JPS5973497A - Growth of compound semiconductor crystal - Google Patents

Growth of compound semiconductor crystal

Info

Publication number
JPS5973497A
JPS5973497A JP18111982A JP18111982A JPS5973497A JP S5973497 A JPS5973497 A JP S5973497A JP 18111982 A JP18111982 A JP 18111982A JP 18111982 A JP18111982 A JP 18111982A JP S5973497 A JPS5973497 A JP S5973497A
Authority
JP
Japan
Prior art keywords
pressure
gaas
growth
pulling
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18111982A
Other languages
Japanese (ja)
Inventor
Hisao Watanabe
渡邊 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18111982A priority Critical patent/JPS5973497A/en
Publication of JPS5973497A publication Critical patent/JPS5973497A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To eliminate the bubbles generated at the interface between the molten liquid of a synthetic compound and a sealing liquid, in a short time, by synthesizing the raw material, reducing the applied pressure of the high-pressure growth furnace instantaneously to the equilibrium dissociation pressure of the synthesized compound or thereabout, and then pressurizing the furnace to the pressure of the pulling of the crystal. CONSTITUTION:For example, in the synthesis and pulling growth of GaAs, the crucible 3 is heated with the heater 2, the furnace 1 is pressurized above the vapor pressure of As at the melting point of GaAs, and the content is heated to the melting point of GaAs to effect the synthesis of GaAs from Ga and As used as the raw materials. Thereafter, the pressure in the high-pressure growth furnace 1 is reduced to about 5atm to generate a number of bubbles at the interface between the molten liquid and the molten B2O3 6 used as a sealing layer. Thereafter, the pressure is further decreased instantaneously to about 0.9atm corresponding to the equilibrium dissociation pressure of GaAs. The decomposition of the molten GaAs takes place, and the generated As vapor pushes up the bubbles over the sealing liquid. When the bubbles are eliminated, the furnace 1 is again pressurized to about 5atm, the seed crystal 7 is brought into contact with the molten GaAs, and the GaAs single crystal is pulled up and grown.

Description

【発明の詳細な説明】 本発明は化合物半導体結晶の成長方法、特に液体制止引
上法會用いて直接合成にて化合物半導体結晶を合成引上
成長する成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing a compound semiconductor crystal, and more particularly to a method for synthetically pulling and growing a compound semiconductor crystal by direct synthesis using a liquid arrest pulling method.

化合物半導体結晶を成長させるには、従来水平ブリッヂ
マン法や、水平ブリッヂマン法を用いて合成した多結晶
を用いて液体封止引上法により単結晶化を行う方法がと
られている。
Conventional methods for growing compound semiconductor crystals include the horizontal Bridgeman method, or a method in which polycrystals synthesized using the horizontal Bridgeman method are turned into single crystals by a liquid-sealed pulling method.

しかしながら、水平ブリッヂマン法で結晶全成長した場
合は使用する石英封管9石英ボート等からの成長結晶中
にStの混入汚染が避けられず、高純度な結晶全成長さ
せるには問題がある。又長尺、大口径の結晶を成長させ
るにも封管等により制約があった。
However, when the entire crystal is grown by the horizontal Bridgeman method, contamination with St is unavoidable in the grown crystal from the quartz sealed tube 9 quartz boat used, and there is a problem in achieving high purity crystal growth. Furthermore, the growth of long, large-diameter crystals is also limited by the use of sealed tubes.

この様なことから最近では液体制止引上法により直接原
料全合成し5合成後単結晶化r行う方法がとられる様に
なりて来た。液体制止引上法による直接合成、単結晶化
は図に示すごとく、高圧成長炉体1内に筒周波加熱用コ
イル又は抵抗加熱用ヒータ2によって加熱されるグラノ
ーイトるつは3があり、該るつぼ3に内接して設けられ
た石英又はP B N (Pyrolytio Bor
on N1tride )製るつぼ4がある。5は合成
引上成長する原料、6は円形状に固化した封止用酸化硼
素(B203)%  7は単結晶引上用の種である。
For this reason, recently, a method has been adopted in which raw materials are completely synthesized directly by a liquid-stopping pulling method and single crystallization is performed after the synthesis. As shown in the figure, direct synthesis and single crystallization by the liquid arrest pulling method include a granoid crucible 3 heated by a cylindrical frequency heating coil or resistance heating heater 2 in a high-pressure growth furnace body 1; Quartz or P B N (Pyrolytio Bor
There is a crucible 4 made by N1tride on N1tride. 5 is a raw material for synthetic pulling growth, 6 is boron oxide (B203)% for sealing solidified into a circular shape, and 7 is a seed for single crystal pulling.

