JPS5974258A - Nondirectional silicon steel plate with small iron loss - Google Patents

Nondirectional silicon steel plate with small iron loss

Info

Publication number
JPS5974258A
JPS5974258A JP57184167A JP18416782A JPS5974258A JP S5974258 A JPS5974258 A JP S5974258A JP 57184167 A JP57184167 A JP 57184167A JP 18416782 A JP18416782 A JP 18416782A JP S5974258 A JPS5974258 A JP S5974258A
Authority
JP
Japan
Prior art keywords
iron loss
grain size
silicon steel
steel plate
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57184167A
Other languages
Japanese (ja)
Other versions
JPH0250190B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Hiroto Nakamura
中村 広登
Bunjiro Fukuda
福田 文二郎
Hiroshi Matsumura
松村 洽
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57184167A priority Critical patent/JPS5974258A/en
Publication of JPS5974258A publication Critical patent/JPS5974258A/en
Publication of JPH0250190B2 publication Critical patent/JPH0250190B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a nondirectional silicon steel plate with a remarkably reduced iron loss value by restricting the amounts of O, N and S as impurities in a low C steel plate contg. specified amounts of Si, Al and Mn, and regulating the average grain size. CONSTITUTION:The amounts of impurity elements contained in a steel consisting of, by weight, <=0.005% C, 2.5-4.0% Si, 0.25-1.0% Al, 0.1-1.0% Mn and the balance essentially Fe are restricted to <=15ppm S, <=20ppm O and <=25ppm N. The average grain size which is affected by the relation between the Si and Al contents after annealing is regulated to 100+3.5X[Si%+Al%]<2>-170+5.0X [Si%+Al%]<2>. A nondirectional silicon steel plate of the regulated steel shows a very small iron loss value.

Description

【発明の詳細な説明】 この発明は、鉄損の少ない無方向性珪素鋼板にかかり、
特にS、0.N含有量の極低下にあわせ平均結晶粒径を
所定範囲のものにしたものよりなる、極めて小さい鉄損
値を示す無方向性珪素鋼板に関するものである。
[Detailed Description of the Invention] This invention relates to a non-oriented silicon steel plate with low iron loss,
Especially S, 0. The present invention relates to a non-oriented silicon steel sheet which exhibits an extremely small iron loss value and is made of a material having an extremely low N content and an average crystal grain size within a predetermined range.

無方向性珪素鋼板は、回転機のローター、ステーター等
の鉄心に多く用いられるが、特に大型回転機用鉄心材料
については、省エネルキーや安全操業の面から、電力損
失や発熱量の軽減を目指す傾向が強く、鉄損の少ない無
方向性珪素鋼板の開発が強く要請される現状にある。
Non-oriented silicon steel sheets are often used in the cores of rotors, stators, etc. of rotating machines.In particular, core materials for large rotating machines aim to reduce power loss and heat generation from the perspective of energy conservation and safe operation. This trend is strong, and there is a strong demand for the development of non-oriented silicon steel sheets with low iron loss.

ところで、従来無方向性珪素鋼板の鉄損値を低くするた
めに、SiおよびAlの添加量を増やし、電気抵抗を高
めて鉄損全低下させる方法が知られている。しかし、鉄
損を現在水準よりさらに向上させる必要があるときに、
今以上に81やAIの添加量を増すと、冷間加工性が悪
くなるので、現在の水準以上の添加量にすることは困難
を伴う。その他、熱間加工性を改善するために添加して
いるMnについては、磁気特性に与える影響が小さく、
また多量に添加すると逆に磁気特性を劣化させるので鉄
損値を低下させる元素とI−て不適当である。
By the way, in order to lower the iron loss value of a non-oriented silicon steel sheet, a method is known in which the amounts of Si and Al added are increased to increase the electrical resistance and thereby reduce the iron loss overall. However, when it is necessary to further improve iron loss from the current level,
If the amount of 81 or AI added is increased more than the current level, the cold workability will deteriorate, so it is difficult to increase the amount added above the current level. In addition, Mn, which is added to improve hot workability, has a small effect on magnetic properties.
Moreover, if added in a large amount, it will deteriorate the magnetic properties, so it is not suitable as an element that lowers the iron loss value.

そこで、本発明者らは、S、0.Nといった鋼中不純物
に着目し、これら不純物と鉄損の関係、およびこれら不
純物と結晶粒径ならびに鉄損の関係を研究することによ
り、従来技術では得られなかった極めて低い鉄損の無方
向性珪素鋼板を得ることが可能になることを知見するに
到った。
Therefore, the present inventors determined that S, 0. By focusing on impurities in steel, such as N, and studying the relationship between these impurities and iron loss, as well as the relationship between these impurities, grain size, and iron loss, we have achieved extremely low non-directional iron loss, which was not possible with conventional technology. It has been found that it is possible to obtain a silicon steel plate.

すなわち、鋼中不純物としてのS、0.Nの含有量がS
≦15ppm、O≦20 ppm、 N(25ppmで
あると鉄損が少なく、かつこうした純度の良い材料では
最良の鉄損値をもたらすところの結晶粒径の値が、従来
最適と思われていた結晶粒径の値とは異なることを見出
し、本発明を完成させた。
That is, S as an impurity in steel, 0. The N content is S
≦15 ppm, O≦20 ppm, N (at 25 ppm, the iron loss is small, and in such a material with good purity, the crystal grain size value that brings about the best iron loss value is the crystal grain size that was conventionally thought to be optimal. The present invention was completed based on the discovery that the particle size is different from the value of the particle size.

要するに、本発明は、機械的諸性質を阻害することなく
鉄損値のみが在米水準を超えて低いものになる無方向性
珪素鋼板を、不純物:S、O,N全極低下すること平均
結晶粒径を最適の範囲のものにすることにより得たので
ある。
In short, the present invention can produce a non-oriented silicon steel sheet in which only the iron loss value is lower than the US standard without impairing the mechanical properties, by reducing the impurities: S, O, N on an average This was achieved by adjusting the crystal grain size to an optimum range.

このことから、本発明者らは、先ず不純物成分(S、0
.N)が鉄損に及はす影#に知るため、上記各不純物の
濃度を種々変化させた3、2%S1−〇、60%AJI
!−0.20%Mn f含有する鋼を出鋼し、常法に従
う圧延、熱処理を経て厚み0.85朋の無力同性珪素鋼
板を製造した。その結果、Cば0.005%以下である
ならば、鉄損に及ぼす影響が小さいのに対し、S、O,
Hについてはその影響が大きく鉄損と極めて強い相関が
認められた。そのうち、S、0については、含有量の低
減が鉄損の改善に直接結びつくことは既に特公昭56−
22931号や特開昭53−66816号として提案さ
れた中に開示されており、0含有量を25 ppm以下
、S含有量に5oppm以下(望ましく i a o 
ppm以下)に規制することが提案されている。N含有
量についても、a o ppm以下に規制することが望
ましい実施態様であることが知られている。
From this, the present inventors first determined the impurity component (S, 0
.. In order to understand the influence of N) on iron loss, the concentrations of each of the above impurities were variously changed. 3, 2% S1-〇, 60% AJI
! - Steel containing 0.20% Mnf was tapped and subjected to rolling and heat treatment according to conventional methods to produce a powerless isotropic silicon steel plate with a thickness of 0.85 mm. As a result, if C is 0.005% or less, the effect on iron loss is small, whereas S, O,
Regarding H, its influence was large and an extremely strong correlation with iron loss was observed. Of these, regarding S and 0, it has already been shown in the 1980s that reducing the content directly leads to improvement in iron loss.
22931 and JP-A-53-66816, it is disclosed that the 0 content is 25 ppm or less and the S content is 5 oppm or less (preferably ia o
It has been proposed that the amount of carbon dioxide (ppm or less) be regulated. It is also known that it is a desirable embodiment to regulate the N content to less than a o ppm.

しかしながら、これらの報告や実施例における含有量は
、例えば、Sを例にとると低くてもその含有量は20〜
a o ppm程度のものしが報告されていす、それ以
上さらに低いレベルまでの不純物の影響については不明
である。
However, the content in these reports and examples is, for example, taking S as an example, even if the content is low, the content is 20 to 20%.
It has been reported that the level of impurities is around ao ppm, but the influence of impurities down to even lower levels is unknown.

そこで、本発明者らは、そのより低いレベルでの不純物
の影響について副査した。その結果によると、S : 
15 ppm 、 O: 20 ppm 、 N : 
25ppmのレベル1で丁げると鉄損の低減効果は著し
いものとなり、例えばS = 15 ppm 、 O=
 201)I)m 、 N = 25 ppmに下げる
と、鉄損値はWloA。
Therefore, the present inventors conducted a side investigation on the influence of impurities at lower levels. According to the results, S:
15 ppm, O: 20 ppm, N:
If it is reduced to level 1 of 25 ppm, the effect of reducing iron loss becomes remarkable, for example, S = 15 ppm, O =
201) I) When lowering m, N = 25 ppm, the iron loss value is WloA.

”; 0.90 、 W15150−r 2.20すな
わち88級相邑の鉄損のものが得られることが判った。
0.90, W15150-r 2.20, that is, it was found that an iron loss of 88 class Somura could be obtained.

ところが、その含有量ヲさらに低いレベルのものに下げ
ても、鉄損の低減は期待した程には大きくなく、87級
相当(WIO150≦0.85 、 W15150≦2
.00 )の鉄損材料を得ることはできなかった。
However, even if the content is lowered to a lower level, the reduction in iron loss is not as great as expected, and it is equivalent to class 87 (WIO150≦0.85, W15150≦2).
.. 00) could not be obtained.

本発明者らは、この原因を把むべく種々の検討を行った
結果、最良の鉄損値を示す鋼板の適正結晶粒径が、約1
30μmと考えられていた従来の値よりも大きい場合に
低鉄損となることを見出した。第1図は、上述の実験に
おいて、最終仕上げ焼鈍条件を従来から通常行っている
950°0×5分としたものと、結晶粒t−i太化させ
るべく、J030°OX5分としたものについて、不純
物S。
The present inventors conducted various studies to understand the cause of this, and found that the appropriate crystal grain size of the steel plate that exhibits the best iron loss value is approximately 1.
It has been found that iron loss is low when the thickness is larger than the conventional value of 30 μm. Figure 1 shows the final annealing conditions in the above experiment: 950° 0 x 5 minutes, which has been conventionally used, and J030° OX 5 minutes, in order to thicken the grains t-i. , impurity S.

0、N各含有量と鉄損の関係を示したものである。The relationship between the 0 and N contents and iron loss is shown.

この図から判るように、S<15ppm、O≦20pp
m 、 N≦25 ppmの不純物を含む領域において
は、従来採用していた焼鈍条件に代え高い温度で焼鈍し
て結晶粒を粗大化傾向に導いた鋼の方がより低い鉄損値
を示す。さらに、本発明者らは、S≦15ppm、Q≦
20ppm、N≦25 ppm (7)高純度の材料を
用いて、焼鈍時間、焼鈍温度を種々変化させたものにつ
いて研究を進めた結果、焼鈍時間や焼鈍温度の選択のみ
が、鉄損改善に有効に作用するのではなく、最良の鉄損
値をもたらすための最適結晶粒径が高純度化によって、
粗粒側に移行したことが原因であることを新規に見出し
た。
As can be seen from this figure, S<15ppm, O≦20ppm
In the region containing impurities of m, N≦25 ppm, steel that is annealed at a higher temperature instead of the conventionally employed annealing conditions to cause the crystal grains to tend to coarsen exhibits a lower iron loss value. Furthermore, the present inventors found that S≦15ppm, Q≦
20 ppm, N≦25 ppm (7) As a result of conducting research on various annealing times and temperatures using high-purity materials, it was found that only the selection of annealing times and annealing temperatures is effective in improving iron loss. By increasing the purity, the optimum grain size to bring about the best iron loss value is achieved.
It was newly discovered that the cause was a shift to the coarse grain side.

これを第2図を用いて詳しく説明する。This will be explained in detail using FIG.

第2図は、鉄損と平均結晶粒径との関係を示したもので
、(alは、不純物として、S=82ppm。
FIG. 2 shows the relationship between iron loss and average grain size (Al is an impurity, S=82 ppm.

0=22 ppm、 N=26 ppm含有させた従来
の材料、0)は、不純物としてS = 8 ppm 、
 O= 7 ppm、N = 14 ppm含有させた
本発明の材料で、ともに81は8.2%、A7tは0.
60%、Mnは0.20%である。鉄損はヒステリシス
損と渦電流損からなるが、ヒステリシス損は結晶粒径が
大きくなると急激に低下し、逆に渦電流損の方は結晶粒
径が大きくなると増加してくるという相反する作用のも
とで、第2図に示すように、ある適正な結晶粒径のとこ
ろで、両者が均衡された状態となり、その位置で鉄損値
が極小値をとる。この最も低鉄損値を示す平均結晶粒径
を最適平均結晶粒径と呼称している。
The conventional material containing 0 = 22 ppm, N = 26 ppm, 0) contains S = 8 ppm as impurities,
In the materials of the present invention containing O = 7 ppm and N = 14 ppm, both 81 was 8.2% and A7t was 0.
60%, and Mn is 0.20%. Iron loss consists of hysteresis loss and eddy current loss. Hysteresis loss rapidly decreases as the grain size increases, while eddy current loss increases as the grain size increases. As shown in FIG. 2, at a certain appropriate crystal grain size, both are balanced, and the iron loss value takes a minimum value at that position. The average crystal grain size exhibiting the lowest iron loss value is called the optimum average crystal grain size.

一般に、かかる最適平均結晶粒径は、Si + A6の
含有量によって異なり、SiやAβの含有量が増加する
程大きくなることが知られている。ところがこの第2図
に示されるように、材料のS、0゜Nの含有量によって
最適とする平均結晶粒径が変化することは、これ壕で知
られていなかったことである。
It is generally known that the optimum average crystal grain size varies depending on the content of Si + A6, and increases as the content of Si and Aβ increases. However, as shown in FIG. 2, it was not previously known that the optimum average grain size changes depending on the S and 0°N contents of the material.

そこで、本発明の組成範囲内であるS≦15ppm、o
≦20ppm、N≦25 ppmである材料の最適平均
結晶粒径と従来より用いられている材料の最適平均結晶
粒径について、(Si + kl )%との関係を求め
た。その結果、第3図に示すが、87級の低鉄損値を示
す本発明材料の最適平均結晶粒径は、従来用いられてい
る材料の最適平均結晶粒径よりは粗粒側に移行していて
明確な区別があり、図中判断されるその粒径の値は10
 Q+3.5 X (S’i+i%〕2と170 + 
50 X [Si十A1%]2で狭まれる範囲である。
Therefore, S≦15ppm, o which is within the composition range of the present invention.
The relationship between (Si + kl)% and the optimal average crystal grain size of a material that satisfies ≦20 ppm and N≦25 ppm and the optimal average crystal grain size of a conventionally used material was determined. As a result, as shown in Fig. 3, the optimum average crystal grain size of the present invention material, which exhibits a low core loss value of class 87, shifts to the coarse grain side compared to the optimum average crystal grain size of conventionally used materials. There is a clear distinction between the particles, and the value of the particle size judged in the figure is 10.
Q+3.5 X (S'i+i%]2 and 170 +
The range is narrowed by 50×[Si+A1%]2.

従来材よりも範囲が広い理由は、第2図に示されるよう
に極小値付近での特性の変化が小さいためである。第3
図において特に、最適平均結晶粒径の頻度の高い範囲は
120+3.5X (Si+Ajl1%〕2と160+
50X(Si+AJ%〕2で狭壕れる範囲であることよ
り、統計的処理を行えば、この範囲に最も特性のよくな
る領域があると推定できる。
The reason why the range is wider than that of conventional materials is that, as shown in FIG. 2, the change in characteristics near the minimum value is small. Third
In the figure, the most frequent ranges of optimal average grain size are 120+3.5X (Si+Ajl1%)2 and 160+
Since this is a narrow range of 50X(Si+AJ%)2, it can be estimated that there is a region with the best characteristics in this range if statistical processing is performed.

要するに本発明で目指す低鉄損値の材料を得るには、S
、N、Oの含有量を極低下することにあわせ、その特性
をさらに生かすには平均結晶粒径が粗粒側に移行したあ
る限られた範囲内のものに調整することが必要である。
In short, in order to obtain a material with a low iron loss value aimed at by the present invention, S
In addition to extremely reducing the contents of , N, and O, it is necessary to adjust the average crystal grain size to within a certain limited range toward the coarse grain side in order to make the most of its properties.

なお、S、O,N含有量の極めて低くした材料で、最適
平均結晶粒径が粗粒側に移行したときに低鉄損値を示す
理由は次のように推定される。すなわち、鉄損はヒステ
リシス損と渦電流損とからなっていることは前述したが
、このうち、渦電流損は、S、O,Nといった不純物に
は関与しない。
The reason why a material with extremely low S, O, and N contents exhibits a low iron loss value when the optimum average crystal grain size shifts to the coarse grain side is presumed as follows. That is, although it was mentioned above that iron loss consists of hysteresis loss and eddy current loss, eddy current loss does not involve impurities such as S, O, and N.

一方、ヒステリシス損は、材料の不純物や、粒界密度が
増加すると増加する。しかるに、粒界密度の高い細粒側
では、粒界密度がヒステリシス損劣化の主要因となるた
め、不純物低減の効果が現われにくく、逆に、粒界密度
の低い粗粒側では、不純物が劣化の主要因となるため、
不純物低減の効果が大きく現われる。要するに、不純物
減少によるヒステリシス損の減少は細粒側で小さく粗粒
側で大きいことになるのでおる。しかも、渦電流損は変
らず、ヒステリシス損のみこのように変化するのである
から、総和としての鉄損が極小金示す最適平均結晶粒径
は、当然粗粒側に移行し本発明のような現象をもたらし
たものと推定されるのである。
On the other hand, hysteresis loss increases as impurities in the material and grain boundary density increase. However, on the fine grain side where the grain boundary density is high, the grain boundary density is the main cause of hysteresis loss deterioration, so the effect of impurity reduction is difficult to appear.On the other hand, on the coarse grain side where the grain boundary density is low, impurities deteriorate. This is the main cause of
The effect of impurity reduction is significant. In short, the reduction in hysteresis loss due to the reduction of impurities is smaller on the fine grain side and larger on the coarse grain side. Moreover, since the eddy current loss does not change and only the hysteresis loss changes in this way, the optimum average grain size, which exhibits minimal iron loss as a total sum, naturally shifts to the coarse grain side, resulting in the phenomenon of the present invention. It is assumed that this caused the

以上説明したように、本発明者らは、S≦15ppm、
O(:20ppm、N≦25 ppmの極低下した不純
物領域にある鋼では、平均結晶粒径D(μm)が、 ]00+3.5X(Si%+AJ1%)”≦5≦170
+5 、ox(Si’l/crl−AJ%ゾの範囲に含
壕れるようなものをつくると極めて低い鉄損の無方向性
珪素鋼板が得られることを新規に見出した。
As explained above, the present inventors found that S≦15ppm,
In steel in the extremely reduced impurity region of O(: 20 ppm, N≦25 ppm, the average grain size D (μm) is ]00+3.5X(Si%+AJ1%)”≦5≦170
It has been newly discovered that a non-oriented silicon steel sheet with extremely low core loss can be obtained by manufacturing a steel sheet that contains trenches in the range of +5, ox(Si'l/crl-AJ%).

なお、このような性質をもつ無方向性珪素鋼板は、上記
成分組成に限定される限り従来の一般的な製造方法の採
用でよい。例えば、軟線を行った溶鋼を脱ガス処理し、
所定の成分組成のものに調整後、鋳型に注入して造塊後
分塊圧延を行いスラブ(鋼片)とするか、連続鋳造法に
よりスラブにした後、常法に従って熱間圧延、冷間圧延
工程を経て製品とするものである。
Incidentally, a non-oriented silicon steel sheet having such properties may be produced by conventional general manufacturing methods as long as the composition is limited to the above-mentioned composition. For example, molten steel that has been soft wired is degassed,
After adjusting the composition to a specified composition, it is poured into a mold and subjected to ingot-forming and blooming rolling to form a slab (steel billet), or it is made into a slab by continuous casting, followed by hot rolling and cold rolling according to conventional methods. It is made into a product through a rolling process.

以下に本発明の成分組成の範囲について述べる。The range of the component composition of the present invention will be described below.

Cは、0.005重量%を超えると時効を起こし、特性
を劣化させるので、0.005重量%以下とする。
If C exceeds 0.005% by weight, aging will occur and the properties will deteriorate, so the content should be 0.005% by weight or less.

Siは、4.0重量%を超えると冷延性が悪くなるので
、4.0重量%までとする。また2、5重量%未満では
、電気抵抗が低く、鉄損が増加して、本発明の所期した
効果である低鉄損の無方向性珪素鋼板が得られなくなる
ので、2.5重量%を下限とする。
If Si exceeds 4.0% by weight, cold rollability deteriorates, so the Si content is limited to 4.0% by weight. If the amount is less than 2.5% by weight, the electrical resistance will be low and the iron loss will increase, making it impossible to obtain a non-oriented silicon steel sheet with low iron loss, which is the desired effect of the present invention. is the lower limit.

AJIは、Siと同様電気抵抗を高めて、低鉄損化に効
果があるが、1.0重量%を超えると81同様冷間加工
性が悲くなり、0.25重量%未満では鉄損が大幅に劣
化するので、0.25重量%から1.0重量%1でとす
る。
Like Si, AJI increases electrical resistance and is effective in reducing iron loss, but if it exceeds 1.0% by weight, cold workability becomes poor like 81, and if it is less than 0.25% by weight, iron loss decreases. Since this results in significant deterioration, the content is set at 0.25% by weight to 1.0% by weight.

Mnは、熱間加工性の面から0.1重量%以上必要であ
るが、1.0重量%を超えると磁性が劣化するので、0
.1重量%から1.0重量%までとする。
Mn is required in an amount of 0.1% by weight or more from the viewpoint of hot workability, but if it exceeds 1.0% by weight, magnetism deteriorates, so 0.
.. From 1% by weight to 1.0% by weight.

さらに、本発明鋼は、とくに不純物として含む25pp
mをいずれも満足することが、低鉄損の実現には必要で
あり、かつ、最終製品板が有するその平均結晶粒径D(
μm)が(Si + AJ)%との関係で、 100+3.5X(Si%+A1%〕2≦石≦170+
5 、ox(Si%十A1%〕2なる大きさに調整され
ていることが要求され、こうした成分組成および結晶粒
径を有するものにすることによって極めて低い鉄損値を
示す無方向性珪素鋼板とすることができるのである。こ
のような平均結晶粒径のものにすることが、上記の極低
S、O,N成分組成と相乗的に作用することと相俟って
、所期した効果が得られる。第4図は、正に従来の無方
向性珪素鋼板(blの平均結晶粒径(124μm)と本
発明鋼(a)平均結晶粒径(208μm)との比較を示
す。
Furthermore, the steel of the present invention particularly contains 25pp as an impurity.
It is necessary to satisfy both m in order to realize low iron loss, and the average grain size D (
μm) is related to (Si + AJ)%, 100 + 3.5X (Si% + A1%) 2≦stone≦170+
5. A non-oriented silicon steel sheet that is required to be adjusted to a size of 5, ox (Si% + A1%)2, and exhibits an extremely low iron loss value by having such a composition and crystal grain size. The use of such an average grain size works synergistically with the ultra-low S, O, and N component compositions mentioned above to achieve the desired effect. FIG. 4 shows a comparison between the average grain size (124 μm) of a conventional non-oriented silicon steel sheet (bl) and the average grain size (208 μm) of the steel (a) of the present invention.

次に、本発明鋼の特性についての試験結果を、第1表に
もとづいて説明する。
Next, the test results regarding the characteristics of the steel of the present invention will be explained based on Table 1.

転炉で吹錬した後、脱ガス処理を施し、次いでSl :
 3.2%、i : 0.60%、Mn : 0.20
%を目標にし、て、合金成分を添加し調整した溶鋼を、
連続鋳造によりスラブとした。この際、脱酸処理、脱硫
処理を、Ca等を用いる脱硫フラックス、またはREM
 (希土類元素:oeが約50%)を上記脱硫フラック
スと併用する脱硫剤で脱硫を行い、しかも−’eの脱酸
・脱硫の条件を変えることにより、Sや0の量を制御し
、また鋳込み時の大気による酸化や窒化の程度をlrシ
ールの程度を変えることにより、0やNの量を制御した
。この結果第1表に示される成分を有するスラブを得た
。これらのスラブは1200 ”Oで加熱した後熱間圧
延で2.0繻の板厚のコイルとし、酸洗後に2分割し、
一方は950℃x3分の連続焼鈍後、0.50朋の板厚
に冷間圧延し、連続仕上げ焼鈍を施す1回冷延法で製品
板を得て磁気測定を行った。他の一方は、冷間圧延によ
り0.70門の板厚とし、950゛C×3分の中間連続
焼鈍後、さらに冷間圧延により0.35111111の
板厚にして、連続仕上げ焼鈍を施す2回冷延法によって
製品板としこれ全磁気測定を行った。なお、上記の製造
工程においては、連続仕上げ焼鈍を施す前の段階で平均
結晶粒径(D)が本発明鋼で目指す所定の範囲内に収ま
るような焼鈍条件の管理すなわち温度や時間を調整する
ことが重要である。以上の製造工程金経て得られた各試
験板の磁気特性測定結果を第1表に示した。また、この
第1表には、板厚断面において測定した平均結晶粒径を
併記する。同時に第4図にこれらの仕上げ焼−後の鋼板
の板厚断面ミクロ写真の例を示した。
After blowing in a converter, degassing treatment is performed, and then Sl:
3.2%, i: 0.60%, Mn: 0.20
%, and the molten steel that has been adjusted by adding alloying ingredients,
A slab was made by continuous casting. At this time, deoxidation treatment and desulfurization treatment are performed using desulfurization flux using Ca etc. or REM.
(Rare earth elements: about 50% oe) are desulfurized using a desulfurizing agent used in combination with the above desulfurizing flux, and by changing the deoxidizing and desulfurizing conditions of -'e, the amount of S and 0 can be controlled. The amount of 0 and N was controlled by changing the degree of oxidation and nitridation caused by the atmosphere during casting by changing the degree of lr sealing. As a result, a slab having the components shown in Table 1 was obtained. These slabs were heated at 1200" O, then hot rolled into coils with a thickness of 2.0", and after pickling, they were divided into two parts.
One of the sheets was continuously annealed at 950° C. for 3 minutes, cold rolled to a thickness of 0.50 mm, and subjected to continuous finish annealing to obtain a product sheet using a single cold rolling method, and magnetic measurements were performed on the product sheet. The other side is cold rolled to a thickness of 0.70mm, and after intermediate continuous annealing at 950°C for 3 minutes, the thickness is further cold rolled to a thickness of 0.35111111mm, and continuous finish annealing is performed. A product plate was prepared by the double cold rolling method, and total magnetic measurements were performed on this product. In addition, in the above manufacturing process, the annealing conditions are controlled, that is, the temperature and time are adjusted so that the average grain size (D) falls within the predetermined range aimed at by the steel of the present invention at a stage before continuous finish annealing. This is very important. Table 1 shows the results of measuring the magnetic properties of each test plate obtained through the above manufacturing process. Table 1 also lists the average crystal grain size measured in the cross section of the plate. At the same time, FIG. 4 shows examples of microphotographs of plate thickness cross sections of these steel plates after finish baking.

第1表において、符号1.nは成分組成を本発明の特許
請求範囲内にしたものについて、平均結晶粒径を本発明
範囲内の15θ〜250μmとしたものとその範囲を外
れる比較例と全対比したが、本発明鋼の場合0.851
1の鋼板でW1o15o≦0.85、”15150≦2
.00と極めて良好な鉄損を示した。また、符号1 、
 Iv、 Vについては、それぞれS、O。
In Table 1, the code 1. n was completely compared with a steel whose component composition was within the claimed range of the present invention, a steel whose average grain size was 15θ to 250 μm within the range of the present invention, and a comparative example outside that range. case 0.851
1 steel plate W1o15o≦0.85, “15150≦2
.. 00, which showed an extremely good iron loss. Also, code 1,
For Iv and V, S and O, respectively.

Nが本発明で規定する範囲を外して高くする一方、適正
な平均結晶粒径にした例の従来範囲内比較鋼の例である
が、鉄損も、0.35朋の鋼板でwo。15OL:、0
.95、wl 515 o#2 、25と、従来の値に
とどするものであった。
This is an example of a comparative steel within the conventional range in which N was increased outside the range prescribed by the present invention, but the average grain size was set to an appropriate average grain size, and the iron loss was also WO with a steel plate of 0.35 mm. 15OL:, 0
.. 95, wl 515 o#2, 25, which was the original value.

以上説明したように本発明によれば、S、0゜N’5極
低下し−た組成鋼について併せて最適平均結晶粒径全粗
粒側の所定の大きさに規制したことにより、従来程耽を
著しく飛躍する低鉄損の無方向性珪素鋼板金得ることが
できる。
As explained above, according to the present invention, by regulating the optimum average grain size to a predetermined size on the overall coarse grain side for steel with a composition that has decreased by 5 poles in S and 0°N', It is possible to obtain a non-oriented silicon steel sheet metal with significantly lower iron loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、板N−o、a5myrtv Si : a、
2 %、Mn:0.2%、Al: o、e%金含有る無
方向性珪素鋼板について、S 、0 、N含有量と鉄損
の関係を示したグラフである。 第2図は板厚o、a5mtsノsi : 3.2%、J
on : 0.2%、Al : 0.6%含有する無方
向性珪素鋼板について、平均結晶粒径と鉄損の関係全示
したグラフである。 第3図は、最良の鉄損値を得るための最適平均結晶粒径
と(S、i−+A71)%との関係を示すグラフである
。 第4図は、本発明無方向性珪素鋼板(a)と比較鋼□(
b)とについての結晶粒の大きさを比較して示す金属組
織の顕微鏡写真である。 特許出願人  川崎製鉄株式会社 第1図 0   10   20  30  40S、0.N訃
fil(pp籾 第2図 0杖釆の、材料(d) ・ 、本#:tJRの末I↓(b) 0 50 100 150 200 250乎灼貼晶ネ
立怪(ttqn) 第8図 0ネ#明の材料 Si +AI (%) 第4図
FIG. 1 shows plate N-o, a5myrtv Si: a,
2%, Mn: 0.2%, Al: o, e% It is a graph showing the relationship between S , 0 , N content and iron loss for a non-oriented silicon steel sheet containing gold. Figure 2 shows plate thickness o, a5mts no si: 3.2%, J
It is a graph showing the entire relationship between average grain size and iron loss for a non-oriented silicon steel sheet containing 0.2% on: 0.6% Al. FIG. 3 is a graph showing the relationship between the optimum average grain size and (S, i-+A71)% for obtaining the best iron loss value. Figure 4 shows the non-oriented silicon steel sheet (a) of the present invention and the comparative steel (
It is a micrograph of the metallographic structure showing a comparison of the crystal grain size of (b) and (b). Patent applicant Kawasaki Steel Corporation Figure 1 0 10 20 30 40S, 0. Nfil (pp paddy Figure 2 0 Cane pot material (d) ・ , Book #: tJR's end I ↓ (b) 0 50 100 150 200 250 Burnt crystals attached (ttqn) Figure 8 0ne #light material Si +AI (%) Figure 4

Claims (1)

【特許請求の範囲】 L 重量%で、0 : 0.005%以下、Si : 
2.5〜4.0%、Al: 0.25〜1.0%、Mn
 : 0.1〜1.0%を含み、残部が不可避不純物と
Feよりなるものにおいて、不純物としてのO9Nおよ
びSの含有i’i、S≦15ppm、O≦20 ppm
、 N< 25 ppmに抑えることにあわせ、上記S
1およびAIN含有量の関連で示される平均結晶粒径り
が、 l oo+8 、5x[Si%+−A1%]2≦D≦1
70+5 、 OX (Si翳AJ%〕2の範囲内の値
を示すものよりなる鉄損の少ない無方向性珪素鋼板。
[Claims] L in weight%, 0: 0.005% or less, Si:
2.5-4.0%, Al: 0.25-1.0%, Mn
: Contains 0.1 to 1.0% with the remainder consisting of unavoidable impurities and Fe, the content of O9N and S as impurities i'i, S≦15ppm, O≦20ppm
, In addition to suppressing N < 25 ppm, the above S
The average grain size shown in relation to 1 and AIN content is l oo+8 , 5x[Si%+-A1%]2≦D≦1
70+5, OX (Si-AJ%) A non-oriented silicon steel plate with low iron loss, which is made of a material having a value within the range of 2.
JP57184167A 1982-10-20 1982-10-20 Nondirectional silicon steel plate with small iron loss Granted JPS5974258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57184167A JPS5974258A (en) 1982-10-20 1982-10-20 Nondirectional silicon steel plate with small iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184167A JPS5974258A (en) 1982-10-20 1982-10-20 Nondirectional silicon steel plate with small iron loss

Publications (2)

Publication Number Publication Date
JPS5974258A true JPS5974258A (en) 1984-04-26
JPH0250190B2 JPH0250190B2 (en) 1990-11-01

Family

ID=16148532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184167A Granted JPS5974258A (en) 1982-10-20 1982-10-20 Nondirectional silicon steel plate with small iron loss

Country Status (1)

Country Link
JP (1) JPS5974258A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287043A (en) * 1986-06-04 1987-12-12 Nippon Kokan Kk <Nkk> High-silicon steel sheet having excellent magnetic characteristic
JPS644453A (en) * 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having excellent rusting resistance
EP0655509A1 (en) * 1993-09-29 1995-05-31 Kawasaki Steel Corporation Non-oriented silicon steel sheet and method
EP0866144A1 (en) * 1997-03-18 1998-09-23 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668767B2 (en) 2013-02-22 2015-02-12 Jfeスチール株式会社 Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563625A (en) * 1979-06-23 1981-01-14 Noboru Tsuya Thin sheet of high silicon steel nondirectional in (100) plane and very low in coercive force and its manufacture
JPS56130424A (en) * 1980-03-18 1981-10-13 Kawasaki Steel Corp Production of nondirectional silicon steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563625A (en) * 1979-06-23 1981-01-14 Noboru Tsuya Thin sheet of high silicon steel nondirectional in (100) plane and very low in coercive force and its manufacture
JPS56130424A (en) * 1980-03-18 1981-10-13 Kawasaki Steel Corp Production of nondirectional silicon steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287043A (en) * 1986-06-04 1987-12-12 Nippon Kokan Kk <Nkk> High-silicon steel sheet having excellent magnetic characteristic
JPS644453A (en) * 1987-06-25 1989-01-09 Sumitomo Metal Ind Isotropic electromagnetic steel plate having excellent rusting resistance
EP0655509A1 (en) * 1993-09-29 1995-05-31 Kawasaki Steel Corporation Non-oriented silicon steel sheet and method
EP0866144A1 (en) * 1997-03-18 1998-09-23 Nkk Corporation Non-oriented electromagnetic steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0250190B2 (en) 1990-11-01

Similar Documents

Publication Publication Date Title
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
EP3733880B1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP5573147B2 (en) Method for producing non-oriented electrical steel sheet
JP4660474B2 (en) Non-oriented electrical steel sheet with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
KR20230125156A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2910508B2 (en) Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics
JP2541383B2 (en) High silicon steel sheet with excellent soft magnetic properties
JPS5974258A (en) Nondirectional silicon steel plate with small iron loss
JP4240736B2 (en) Non-oriented electrical steel sheet with low iron loss and high magnetic flux density and method for producing the same
JP3458683B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
KR102134311B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP6056675B2 (en) Method for producing grain-oriented electrical steel sheet
JPS5974257A (en) Nondirectional silicon steel plate with small iron loss
RU2806222C1 (en) Economical sheet of non-textured electrical steel with very low aluminum content and method of its manufacture
JPH01119644A (en) Directional electromagnetic steel plate and its manufacture
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production
JPH01212721A (en) Manufacture of grain oriented electrical sheet
JPS5974223A (en) Production of non-directional silicon steel sheet having excellent magnetic characteristic
KR100501000B1 (en) Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method
JP2003027195A (en) Nonoriented silicon steel sheet having excellent blanking workability
KR0146797B1 (en) Non-oriented electric sheet
JPH04202644A (en) Silicon steel sheet and its production
JP2001140046A (en) Nonoriented silicon steel sheet excellent in high magnetic field property, and its manufacturing method
JPH10237606A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing