JPS5973393A - Rectifyng device in ship - Google Patents

Rectifyng device in ship

Info

Publication number
JPS5973393A
JPS5973393A JP57182965A JP18296582A JPS5973393A JP S5973393 A JPS5973393 A JP S5973393A JP 57182965 A JP57182965 A JP 57182965A JP 18296582 A JP18296582 A JP 18296582A JP S5973393 A JPS5973393 A JP S5973393A
Authority
JP
Japan
Prior art keywords
propeller
ring
hull
ship
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57182965A
Other languages
Japanese (ja)
Inventor
Hikari Yagi
八木 光
Takeo Nojiri
武生 野尻
Shunji Soejima
副島 俊二
Yasuo Irie
泰雄 入江
Kazuo Yoshida
和生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP57182965A priority Critical patent/JPS5973393A/en
Publication of JPS5973393A publication Critical patent/JPS5973393A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Landscapes

  • Sealing Of Bearings (AREA)

Abstract

PURPOSE:To enhance the propelling efficiency of a ship, by fitting a ring-like structure in a hull in such a way that a space (d) is defined between the rear end edge of the ring-like structure and a propeller, and as well by providing a plurality of water jet ports in the stern bilge section of the hull, front of the ring- like structure. CONSTITUTION:A ring-like structure 1 is attached to a hull 5 in such a way that a space (d) is defined between the rear end edge of the ring-like structure and a propeller 4, and the ring-like structure 1 is fitted in the hull 5, more than 20% of the length L of the upper section of the ring-like structure 1. Further, a plurality of water jet ports 8 are provided in both sides of the stern bilge section 5' of the hull 5, front of the ring-like structure 1. By water streams jetted from these water jet ports 8 to three-dimentional separation vortices, the generation of three-dimentional vortices may be prevented.

Description

【発明の詳細な説明】 本発明は船舶、特に、肥大船における整流装置に関する
ものであり、肥大船の船尾原基に生じる三次元剥%tl
l渦を消滅或いは衰弱させることにより船舶の推進性能
を向上させることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rectifying device for a ship, particularly an enlarged ship, and relates to a three-dimensional delamination %tl occurring in the stern primordium of an enlarged ship.
The objective is to improve the propulsion performance of ships by eliminating or weakening vortices.

一般に、船舶の性能は主機馬力と船速の関係でみるごと
ができる。
In general, the performance of a ship can be seen by the relationship between the main engine horsepower and the ship's speed.

ずなわら、船舶が船速v5で航行する場合に、11[)
体が受りる抵抗をR5とすると、必要となる主機関から
の伝達馬力DHPは(1)式で表すことができる。
Naturally, when a ship sails at a ship speed of v5, 11 [)
Assuming that the resistance experienced by the engine body is R5, the required horsepower transmitted from the main engine DHP can be expressed by equation (1).

DHPoζ R5−V5/  77 −  −  − 
 (+、)ここで、ηはH[進動率であり、(2)式で
表ずことができる。
DHPoζ R5-V5/ 77 - - -
(+,) Here, η is H[advance rate, which can be expressed by equation (2).

η−ηH・η0・η&・・・(2) 面、〜−(1−t) / (1−w)から算出される。η−ηH・η0・η&・・・(2) It is calculated from the surface, ~-(1-t)/(1-w).

前記ηは船殻効率と呼ばれプロペラと船体との干渉に起
因する要素であり、tは推力減少率、Wは伴流係数であ
る。また、ηは船体の影響を受けない状態におけるプロ
ペラのf11独効率であり、ηえは推進器効率比と呼ば
れプロペラが船尾の乱れた流れの中で作動する場合の効
率とプl、1ベラのli独効率η。との比を示す。
The above η is called the hull efficiency and is an element caused by interference between the propeller and the hull, t is the thrust reduction rate, and W is the wake coefficient. In addition, η is the f11 efficiency of the propeller when it is not affected by the ship's hull, and η is called the propulsion efficiency ratio, which is the efficiency when the propeller operates in a turbulent flow at the stern and Pl, 1. Vera's efficiency η. shows the ratio.

したがって、船舶の性能改善の一つとして同−速力に対
して必要馬力を減少させるためには抵抗の減少あるいは
推進効率の量子を計る必要がある。
Therefore, in order to reduce the required horsepower for the same speed as one way to improve the performance of ships, it is necessary to reduce the resistance or improve the propulsion efficiency.

従来、係る観点から船舶の性能改善を目的として、例え
ばダクトプロペラや球状船首が(に案採用されている。
Conventionally, for the purpose of improving the performance of ships from this point of view, for example, ducted propellers and spherical bows have been adopted.

前者はプロペラをダグ1〜内に位置させダクI−内で流
体速度を大きくしてプロペラ作動面に導くようにしたも
のであって、前記推進効率の一つの要素であるη。(プ
Iコペラの弔独効率)の改善を目的としたものである。
In the former case, the propeller is located in the duct 1 to increase the fluid velocity in the duct I to guide it to the propeller operating surface, and η is one of the factors of the propulsion efficiency. The purpose is to improve (the efficiency of condolence in Pl. Copella).

後者は船体抵抗のうち、造波抵抗の減少を計って船舶の
性能を改善しようとするものである。
The latter aims to improve the performance of ships by reducing wave-making resistance, which is part of the hull resistance.

とごろで、船舶の経済性を冊めるために要求される載貨
重量に対して出来るだけ鉛製を肥大させた、所謂肥大船
が数多く建造、運航されているが、近来、燃料価格の高
騰や省エネルギー的見地から新造船や既存船にかかわら
ず肥大船の経済性をより高めるために、その性能を改吾
する気運が高まっている。
Nowadays, many so-called enlarged ships are being built and operated, which are made of lead that is made as large as possible to meet the required dead weight in order to improve the economic efficiency of ships, but in recent years, fuel prices have soared. There is a growing momentum to improve the performance of enlarged ships, whether new ships or existing ships, in order to make them more economical from the viewpoint of energy conservation and energy conservation.

その−′つの手段として前記ダクトプロペラを採用する
試みがあるが肥大船における船尾流場の特性から生しる
キャビチーシコンエロージョンなど、実用上の問題があ
る。
As one means of achieving this, attempts have been made to employ the duct propeller described above, but there are practical problems such as cavity erosion caused by the characteristics of the stern flow field in enlarged ships.

すなわち、係る肥大船の船尾流場は、第1図に示すよう
に、船側を回る平行流人と、ビルジ部分を回る上昇流B
と、縦渦Cとに大別されるが、この広場においては縦渦
Cは三次元剥離渦であり乱れが大きい。この縦渦Cに平
行流人と」二昇流Bとが混合して、その乱れは一層人き
くなる。
In other words, as shown in Figure 1, the stern flow field of such an enlarged ship consists of parallel drifters circulating around the ship's side and upward flow B circulating around the bilge.
In this square, the longitudinal vortex C is a three-dimensional separated vortex and has large turbulence. This vertical vortex C mixes with the parallel flow and the upward flow B, and the turbulence becomes even more intense.

このような、混合による乱れはほぼプロペラ直前方上部
で生じるためにプロペラ上部位置に伴流値の大きい領域
が集中するが、一般的に、その領域は下方に向って順次
減少する仰向にある。
This kind of turbulence due to mixing occurs almost immediately in front of the propeller, so a region with large wake values is concentrated at the top of the propeller, but generally that region is in a supine position that gradually decreases downward. .

」二部のように、肥大船乙こおいては従来の所謂スマー
トな船舶に比して伴流分布が激しく変化し、かつ、ff
I分的には伴流係数の大きな流れが存在する。
As shown in Part 2, the wake distribution of large ships changes dramatically compared to conventional so-called smart ships, and
In terms of I, there is a flow with a large wake coefficient.

換言すれば、プロペラ作動面の」二部における遅い流れ
とプロペラ作動面の下部における速い流れが生じており
、これらの影響乙こよりプロペラ上部の伴流の集中域で
はキャヒテーションが発生ずるとともに、各プロペラ翼
に対する負荷が不均一になっている。
In other words, there is a slow flow in the two parts of the propeller working surface and a fast flow in the lower part of the propeller working surface, and due to these effects, cavitation occurs in the wake concentration area at the top of the propeller. The load on each propeller blade is uneven.

したがって、縦渦Cおよび上昇流I3の剥!1illな
どにより船体抵抗が増大し、加えてプロペラへの不均一
な流れが船体振動、騒音の増加の原因になっている。
Therefore, the separation of the longitudinal vortex C and the upward flow I3! 1ill increases the hull resistance, and in addition, the uneven flow to the propeller causes an increase in hull vibration and noise.

そして、このような広場においては通常のダクトプロペ
ラブエコペラとダクトとの相互交渉がプロペラ周方向に
ほぼ一定であり、流れの均一化ができない。
In such an open space, the interaction between the normal duct propeller propeller and the duct is almost constant in the circumferential direction of the propeller, making it impossible to equalize the flow.

したがって、通常のダクトプロペラは前述したような船
体振動、騒音を減少させることが出来ないばかすななく
、ダクト内面にキャビチーシコンエロージョンが発生し
、長期使用に耐えられないでいる。加えて構造的に高強
度、高精度が要求され建造費が高くなるなどの問題があ
る。
Therefore, ordinary duct propellers are unable to reduce the above-mentioned ship body vibration and noise, and cavity erosion occurs on the inner surface of the duct, making it impossible to withstand long-term use. In addition, there are problems such as high structural strength and high precision required, which increases construction costs.

さらに、ダクトプロペラを既存船に取付けようとする場
合にはプロペラと主機回転数を適切な関係に保つために
新らたなプロペラ、具体的にはピッチの大きなプロペラ
に取り替える必要えある。
Furthermore, if a ducted propeller is to be installed on an existing ship, it may be necessary to replace it with a new propeller, specifically a propeller with a larger pitch, in order to maintain an appropriate relationship between the propeller and the main engine rotational speed.

これば通常のダクトプロペラではプロペラ位置の流速が
過大になり、既存プlコベラのままでは、その回転数は
同一主機馬力の状態で最低でも約1割は上昇し、最大主
機馬力が発揮できなくなることとなり、結果的には、そ
の流速に対応することができない。
If this happens, with a normal duct propeller, the flow velocity at the propeller position will become excessive, and with the existing duct propeller, the rotation speed will increase by at least about 10% with the same main engine horsepower, making it impossible to achieve the maximum main engine horsepower. As a result, it is not possible to cope with the flow velocity.

したがって、プロペラを交換するが、あるいはエンジン
の回転数を」二げる必要があるが、実際にはかかる改造
工事は困難で、多大な費用を要することになる。このた
め、通常のダクトプロペラを既存のプロペラを利用して
採用するごとは最適性能を発揮させることが困y1fで
あり、結局、運航に支障を来すことになる。
Therefore, it is necessary to replace the propeller or increase the engine speed, but in reality such modification work is difficult and requires a large amount of cost. For this reason, whenever a normal duct propeller is used as an existing propeller, it is difficult to achieve optimum performance, which ultimately causes problems in flight operations.

係ることから、通常のダクトプロペラのダクトを前方へ
移゛動させ、該ダクトの後端縁をプロペラ近傍に位置さ
せることが考えられるが、かかる構造にするとダクトの
用力により船体を後方に引く作用が強くなり、推力減少
率tが増大するため船殻効率〜が低下し、その結果fl
u進9JJ率ηが劣化することとなるため、意図したり
j率の改善が出来ないこととなる。
Therefore, it is conceivable to move the duct of a normal ducted propeller forward and position the rear end edge of the duct near the propeller, but with such a structure, the utility force of the duct would have the effect of pulling the ship rearward. becomes stronger, the thrust reduction rate t increases, the hull efficiency ~ decreases, and as a result fl
Since the u-adic 9JJ rate η will deteriorate, it will not be possible to improve the j-rate as intended.

したかって、通常のダクトプロペラの問題を解決し7つ
つ推進すJ率ηを改善するためにはダクトの前fl1M
 12をできるだけ船体から離すとともに、その後i’
/I+A縁をプロペラ近傍に位置させる必要がある。
Therefore, in order to solve the problem of ordinary duct propellers and improve the J rate η that propels the duct, it is necessary to
12 as far away from the hull as possible, and then i'
/I+A edge must be located near the propeller.

然し乍ら、船体とプロペラの距離は制約されているため
に必然的にダクトの長さが短いものとなる。その結果、
ダクト自体が発生する推力は小さく、また通常のダクト
プロペラに比してプロペラ効率も低下することとなり、
実用に供することができない。
However, since the distance between the hull and the propeller is limited, the length of the duct is inevitably short. the result,
The thrust generated by the duct itself is small, and the propeller efficiency is also lower than that of a normal duct propeller.
It cannot be put to practical use.

そこで、本発明者等は上記の如き欠点がなく、かつ、推
進効率の良い船舶について鋭意検討し、本発明を完成し
た。
Therefore, the inventors of the present invention have conducted intensive studies on a ship that does not have the above-mentioned drawbacks and has good propulsion efficiency, and have completed the present invention.

すなわち、本発明はリング状構造物を、その後端縁とプ
ロペラとの間に間隔を有する如く船体に嵌着し、かつ、
前記リング状構造物の前方に水流噴出口を設けたごとを
特徴とする。
That is, in the present invention, the ring-shaped structure is fitted to the hull so that there is a gap between the rear end edge and the propeller, and
The present invention is characterized in that a water jet outlet is provided in front of the ring-shaped structure.

以下、図面に基いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第3図は本発明の整流装置を備えた肥大船の船尾部の側
面図、第4図は第3図のrV−IV断面図、第5図は第
3図のV −V lji面図であり、リング状構造物1
は、そのl&端縁とプlコペラ4との間に間隔dを有し
、かつ、リング状構造物1の上部の長さしの少なくとも
20%以上が船体5と嵌合するように船体5に取りイ」
けられている。
Fig. 3 is a side view of the stern of an enlarged ship equipped with the rectifier of the present invention, Fig. 4 is a sectional view along rV-IV in Fig. 3, and Fig. 5 is a sectional view along V-V lji in Fig. 3. Yes, ring-shaped structure 1
has a distance d between its l&edge and the plastic copella 4, and the hull 5 is arranged such that at least 20% of the length of the upper part of the ring-shaped structure 1 fits into the hull 5. Nitorii'
I'm being kicked.

また、リング状構造物1は、その一部が支持部材6を介
して船体5に固定されている。さらに、前記プロペラ4
の後方に舵7が配設されている。
Further, a part of the ring-shaped structure 1 is fixed to the hull 5 via a support member 6. Furthermore, the propeller 4
A rudder 7 is arranged behind the.

前記リング状構造物1ば横方向から見゛ζ上部の長さし
が下部の長さkより大きく形成されている。すなわち、
リング状構造物1の上部長さI、はプロペラ4の直径り
の0.2〜1.0の範囲内から選ばれ、上部から下部に
向って、その長さが徐々に減少するように構成されてい
る。また、前記リング状構造物1の断面形状は、その内
側面2が緩やか凸状をなし、かつ外側面3が直線状をな
す、所謂翼形断面に構成されている。
When viewed from the lateral direction, the ring-shaped structure 1 has an upper length larger than a lower length k. That is,
The upper length I of the ring-shaped structure 1 is selected from within the range of 0.2 to 1.0 of the diameter of the propeller 4, and is configured such that the length gradually decreases from the top to the bottom. has been done. Further, the ring-shaped structure 1 has a so-called airfoil-shaped cross-sectional shape, in which the inner surface 2 is gently convex and the outer surface 3 is linear.

上記間隔dは船尾流湯における船尾渦の形4欠。The above distance d corresponds to the shape of the stern vortex in the stern flowing water.

位置、あるいはプロペラの荷重度なとGこより決定され
る。
It is determined by the position, propeller load, and G.

また、上記リング状構造物1の横断面形状番よ円形であ
るが、この形状に限定されるものでGよなく、船尾流湯
における伴流分布や船体境界層の形状、厚さを考慮して
髄内若しくは多角形状など適宜の形状を選択できる。
In addition, although the cross-sectional shape of the ring-shaped structure 1 is circular, it is not limited to this shape, and the wake distribution in the stern stream and the shape and thickness of the hull boundary layer are taken into consideration. An appropriate shape such as intramedullary or polygonal shape can be selected.

前記リング状構造物1の前方に位置する船体5のfll
)尾ヒルジ部5′の両舷に複数(図示の場合は4基)の
水流噴出口8を設けており、この水流噴出口8から三次
元剥離渦に向けて水流を噴出することにより三次元剥離
渦の発生を防止するように構成している。
full of the hull 5 located in front of the ring-shaped structure 1
) A plurality (four in the illustrated case) of water jets 8 are provided on both sides of the tail hilge part 5', and water jets are jetted from the water jets 8 toward the three-dimensional separation vortex, thereby creating a three-dimensional It is configured to prevent the generation of separation vortices.

上記肥大船が走航すると、船側を回る平行流へ゛と上昇
流B′発生するが、前記平行流A′は、第2図に示すよ
うに、船体5の船側に沿ってほぼ平行に流れ、その一部
は前記リング状構造物1に向かう流れA ″となって流
動する。
When the enlarged ship sails, an upward flow B' is generated in the parallel flow around the ship's side, but the parallel flow A' flows approximately parallel to the ship's side of the hull 5, as shown in FIG. A part of it flows as a flow A'' toward the ring-shaped structure 1.

他方、船尾ビルジ部5′を回る上昇流B′は前記水流賄
出口8から噴出する水流によって三次元剥離渦の発生が
防止され、仮乙、二発仕したとしても非雷に弱い三次元
剥離渦となって前記リング状構造物1に導入される。
On the other hand, the upward flow B' circulating around the stern bilge part 5' is prevented from generating a three-dimensional separation vortex by the water flow ejected from the water flow outlet 8, and even if it is struck by lightning, three-dimensional separation is weak against lightning. It becomes a vortex and is introduced into the ring-shaped structure 1.

前記リング状構造物1内に流入した平行流の一部A ”
と衰弱した三次元剥離渦は前記リング状構造物1によっ
て整流されて均一な流れとなって前記リング状構造物1
の後端縁からプロペラ4の作動面に供給される。
Part A of the parallel flow that has flowed into the ring-shaped structure 1
The weakened three-dimensional separation vortex is rectified by the ring-shaped structure 1 and becomes a uniform flow.
It is supplied to the operating surface of the propeller 4 from the rear end edge of the propeller 4.

しかして、前記プロペラ4はより均一な流れの中で回転
し、その推進効率は一段と向上するようになる。
Therefore, the propeller 4 rotates in a more uniform flow, and its propulsion efficiency is further improved.

上記のように、本発明はリンク状構造物を、その後端縁
とプロペラとの間に間隔を有する如く船体に嵌合し、か
つ、前記リング状構造物の前方に水流噴出口を設け、こ
の水流p、H出[二1から三次元剥離渦に向けて水流を
噴出するようになしたために、船尾ビルジを回る上昇流
Bは水流噴出口から噴出する水流によって三次元剥離渦
に発達することが防止されながら前記リング状構造物に
導入され、該リング状構造物内で整流されるようになる
As described above, the present invention includes a link-like structure that is fitted into a ship's hull such that there is a gap between the rear end edge and the propeller, and a water jet outlet provided in front of the ring-like structure. Water flow P, H [21] Since the water flow is ejected toward the three-dimensional separation vortex, the upward flow B around the stern bilge develops into a three-dimensional separation vortex due to the water flow ejected from the water jet. is introduced into the ring-shaped structure while being prevented, and the flow is rectified within the ring-shaped structure.

したがって、(什進用の大型プロペラは整流されたより
均一な流れの中で回転するために推進効率が一段と向上
するように7よる。
Therefore, (7) the large propulsion propeller rotates in a rectified and more uniform flow, further improving propulsion efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の船舶における船尾流の状態を示す斜視図
、第2図は本発明に係る整流装置を備えた力1+舶にお
4Jる伴流の状態を示す斜視図、第3図は本発明の整流
装置を備えた肥大船の船尾部の側面図、第4図は第3図
のIV−IV断面図、第5図は第3図のV−V断面図で
ある。 1・・・リング状構造物、2・・・内側面、3・・・外
側面、4・・・プロペラ、5・・・船体、6・・・支持
部材、7・・・力計8・・・水流噴出口。 代理人 弁理士 小 川 信 − 弁理士 野 口 賢 照 弁理士斎下和彦
Fig. 1 is a perspective view showing the state of the stern flow in a conventional ship, Fig. 2 is a perspective view showing the state of the wake of 4J in a force 1 + ship equipped with the rectifier according to the present invention, and Fig. 3 FIG. 4 is a side view of the stern of an enlarged ship equipped with the rectifying device of the present invention, FIG. 4 is a sectional view taken along line IV-IV in FIG. 3, and FIG. 5 is a sectional view taken along line V-V in FIG. 3. DESCRIPTION OF SYMBOLS 1... Ring-shaped structure, 2... Inner surface, 3... Outer surface, 4... Propeller, 5... Hull, 6... Support member, 7... Force meter 8.・Water jet outlet. Agent: Patent Attorney Shin Ogawa − Patent Attorney Ken Noguchi Teru Patent Attorney Kazuhiko Saishita

Claims (1)

【特許請求の範囲】[Claims] リング状構造物を、その後端縁とプロペラとの間に間隔
を有する如く船体に嵌着し、かつ、前記リング状構造物
の前方に水流噴出口を設けたことを特徴とする船舶にお
ける整流装置。
A flow straightening device for a ship, characterized in that a ring-shaped structure is fitted onto a ship's hull with a space between the rear end edge and a propeller, and a water jet outlet is provided in front of the ring-shaped structure. .
JP57182965A 1982-10-20 1982-10-20 Rectifyng device in ship Pending JPS5973393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57182965A JPS5973393A (en) 1982-10-20 1982-10-20 Rectifyng device in ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57182965A JPS5973393A (en) 1982-10-20 1982-10-20 Rectifyng device in ship

Publications (1)

Publication Number Publication Date
JPS5973393A true JPS5973393A (en) 1984-04-25

Family

ID=16127416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57182965A Pending JPS5973393A (en) 1982-10-20 1982-10-20 Rectifyng device in ship

Country Status (1)

Country Link
JP (1) JPS5973393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129699U (en) * 1985-02-01 1986-08-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129699U (en) * 1985-02-01 1986-08-14

Similar Documents

Publication Publication Date Title
EP2110311B1 (en) Finned rudder
KR101464187B1 (en) Fin for mounting on a ship and ship having the fin
JP3245000B2 (en) Ship
US6647909B1 (en) Waveless hull
JPS5950889A (en) Stern fin to control stern eddy
JPS58194691A (en) Water-current inducing surface of stern of screw propeller ship
JP5219243B2 (en) Rudder
CN101522515A (en) Lateral ship's rudder
WO2011102103A1 (en) Thruster with duct attached and vessel comprising same
CA1054454A (en) Ship
CN216805778U (en) Marine noise reduction and efficiency improvement device and aerodynamic boat
JP2004090841A (en) Pod propeller
JPS5973393A (en) Rectifyng device in ship
CN213168507U (en) Energy-saving rudder combined by ship rudder blade streamline water leveling fins and rudder sleeve resistance-reducing flow-guiding fins
KR102531811B1 (en) Stern geometry and vessel with stern duct
JP2010095239A (en) Rudder device for marine vessel
US20050076819A1 (en) Apparatus and method for reducing hydrofoil cavitation
US7338336B2 (en) Watercraft hull with adjustable keel
JP2013132937A (en) Ship
JP5032873B2 (en) 2-axis twin skeg ship
JPS5973390A (en) Rectifying device in ship
JPS5973391A (en) Rectifying device in ship
KR102117384B1 (en) Supporting structure of duct for ship
JP2002293294A (en) High-lift twin rudder system for marine vessel
JP2001138986A (en) Energy-saving marine vessel