GaA3の合成、引上成長を例にして説明すれば、合成
原料としてガリニーム(Ga)と砒素(AS)を内?不
活性ガスで2〜3気圧程度に加圧する。後に加熱用ヒー
タ2でグラハイドるつは3奮徐々に加熱し、PBN製る
つぽ4の温度が酸化硼素の軟化点の450℃以上に昇温
すると、合成原料−ヒに置れた酸化硼素6は軟化熔融し
合成原料を覆う。
To explain the synthesis and pull growth of GaA3 as an example, we use galineem (Ga) and arsenic (AS) as synthesis raw materials. Pressurize to about 2 to 3 atmospheres with inert gas. Afterwards, the graphide melt is gradually heated by the heating heater 2, and when the temperature of the PBN crucible 4 is raised to 450°C or higher, which is the softening point of boron oxide, the boron oxide placed in the synthetic raw material - 6 softens and melts to cover the synthetic raw material.

酸化硼素6が完全に熔融した後、高圧成長炉1内の加圧
圧カフQaAsの融点1238℃で砒素の持つ蒸気圧よ
り高い圧力の70気圧程度まで上げる。
After the boron oxide 6 is completely melted, the pressure in the high-pressure growth furnace 1 is increased to about 70 atmospheres, which is higher than the vapor pressure of arsenic at the melting point of QaAs, which has a melting point of 1238°C.

加圧後温度f QaAsの融点まで上昇させることによ
、pPBN製るつぼ4中の原料はGaA3融液として合
成される。合成後は高圧成長炉1内の圧力奮GaAsの
平衡解離圧の0.9気圧よυ数気圧高い5気圧程度まで
減圧後、 GILAll融液の温度?調節し、種結晶を
液面に接触させ、引上速度、種結晶の回転数等?調節し
ながら結晶の引上成長2行う。
By raising the temperature f after pressurization to the melting point of QaAs, the raw material in the pPBN crucible 4 is synthesized as a GaA3 melt. After synthesis, the pressure in the high-pressure growth reactor 1 is reduced to about 5 atm, which is several atm higher than the equilibrium dissociation pressure of GaAs, which is 0.9 atm, and the temperature of the GILAll melt is reduced. Adjust, bring the seed crystal into contact with the liquid surface, pull up speed, rotation speed of the seed crystal, etc.? Perform crystal pulling growth 2 while controlling.

この様な原料合成、結晶引上成長の工程中で、原料合成
終了後、70気圧程度に加圧された高圧成長炉1内圧力
t−5気圧程度まで減圧すると、GILA8融液と酸化
硼素封止液界面に多数の気泡が発生する。この気泡はG
ILA!l融液面への種結晶の接触を困難にするばかり
か、引上成長中に成長結晶に付着しズヌ晶を発生させる
原因ともなる。従ってこれらの気泡k GaAl融液面
上より完全に除去する必要があるが、従来は消失させる
のにただ時間的に放置する方法?採っていたため、気泡
の消失までに長い時間r必要とするという欠点があった
During the process of raw material synthesis and crystal pulling growth, when the pressure inside the high-pressure growth reactor 1, which had been pressurized to about 70 atm, is reduced to about t-5 atm after the completion of the raw material synthesis, the GILA8 melt and the boron oxide seal are separated. Many bubbles are generated at the liquid stop interface. This bubble is G
ILA! Not only does it make it difficult for the seed crystal to come into contact with the melt surface, but it also adheres to the growing crystal during pulling growth and causes the generation of crystals. Therefore, it is necessary to completely remove these bubbles from the surface of the GaAl melt, but the conventional method was to simply leave them for a while to make them disappear. However, the disadvantage was that it took a long time for the bubbles to disappear.

本発明は前記従来の欠点?除去し、合成後GaAs融液
と封止液界面に発生する気泡をきわめて短時間で除去す
ること?可能としたものである。
Is the present invention a drawback of the above-mentioned conventional technology? Is it possible to remove the bubbles generated at the interface between the GaAs melt and the sealing liquid after synthesis in an extremely short time? This made it possible.

本発明によると、液体封止引上法?用い直接合成にて化
合物半導体結晶を合成、引上成長する化合物半導体結晶
の成長方法において、原料合成後高圧成長炉内の加圧圧
力を合成化合物の持つ平衡解離圧程度に瞬間減圧して合
成原料融液よシ分解金起し融液と封止液との界面に発生
滞留する気泡を封止液の外に短時間に除去させようとす
るものである。
According to the present invention, the liquid-sealed pulling method? In a method for growing compound semiconductor crystals in which compound semiconductor crystals are synthesized by direct synthesis and grown by pulling, the pressure in the high-pressure growth furnace is instantly reduced to about the equilibrium dissociation pressure of the synthesized compound after synthesis of the raw materials. The purpose of this method is to remove bubbles generated and retained at the interface between the melt and the sealing liquid out of the sealing liquid in a short period of time.

以下本発明?実施例により説明する。Is this invention the following? This will be explained using an example.

図に示す様に構成された高圧成長炉1を用いて液体封止
引上法にてQaAs原料?直接合成し引上成長2行う時
、原料合成後高圧成長炉1内加圧圧力會70気圧より結
晶引上成長時の圧力約5気圧程度まで減圧させると、G
aA3融液と封止液の界面に多数の気泡が発生する。こ
の気泡tiGaAs融液に種結晶?接触させる時に接触
状態を目視によ1)MA察すること等全困難とするばか
りか、成長結晶に付着スヌ晶発生の原因となるため、 
caAs融液面上より気泡が完全に消失するまで1時間
程度の時間?かけ気泡が完全に消失後、種結晶7を接触
させて結晶の引上成長2行っていた。
Using a high-pressure growth furnace 1 configured as shown in the figure, the QaAs raw material is grown using a liquid-sealed pulling method. When performing direct synthesis and pulling growth 2, if the pressure inside the high-pressure growth furnace 1 is reduced from 70 atm to about 5 atm during crystal pulling growth after raw material synthesis, G
A large number of bubbles are generated at the interface between the aA3 melt and the sealing liquid. A seed crystal in this bubble tiGaAs melt? When making contact, it is not only difficult to visually check the contact state (1) to detect MA, but also to cause the generation of Snu crystals that adhere to the growing crystals.
It takes about 1 hour for the bubbles to completely disappear from the surface of the caAs melt. After the bubbles completely disappeared, the seed crystal 7 was brought into contact with the crystal to perform pulling growth 2 of the crystal.

これに対し、本発明の方法ではQaAgの合成後高圧成
長炉内の加圧圧力金70気圧より5気圧程度まで減圧後
、更にGaA3の平衡解離圧の0.9気圧程度に高圧成
長炉1内金瞬間減圧してGaA8融液より砒素?分解さ
せ、分解砒素蒸気によ5 GtLAB融液と封止液界面
に発生滞留した気泡を封止液上に押し上げ除去する。そ
のおと再び高圧成長炉内を5気圧まで上げると前記滞留
気泡はすでに除去されているので容易に種結晶vil″
GaA3融液に接触させることができ双晶発生などのト
ラブルもなく引上成長全行うことができた。
On the other hand, in the method of the present invention, after the synthesis of QaAg, the pressure in the high-pressure growth reactor 1 is reduced from 70 atm to about 5 atm, and then the pressure in the high-pressure growth reactor 1 is reduced to about 0.9 atm, which is the equilibrium dissociation pressure of GaA3. Arsenic from GaA8 melt by instantaneous decompression of gold? The decomposed arsenic vapor causes bubbles generated and retained at the interface between the 5 GtLAB melt and the sealing liquid to be pushed up onto the sealing liquid and removed. After that, when the inside of the high-pressure growth furnace is raised to 5 atmospheres again, the remaining air bubbles have already been removed, so the seed crystal vil'' can be easily formed.
It could be brought into contact with the GaA3 melt, and the entire pulling growth could be carried out without any troubles such as generation of twins.

以上の様に液体封止引上法を用いて化合物半導体結晶?
直接合成し引上成長する際に本発明の方法?用いること
により、合成後GaAs融液と封止液界面に発生する気
泡全非常に短時間で除去する事が可能となり、結晶の引
上成長までの時間が大巾に短縮され、また再現性良く双
晶金全く含まない単結晶?引上げられるという効果七有
する。
Compound semiconductor crystal using the liquid-sealed pulling method as described above?
Is the method of the present invention used for direct synthesis and pull growth? By using this method, it is possible to remove all the bubbles generated at the interface between the GaAs melt and the sealing liquid after synthesis in a very short time, and the time required for crystal pulling growth is greatly shortened. A single crystal that does not contain any twinned gold? It has the effect of being lifted up.

【図面の簡単な説明】[Brief explanation of drawings]

図は液体封止引上法による直接合成、引上成長の原理全
説明するための図である。図において、1・・・・・・
高圧成長炉体、2・・・・・・抵抗加熱用ヒータ、3・
・・・・・グラハイドるつぼ、4・・・・・・石英又は
PBNるつぼ、5・・・・・・合成用原料、6・・・・
・・封止用酸化硼素、7・・・・・・結晶引上成長用槽
The figure is a diagram for explaining the entire principle of direct synthesis and pulling growth using the liquid-sealed pulling method. In the figure, 1...
High-pressure growth furnace body, 2...Resistance heating heater, 3.
...Grahide crucible, 4 ... Quartz or PBN crucible, 5 ... Raw material for synthesis, 6 ...
...Boron oxide for sealing, 7...Crystal pulling growth tank.

Claims (1)

【特許請求の範囲】[Claims] 液体封止引上法?用い直接合成にて化合物半導体結晶全
合成、引上成長する化合物半導体結晶の成長方法におい
て、原料合成後筒圧成長炉内の加圧圧力金合成化合物の
持つ平衡解離圧程度に瞬間減圧し、次いで引上げ成長時
に保持すべき圧力に加圧し、次いで引上成長全行なうこ
と?特徴とする化合物半導体結晶の成長方法。
Liquid sealed pulling method? In the total synthesis of compound semiconductor crystals by direct synthesis and the growth method of compound semiconductor crystals by pulling growth, after synthesis of the raw materials, the pressure is instantly reduced to about the equilibrium dissociation pressure of the pressurized gold synthesis compound in the cylinder pressure growth furnace, and then Is it possible to apply pressure to the pressure that should be maintained during pulling growth, and then perform the entire pulling growth? Characteristic method for growing compound semiconductor crystals.
JP18111982A 1982-10-15 1982-10-15 Growth of compound semiconductor crystal Pending JPS5973497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18111982A JPS5973497A (en) 1982-10-15 1982-10-15 Growth of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18111982A JPS5973497A (en) 1982-10-15 1982-10-15 Growth of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS5973497A true JPS5973497A (en) 1984-04-25

Family

ID=16095178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18111982A Pending JPS5973497A (en) 1982-10-15 1982-10-15 Growth of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS5973497A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021899A (en) * 1983-07-19 1985-02-04 Agency Of Ind Science & Technol Apparatus for preparing compound semiconductor single crystal
JPH0581036U (en) * 1992-03-31 1993-11-02 雪印乳業株式会社 Labeled container
US6651805B2 (en) 2000-06-27 2003-11-25 Hitachi Zosen Corporation High-gradient high-pump-head screw conveyor device
JP2012106870A (en) * 2010-11-15 2012-06-07 Mitsubishi Materials Techno Corp Method of growing crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021899A (en) * 1983-07-19 1985-02-04 Agency Of Ind Science & Technol Apparatus for preparing compound semiconductor single crystal
JPS6251237B2 (en) * 1983-07-19 1987-10-29 Kogyo Gijutsuin
JPH0581036U (en) * 1992-03-31 1993-11-02 雪印乳業株式会社 Labeled container
US6651805B2 (en) 2000-06-27 2003-11-25 Hitachi Zosen Corporation High-gradient high-pump-head screw conveyor device
JP2012106870A (en) * 2010-11-15 2012-06-07 Mitsubishi Materials Techno Corp Method of growing crystal

Similar Documents

Publication Publication Date Title
JPS5973497A (en) Growth of compound semiconductor crystal
JPS6011293A (en) Manufacture of znse single crystal
JP2001180918A (en) Method of directly synthesizing indium phosphide
JPS6296394A (en) Crystal growth for compound semiconductor
JPS6385100A (en) Production of gallium arsenide single crystal containing added silicon
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JPH0222200A (en) Production of semiconductor single crystal of iii-v compound
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JP3200204B2 (en) Method for producing group III-V single crystal
JP3651855B2 (en) Method for producing CdTe crystal
JPH02229790A (en) Apparatus for producing compound semiconductor single crystal
JPS6424097A (en) Production of iii-v compound semiconductor single crystal
JPS63239191A (en) Production of compound semiconductor single crystal
JPS62138393A (en) Growth of compound semiconductor mixed crystal
JPS5973500A (en) Preparation of compound semiconductor
JPH07138016A (en) Production of lithium borate raw material
JPH07138095A (en) Method of growing single crystal of lithium borate
JPH1112078A (en) Production of compound semiconductor single crystal
JPS6487598A (en) Treatment of raw material for compound semiconductor polycrystal
JPS59199600A (en) Method and apparatus for producing single crystal
JPS6011298A (en) Method and device for producing compound single crystal with high dissociation pressure
JPS61215292A (en) Apparatus for producing compound semiconductor single crystal
JPH0459690A (en) Device for lifting single crystal of compound semiconductor having high dissociation pressure
JPS6385099A (en) Production of indium phosphide single crystal