FET with a gate length of 0.5 μs has increased from 10,100 O/mm to 18
The speed was significantly improved to 00ms/mm.

ここで第2図はPdSi層(5,)、 (6,、)を逆
相転位させてシリコン層(5,)、 (6,)上にPd
2Si層(57)、(6□)を積層して構造のソース・
ドレイン領域0,0を形成した際、PdSi層(55)
、 (65)の厚さとこれらの領域の比接触抵抗との関
係を示したものである。
Here, Fig. 2 shows that the PdSi layers (5,), (6,,) are subjected to anti-phase dislocation to form PdSi layers (5,), (6,) on the silicon layers (5,), (6,).
2Si layers (57) and (6□) are stacked to form the source and
When forming drain regions 0,0, PdSi layer (55)
, (65) shows the relationship between the thickness of these regions and the specific contact resistance of these regions.

−△−印は逆相転位前にPiSi層にAsイオンを加速
電圧45keV、ドーズ量I X 10”cm−2の条
件で注入したもの、また−〇−印は同様にBイオンを3
0keV、I X 1016cm−2にて注入したもの
を夫々示す。
-△- marks are those in which As ions were implanted into the PiSi layer before reverse phase dislocation under the conditions of acceleration voltage 45 keV and dose amount I
Injections at 0 keV and I x 1016 cm-2 are shown, respectively.

この図から明らかな様に、PdSi層が1100C人〕
より厚くなるに従って、比接触抵抗は増加してしまう。
As is clear from this figure, the PdSi layer is 1100C]
As the thickness increases, the specific contact resistance increases.

この事から、PdSi層は比接触抵抗を低く保つ面から
、1100[人]以下である事が好ましい。
From this, in order to keep the specific contact resistance low, it is preferable that the PdSi layer has a density of 1100 [people] or less.

この実施例では逆相転位可能な金属としてPdを採用し
たが、これ以外の金属でも良い。またここでは合金層を
相転位させてシリコンリッチにしたが、これに加え合金
層にシリコンをイオン注入を併用してシリコンリッチに
しても構わない。
In this embodiment, Pd is used as the metal capable of reverse phase transition, but other metals may also be used. Further, here, the alloy layer is made silicon-rich by phase transition, but in addition to this, the alloy layer may be made silicon-rich by ion implantation of silicon.

次に本発明の第2の実施例を第3図に沿って説明する。Next, a second embodiment of the present invention will be described with reference to FIG.

これは金属シリサイド層をシリコンリッチにする手法と
Pdの代わりにcoを用いた点が第1の実施例と異なる
This differs from the first embodiment in that the metal silicide layer is made silicon-rich and that Co is used instead of Pd.

先ず、第1図(a)〜(c)と同様の工程を経て、Pd
Si層に代えてCQS12 Ml (53) + (6
3)を形成する。c。
First, through the same steps as in FIGS. 1(a) to (c), Pd
CQS12 Ml (53) + (6
3) Form. c.

膜はDCマグネトロンスパッタ法を用いて3000人堆
積した。またシリサイド化には650℃、10分間の熱
処理を行った。未反応のCo膜は過酸化水素水、塩酸及
び水の混合液で選択除去した。
The film was deposited using DC magnetron sputtering. In addition, heat treatment was performed at 650° C. for 10 minutes for silicidation. Unreacted Co film was selectively removed with a mixture of hydrogen peroxide, hydrochloric acid, and water.

次いで、CoSi2層(53)、 (63)に加速電圧
20keV、ドーズ量I X 10’7cm−2にてS
1イオンを注入し、シリコンリッチの硅化コバルト(5
,)、 (64)を形成する(第3図(a))。
Next, S was applied to the CoSi two layers (53) and (63) at an accelerating voltage of 20 keV and a dose of I x 10'7 cm-2.
Silicon-rich cobalt silicide (5
, ), (64) are formed (Fig. 3(a)).

その後硅化コバルト層(5,)、 (6,)に加速電圧
15keV、 ドーズ量I X 10”6cm−2にて
Bイオンを注入し、Bドープの硅化コバルト層(5g)
、 (65)を形成する。この工程はSiイオンの注入
前に行っても構わない(第3図(b))。
After that, B ions were implanted into the cobalt silicide layers (5,) and (6,) at an acceleration voltage of 15 keV and a dose of I x 10"6 cm-2 to form a B-doped cobalt silicide layer (5 g).
, (65) is formed. This step may be performed before implanting Si ions (FIG. 3(b)).

さらに、Arガス中での850℃、1時間の熱処理によ
ってBドープのシリコン層(5,)、 (6r、)をシ
リコン基板■を核として析出させると共に、CoSi2
層(5□)、(6□)を形成する。これにより、P十型
のソース領域■、ドレイン領域0が形成されるが、先の
実施例のものと同様な浅いソース・ドレイン領域を得る
(第3図(C))。
Furthermore, B-doped silicon layers (5,), (6r,) were precipitated using the silicon substrate ■ as a nucleus by heat treatment at 850°C for 1 hour in Ar gas, and CoSi2
Form layers (5□) and (6□). As a result, a P-type source region (2) and a drain region (0) are formed, and shallow source/drain regions similar to those of the previous embodiment are obtained (FIG. 3(C)).

この後、第1図(g)と同様に電極配線を設けてFET
は完成する。このFETも第1の実施例と同様な特性を
有する優れたものである。
After this, electrode wiring is provided in the same way as in Fig. 1(g), and the FET is
is completed. This FET is also excellent and has characteristics similar to those of the first embodiment.

続いて本発明の第3の実施例を第4図に沿って説明する
Next, a third embodiment of the present invention will be described with reference to FIG.

この実施例は、先述した第2の実施例と、金属シリサイ
ド層をシリコンリッチにする方法が異なる。
This embodiment differs from the second embodiment described above in the method of making the metal silicide layer silicon-rich.

先ず第1図(a)〜(c)と同様の工程を経て、CoS
i2層(53)、 (63)を形成する。この膜の形成
に当っては第2の実施例と同一条件を用いれば良い。
First, through the same steps as in Figures 1(a) to (c), CoS
Form i2 layers (53) and (63). In forming this film, the same conditions as in the second embodiment may be used.

しかる後にLPCVD法を用い、シランの分圧5×10
−’Torr、温度500℃の条件にて、300人厚0
シリコン層(59)、(6□)をCoSi2層(53)
 、 (63)上に選択的に形成する(第4図(a))
Thereafter, using the LPCVD method, the partial pressure of silane was reduced to 5×10
-'Torr, temperature 500℃ condition, 300 people thickness 0
Silicon layers (59) and (6□) are replaced with CoSi2 layer (53)
, (63) selectively formed on (Fig. 4(a))
.

次いで、このシリコン層(59)、 (69)に例えば
Bイオンを加速電圧20keV、ドーズ量I X 10
”Cm−2の条件にて注入する(第4図(b))。
Next, for example, B ions are applied to the silicon layers (59) and (69) at an acceleration voltage of 20 keV and a dose of I x 10.
Inject under the condition of ``Cm-2'' (Fig. 4(b)).

さらに、Arガス中で1時間、温度850℃の熱処理を
行う事で、C0807,層(53)、(63)が−旦シ
リコンリッチとなり余ったシリコンがシリコン基板(1
)上に、I X 102−’Cm−”のBドープのP型
シリコン層(5G)、 (6G)として析出すると共に
、この層上にCoSi2層(57)、 (6□)が形成
される(第4図(C))。
Furthermore, by performing heat treatment at a temperature of 850°C for 1 hour in Ar gas, the C0807 layers (53) and (63) become silicon-rich and the excess silicon is transferred to the silicon substrate (1
), B-doped P-type silicon layers (5G), (6G) of I x 102-'Cm-'' are deposited, and CoSi2 layers (57), (6□) are formed on this layer. (Figure 4(C)).

この後第1図(g)と同様の工程を経て、層間絶縁膜及
び電極配線が形成され、Pチャネル型FETは完成する
Thereafter, through the same steps as in FIG. 1(g), an interlayer insulating film and electrode wiring are formed, and the P-channel type FET is completed.

このFETも先の実施例と同様に、P型シリコン層(5
□)、(6□)が浅い所に形成されるため、同様の優れ
た特性を有する。
This FET also has a P-type silicon layer (5
Since □) and (6□) are formed at shallow depths, they have similar excellent characteristics.

一]2 第5図(a)は硅化コバルト層からシリコン層(5G)
、 (6G)を析出させてソース・ドレイン領域■。
1]2 Figure 5(a) shows the transition from the cobalt silicide layer to the silicon layer (5G).
, (6G) is deposited to form source/drain regions ■.

(0を形成した際、硅化コバル層の組成比を変えてこれ
らの領域の比接触抵抗を測定した結果を示す。
(The results of measuring the specific contact resistance of these regions by changing the composition ratio of the cobal silicide layer when forming the cobal silicide layer are shown below.

−〇−印は珪化コバルト層にBF2イオンを加速電圧4
0keV、ドーズ量I X 1016cm−2で注入し
たもの、また−△−印は同様にAsイオンを50keV
、lX1016cm−2で注入したものの測定結果を夫
々示す。この図から明らかな如く、Si/Coが2.5
より大きくなるに従って比接触抵抗は大きくなる。従っ
てシリコンリッチの硅化コバルト層から浅くしかも低抵
抗なソース・ドレイン領域を設けるには、Si/G。
−〇− marks accelerate BF2 ions into the cobalt silicide layer at a voltage of 4
Those implanted at 0 keV and a dose of I x 1016 cm-2, and -△- are similarly implanted with As ions at 50 keV.
, 1×10 16 cm −2 , respectively. As is clear from this figure, Si/Co is 2.5
As the contact resistance increases, the specific contact resistance increases. Therefore, in order to provide shallow and low resistance source/drain regions from a silicon-rich cobalt silicide layer, Si/G is used.

が2以上で2.5以下が好ましい事が判った。It was found that it is preferable that the value is 2 or more and 2.5 or less.

また本発明ではPdやCoの代わりにNiを用いる事が
できる。第5図(b)は硅化コバルトの代わりに硅化ニ
ッケル層を用いてFETを設けた際の第5図(a)で示
したものと同様な測定結果である。この図から明らかな
如く、シリコンリッチの硅化ニッケル層の場合にもSi
/Nj比は2以上で2.5以下が好ましい事が判った。
Further, in the present invention, Ni can be used instead of Pd or Co. FIG. 5(b) shows measurement results similar to those shown in FIG. 5(a) when an FET is provided using a nickel silicide layer instead of cobalt silicide. As is clear from this figure, even in the case of a silicon-rich nickel silicide layer, Si
/Nj ratio was found to be preferably 2 or more and 2.5 or less.

以」二の実施例ではMO8型FETについて述べたが本
発明は他のFET例えばショットキゲート型FETにも
適用できるし、さらにはFET以外の浅い拡散層を必要
とする素子例えばPn接合ダイオードやバイポーラトラ
ンジスタ等にも利用できる。ここでは基板にシリコンを
用いたがゲルマニウムや化合物半導体例えばGaAs或
いはInPを採用しても構わない。また金属にはPdや
CO等の他に、W ’l’ T iを用いても良い。
Although the MO8 type FET was described in the second embodiment, the present invention can also be applied to other FETs, such as Schottky gate type FETs, and can also be applied to devices other than FETs that require shallow diffusion layers, such as Pn junction diodes and bipolar FETs. It can also be used for transistors, etc. Although silicon is used for the substrate here, germanium or a compound semiconductor such as GaAs or InP may also be used. Furthermore, in addition to Pd, CO, etc., W'l'Ti may be used as the metal.

尚、本発明は上記実施例に限ることなく、その主旨を逸
脱しない範囲内で種々変形して実施できない事はいうま
でもない。
It goes without saying that the present invention is not limited to the above-mentioned embodiments, and can be practiced with various modifications without departing from the spirit thereof.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、浅い不純物層を備えしかも低抵抗化に
適した構造の半導体装置を容易に形成する事ができる。
According to the present invention, it is possible to easily form a semiconductor device having a shallow impurity layer and having a structure suitable for reducing resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す工程順の断面図、
第2図は本発明の第1の実施例を説明する図、第3図は
本発明の第2の実施例を示す工程順の断面図、第4図は
本発明の第3の実施例を示す工程順の断面図、第5図は
本発明の第2及び第3の実施例を説明する図、第6図は
従来例を示す工程順の断面図である。 1・・・シリコン基板 3・・・ゲート電極 5・・ソース領域 7・・・層間絶縁膜 2・・・フィールド酸化膜 4・・・金属層 6・・・ドレイン領域 8・・・電極配線 代理人 弁理士 則 近 憲 佑 同  松山光之 ℃ \−/ へ
FIG. 1 is a sectional view showing the first embodiment of the present invention in the order of steps;
Fig. 2 is a diagram explaining the first embodiment of the present invention, Fig. 3 is a cross-sectional view showing the second embodiment of the invention in the order of steps, and Fig. 4 is a diagram illustrating the third embodiment of the invention. 5 is a diagram for explaining the second and third embodiments of the present invention, and FIG. 6 is a sectional view of the conventional example in the order of steps. 1... Silicon substrate 3... Gate electrode 5... Source region 7... Interlayer insulating film 2... Field oxide film 4... Metal layer 6... Drain region 8... Electrode wiring substitute People Patent Attorney Nori Ken Yudo Matsuyama Mitsuyuki \-/ To

Claims (3)

【特許請求の範囲】[Claims] (1)第1の半導体層上に、該第1の半導体層の構成元
素及び金属から成る合金層を前記第1の半導体層の構成
元素がリッチとなる組成にて形成する工程と、前記合金
層に導電型を呈する不純物を含ませる工程と、ついで前
記第1の半導体層と前記合金層の間に、加熱により前記
合金層から前記第1の半導体層の構成元素及び前記不純
物を有する第2の半導体層を析出する工程とを具備する
事を特徴とする半導体装置の製造方法。
(1) forming an alloy layer made of the constituent elements of the first semiconductor layer and a metal on the first semiconductor layer with a composition rich in the constituent elements of the first semiconductor layer; and A step of including an impurity exhibiting a conductivity type in the layer, and then a second layer containing the constituent elements of the first semiconductor layer and the impurity from the alloy layer by heating between the first semiconductor layer and the alloy layer. A method for manufacturing a semiconductor device, comprising the step of depositing a semiconductor layer.
(2)前記合金層を逆相転位させる事によって前記第1
の半導体層の構成元素がリッチとなる組成にする事を特
徴とする請求項1記載の半導体装置の製造方法。
(2) By causing the alloy layer to undergo reverse phase dislocation, the first
2. The method of manufacturing a semiconductor device according to claim 1, wherein the composition is rich in constituent elements of the semiconductor layer.
(3)前記合金層を層内に前記第1の半導体層の構成元
素をイオン注入する事により、前記第1の半導体層の構
成元素がリッチとなる組成にする事を特徴とする請求項
1記載の半導体装置の製造方法。
(3) The composition of the alloy layer is made such that the constituent elements of the first semiconductor layer are rich by ion-implanting the constituent elements of the first semiconductor layer into the alloy layer. A method of manufacturing the semiconductor device described above.
JP3108289A 1989-02-13 1989-02-13 Method for manufacturing semiconductor device Expired - Fee Related JP2886174B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3108289A JP2886174B2 (en) 1989-02-13 1989-02-13 Method for manufacturing semiconductor device
US07/821,894 US5217923A (en) 1989-02-13 1992-01-15 Method of fabricating a semiconductor device having silicided source/drain regions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108289A JP2886174B2 (en) 1989-02-13 1989-02-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02211623A true JPH02211623A (en) 1990-08-22
JP2886174B2 JP2886174B2 (en) 1999-04-26

Family

ID=12321499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108289A Expired - Fee Related JP2886174B2 (en) 1989-02-13 1989-02-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2886174B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224863A (en) * 1998-02-04 1999-08-17 Nec Corp Semiconductor device and its manufacture
JP2007227865A (en) * 2006-02-27 2007-09-06 Seiko Epson Corp Silicide forming method, and semiconductor device manufacturing method
JP2007251194A (en) * 2007-05-14 2007-09-27 Toshiba Corp Semiconductor device and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11224863A (en) * 1998-02-04 1999-08-17 Nec Corp Semiconductor device and its manufacture
US6288430B1 (en) 1998-02-04 2001-09-11 Nec Corporation Semiconductor device having silicide layer with siliconrich region and method for making the same
US6492264B2 (en) 1998-02-04 2002-12-10 Nec Corporation Semiconductor device having a silicide layer with silicon-rich region and method for making the same
JP2007227865A (en) * 2006-02-27 2007-09-06 Seiko Epson Corp Silicide forming method, and semiconductor device manufacturing method
JP2007251194A (en) * 2007-05-14 2007-09-27 Toshiba Corp Semiconductor device and manufacturing method therefor

Also Published As

Publication number Publication date
JP2886174B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
JP2978736B2 (en) Method for manufacturing semiconductor device
US7320939B2 (en) Semiconductor device fabricated by a method of reducing the contact resistance of the connection regions
JP2819240B2 (en) Method of manufacturing MOS transistor having source / drain regions and silicide with shallow junction
JP3285934B2 (en) Method for manufacturing semiconductor device
JP2891092B2 (en) Method for manufacturing semiconductor device
JPS6072272A (en) Manufacture of semiconductor device
JP2001244346A (en) Method for forming silicide layer
JPH10284728A (en) Manufacture of mosfet having cobalt silicide film
JPH06112158A (en) Manufacture of semiconductor device
JP3199015B2 (en) Semiconductor device and manufacturing method thereof
US5443994A (en) Method of fabricating a semiconductor device having a borosilicate glass spacer
JPH02170528A (en) Manufacture of semiconductor device
JP3003796B2 (en) Method of manufacturing MOS type semiconductor device
JPH02211623A (en) Manufacture of semiconductor device
JP4011434B2 (en) Semiconductor device manufacturing method and semiconductor device
JPH1131665A (en) Manufacture of semiconductor integrated circuit
JPH0831598B2 (en) Method for manufacturing semiconductor device
JP2582337B2 (en) Method of manufacturing MOS transistor having source / drain regions and silicide with shallow junction
JP2874885B2 (en) Semiconductor device and manufacturing method thereof
JPH0831949A (en) Dual gate structure cmos semiconductor device and its manufacture
JPS59177926A (en) Manufacture of semiconductor device
KR0167667B1 (en) Method of fabricating semiconductor
TWI292604B (en)
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPS63265448A (en) Manufacture of mos type semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees