JPS5967433A - Temperature/pressure detector - Google Patents

Temperature/pressure detector

Info

Publication number
JPS5967433A
JPS5967433A JP17927782A JP17927782A JPS5967433A JP S5967433 A JPS5967433 A JP S5967433A JP 17927782 A JP17927782 A JP 17927782A JP 17927782 A JP17927782 A JP 17927782A JP S5967433 A JPS5967433 A JP S5967433A
Authority
JP
Japan
Prior art keywords
temperature
output
pressure
piezo
composite sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17927782A
Other languages
Japanese (ja)
Other versions
JPH0615997B2 (en
Inventor
Masataka Tatsuta
龍田 正隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP57179277A priority Critical patent/JPH0615997B2/en
Publication of JPS5967433A publication Critical patent/JPS5967433A/en
Publication of JPH0615997B2 publication Critical patent/JPH0615997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0022Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To enable simultaneous detection of a pressure compensated for temperature and a temperature from an output of a silicon element by supplying an output of a piezo-electric vibrator to a temperature compensation circuit in a composite sensor unit comprising the piezo-electric vibrator and the silicon pressure sensor. CONSTITUTION:A composite sensor 2 is made up of a piezo-electric vibrator 3 and a silicon element 4 stuck together. When a fixed pressure distortion is applied to the piezo-electric vibrator 3, an alternate current of the frequency f0 the same as the vibration frequency of the piezo-electric vibrator 3 is detected from the output end of the silicon element 4. Outputs at output ends 2 and 4 of the composite sensor 2 are supplied to a temperature compensation circuit 6 through a detector 5 and a temerature compensation signal is supplied to the temperature compensation circuit 6 with the temperature detection output from the vibrator 3 as comparison reference voltage. The output of the compensation circuit 6 is amplified with an amplifier 7 and outputted into a pressure display section 8. An output voltage of the composite sensor 2 is the function of the temperature and applied to a temperature display section 12. No change appears in the output voltage of the pressure display section 8 even when the output voltage changes due to a temperature variation because the pressure is constant. Thus, the temperature compensation is accomplished as expected.

Description

【発明の詳細な説明】 本2発明は、例えば半導体製造室の温度及び気圧を自動
的に制御する装置に適用して好適な温度圧力検出装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature and pressure detection device suitable for application to, for example, a device that automatically controls the temperature and atmospheric pressure of a semiconductor manufacturing chamber.

従来において、温度及び圧力を検出するには、夫々のセ
ンサが必要であった。従って、夫々のセンサからの出力
によ、って温度及び圧力な別々に表示・検知しているの
が実状である。
In the past, separate sensors were required to detect temperature and pressure. Therefore, the reality is that temperature and pressure are displayed and detected separately based on the output from each sensor.

そのだめ、温lW及び圧力を検出するには夫々専用のセ
ンサを設置箇所に取付けなければならず、場所の選定及
び作業工数に難点がある。また夫々のセンサは互いに影
響を受けて誤差を生ずる。すなわち温1「センサは圧力
の変化に対l−で有害であり、また圧力センサは温度に
対して有害である。
However, in order to detect temperature lW and pressure, dedicated sensors must be installed at the installation locations, which poses difficulties in location selection and work man-hours. Further, the respective sensors are influenced by each other and produce errors. That is, a temperature sensor is harmful to changes in pressure, and a pressure sensor is harmful to temperature.

従って、夫々の変化値を相互に補償されていないため、
連続的にかつ自動的に精度良好な温度及び圧力の検出を
することができない。
Therefore, since the respective change values are not mutually compensated,
It is not possible to continuously and automatically detect temperature and pressure with good accuracy.

本発明はかかる点に鑑み、温1坂を主として検出する圧
電振動子と圧力な主として検出するシリコン圧力センサ
とを一体化することにより、相互の悪い影響を相殺する
と共に、温度補償回路を挿入することにより温度圧力の
双方の検出値の硝1駆の向上を図ったこのイ重検出装置
を提案することを主たる目的とする。
In view of this, the present invention integrates a piezoelectric vibrator that primarily detects temperature and a silicon pressure sensor that primarily detects pressure, thereby canceling out their negative effects, and inserting a temperature compensation circuit. The main purpose of this invention is to propose this heavy-duty detection device that improves the performance of both temperature and pressure detection values.

以下本発明の一実施例について図面を参黒しながら詳細
に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一例を示す回路構成図である。FIG. 1 is a circuit configuration diagram showing an example of the present invention.

9は発振器を示し、これからの出力が複合センサ2に印
加される。
Reference numeral 9 indicates an oscillator, the output of which is applied to the composite sensor 2.

複合センサ2は、第2図に示す如(、圧電振動子3及び
シリコン素子4とを貼合せ。た構成となって因る。そし
て第3図に示す如く、中央に圧力導入箇所5aが設けら
れたケース5に複合センサ2が実装される。図中、A、
Bは圧電振動子3のリード線、■■■■はシリコン素子
4のリード線を示す。
The composite sensor 2 has a structure in which a piezoelectric vibrator 3 and a silicon element 4 are bonded together as shown in FIG. 2.As shown in FIG. 3, a pressure introduction point 5a is provided in the center. The composite sensor 2 is mounted on the case 5. In the figure, A,
B indicates a lead wire of the piezoelectric vibrator 3, and ■■■■ indicates a lead wire of the silicon element 4.

圧電」辰動子3は、−第4図に示す如く、周波数を変え
ることによって最大値及び最小値を示すインピーダンス
特性を示す。この最小インピーダンス点をfr、最大イ
ンピーダンス点をfaとし、圧電振動子3の静電容量C
dとほぼfr、 faの中間の周波数foと共振するイ
ンダクタンスLを、第5図に示す如く、並列接続するこ
とにより、第6図に丞す如く、中間の周波数1゜・で最
大となるインピーダンス特性を示す構成を得ることがで
きる。
The piezoelectric actuator 3 exhibits impedance characteristics that exhibit maximum and minimum values by changing the frequency, as shown in FIG. The minimum impedance point is fr, the maximum impedance point is fa, and the capacitance C of the piezoelectric vibrator 3 is
By connecting an inductance L that resonates with a frequency fo approximately intermediate between d, fr, and fa in parallel as shown in Figure 5, the impedance becomes maximum at an intermediate frequency of 1° as shown in Figure 6. A configuration exhibiting the characteristics can be obtained.

このインピーダンス特性は温度及び圧力によって変化す
る。すなわち第7図に示す如く、温度Tが上昇するに従
ってf。が低下する特性を示し、第8図に示す如く、圧
力Pの増加に従ってインピーダンスZの直が低下する特
性を示す。
This impedance characteristic changes with temperature and pressure. That is, as shown in FIG. 7, as the temperature T rises, f. As shown in FIG. 8, as the pressure P increases, the impedance Z decreases.

一方、シリコン素子4はシリコンウェハ上に拡散法によ
って設けられた電気抵抗体1(、〜■t4をブリッジ状
に接続して構成されたものである。第9図はシリコン素
子4の構成を示す回路図であるが、この場き、■■端子
は入力端子、■■端子は出力端子を夫々示している。入
力端子に所定の電圧を印加することにより、R1〜It
。の全抵抗体が平衡して因るときは出力が生じないが、
シリコン素子4に圧力歪が加わると、R4〜■七、の抵
抗バランスがくずれて出力を生ずる。この出力は圧力に
比例して表われ、第10図(C示す如き特性曲線を示す
ことになる。
On the other hand, the silicon element 4 is constructed by connecting electrical resistors 1 (, ~ t4) provided by a diffusion method on a silicon wafer in a bridge shape. Fig. 9 shows the configuration of the silicon element 4. In this circuit diagram, the ■■ terminals represent input terminals, and the ■■ terminals represent output terminals. By applying a predetermined voltage to the input terminals, R1 to It
. When all the resistors are balanced, no output is produced, but
When pressure strain is applied to the silicon element 4, the resistance balance of R4 to R7 is disrupted, producing an output. This output appears in proportion to the pressure, and shows a characteristic curve as shown in FIG. 10 (C).

ところが、第2図及び第3図に示す如く、圧電振動子3
及びシリコン素子4が貼合わされているため、圧電振動
子3に一定の圧力歪が加わって(八るときはシリコン素
子の出力端子■■から圧電振動子3が振動している周波
数と同じ周波数の交流が検出され、この周波数は中間周
波数f0と一致する。またこのときの出力端子■■に生
ずる出力電圧レベルは、中間周波数foのときのインピ
ーダンス値Zoに対応することになる。従って、圧電振
動子3の中間周波数1゜の最犬直を採用することにより
振動振幅は犬きくなり、更にシリコン素子4の出力■■
間祇圧も大きくなる。そして第3図において、圧力導入
箇所5aから僅かな圧力の変化があると、圧電振動子3
及びシリコン素子4より成る腹合センサ2の振動振幅(
第6図中Z。
However, as shown in FIGS. 2 and 3, the piezoelectric vibrator 3
and the silicon element 4 are bonded together, a certain pressure strain is applied to the piezoelectric vibrator 3. Alternating current is detected, and this frequency matches the intermediate frequency f0. Also, the output voltage level generated at the output terminal ■■ at this time corresponds to the impedance value Zo at the intermediate frequency fo. Therefore, piezoelectric vibration By adopting the maximum frequency of 1° for the intermediate frequency of the element 3, the vibration amplitude becomes sharper, and the output of the silicon element 4 also increases.
Intermediate pressure also increases. In FIG. 3, when there is a slight change in pressure from the pressure introduction point 5a, the piezoelectric vibrator 3
and the vibration amplitude (
Z in Figure 6.

値)が変化し、よって出力端■■間′諷圧も変化するこ
とになる。しかし、この電圧は圧力歪が一定であっても
温度が変化するとこれに伴って変化してしまう(第7図
参照)。
value) will change, and therefore the vertical pressure between the output ends will also change. However, even if the pressure strain is constant, this voltage changes as the temperature changes (see FIG. 7).

そこで、第1図において、複合センサ2の出力端■■を
検波器5を介して温度補償回路6に供給1−1一方、圧
電振動子3からの温度検出出力を比較基準電圧として温
度補償回路6に温度補償信号の供給をするように構成す
る。温度補償回路6の出力は増幅器7で増幅され、圧力
表示部8に出力される。従って、複合センサ2の出力段
階においては、第11図に示す如く、圧カ一定のときで
も温度の変化によって出力電圧が変化して−ても、圧力
表示部8における出力電圧は、第12図に示す如く、温
度の変化があっても出力電圧に変化が表われなくなり、
温度補償がなされたことになる。
Therefore, in FIG. 1, the output terminal ■■ of the composite sensor 2 is supplied to the temperature compensation circuit 6 via the detector 5 1-1, while the temperature detection output from the piezoelectric vibrator 3 is used as a comparison reference voltage to the temperature compensation circuit 1-1. 6 to supply a temperature compensation signal. The output of the temperature compensation circuit 6 is amplified by an amplifier 7 and output to a pressure display section 8. Therefore, at the output stage of the composite sensor 2, even when the pressure is constant as shown in FIG. 11, even if the output voltage changes due to a change in temperature, the output voltage at the pressure display section 8 is as shown in FIG. 12. As shown in the figure, there is no change in the output voltage even if there is a change in temperature.
This means that temperature compensation has been achieved.

また上記の複合センサ2の構成とすると、第10図にお
けるP、点を中心になるように圧電振動子3によってバ
イアス圧力?適切に加えることがでさるため、第1図に
示す特注曲線を直、線状に改良することができ、よって
圧力検出の感度を高めることが可能となる。
Furthermore, if the composite sensor 2 is configured as described above, the bias pressure is applied by the piezoelectric vibrator 3 so that the point P in FIG. 10 is the center. By adding it appropriately, it is possible to improve the custom-made curve shown in FIG. 1 in a straight line, thereby increasing the sensitivity of pressure detection.

第1図において、複合センサ2は発振器9によって駆動
され、その出力は弁別検波器10を介することによって
直流成分の出力とし、増幅器11によって増幅され、温
度表示部12に出力される。
In FIG. 1, the composite sensor 2 is driven by an oscillator 9, and its output is converted into a DC component output through a discriminative detector 10, amplified by an amplifier 11, and output to a temperature display section 12.

尚、発振器9はその周波数f。の電圧を制御することに
より出カ一定とし、かつ出力が最大となるように周波数
を制御する構造を採用している。シリコン素子4のj駆
動は発振器9からの出力を整流回路13及び安定化回路
14で処理して印加される。第13図は複合センサ2の
出力端′直圧と圧力との関係を示す図である。
Note that the oscillator 9 has a frequency f. A structure is adopted in which the output is kept constant by controlling the voltage, and the frequency is controlled so that the output is maximized. J driving of the silicon element 4 is applied by processing the output from the oscillator 9 in a rectifier circuit 13 and a stabilizing circuit 14 . FIG. 13 is a diagram showing the relationship between the direct pressure at the output end of the composite sensor 2 and the pressure.

第14図は本発明の他の例を示す回路図である。FIG. 14 is a circuit diagram showing another example of the present invention.

本例においては、第1図及び第11図を参照して明らか
な如く、複合センサ2の出力電圧は温度の関数であるた
め、この出力から圧力補償回路15を介して温度表示部
12に加えられる構成としたものである。尚、第1図例
と同じ要素には同一符号を付して説明する。従って、本
例においてモ第1図例と同様の作用をすることができる
In this example, as is clear with reference to FIG. 1 and FIG. The configuration is as follows. Note that the same elements as in the example of FIG. 1 will be described with the same reference numerals. Therefore, in this example, the same effect as in the example shown in FIG. 1 can be achieved.

以上述べた如く本発明によれば、圧電振動子とシリコン
素子とを一体化した複合センサを用いた温度圧力検出装
置において、上記圧電振動子の出力を昌i補償回路に供
給することにより上記シリコン素子の出力から温度補償
された圧力及び扇aを同時に検出するように構成したの
で、圧力検出値の感度を向上せしめることができ、温1
隻補償された検出値を得ることができる。
As described above, according to the present invention, in a temperature and pressure detection device using a composite sensor that integrates a piezoelectric vibrator and a silicon element, by supplying the output of the piezoelectric vibrator to the compensation circuit, Since the configuration is configured to simultaneously detect the temperature-compensated pressure and the fan a from the output of the element, the sensitivity of the detected pressure value can be improved, and the temperature
It is possible to obtain compensated detection values.

従って、例えば半導体製造室の温度及び圧力を検出する
ときに採用して実益がある。
Therefore, it is practical to employ it when detecting temperature and pressure in a semiconductor manufacturing room, for example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例を示す回路図、第2図は複合セン
サの一例を示す図、第3図は複合センサの実装状態を示
す図、第4図は圧電振動子の特性図、第5図はコイルを
組込んだ圧電撮動子の例を示す回路図、第6図は第5図
列の!苛性図、第7図は圧電撮動子の特性たる室温付近
の周波数と温度との関係を示す図、第8図は同じく圧力
とインピーダンスとの関係を示す図、第9図はシリコン
素子の構成を示す図、第10図は第9図例の特性図、第
11図は複合センサの特性図、第12図は本発明装置の
他力電圧の説明に供する曲線図、第13図は同じく出力
′電圧と圧力との関・係を表わす曲線図、第14図は本
発明の他の例を示す回路図である。 2・・・複合センサ、3・・・圧電振動子、4・・・シ
リコン素子、6・・・温度補償回路。 代理人 醇理士 秋  山   高 第1図 第7図 T−ラ 第2図       第3図 第4図   第5図    第6図 91−
FIG. 1 is a circuit diagram showing an example of the present invention, FIG. 2 is a diagram showing an example of a composite sensor, FIG. 3 is a diagram showing a mounting state of the composite sensor, FIG. 4 is a characteristic diagram of a piezoelectric vibrator, and FIG. Figure 5 is a circuit diagram showing an example of a piezoelectric sensor incorporating a coil, and Figure 6 is the one in the 5th column! The caustic diagram, Figure 7 is a diagram showing the relationship between frequency near room temperature, which is a characteristic of the piezoelectric sensor, and temperature, Figure 8 is a diagram also showing the relationship between pressure and impedance, and Figure 9 is the configuration of the silicon element. FIG. 10 is a characteristic diagram of the example in FIG. 9, FIG. 11 is a characteristic diagram of the composite sensor, FIG. 12 is a curve diagram for explaining the external voltage of the device of the present invention, and FIG. 13 is the same output 'A curve diagram showing the relationship between voltage and pressure. FIG. 14 is a circuit diagram showing another example of the present invention. 2... Composite sensor, 3... Piezoelectric vibrator, 4... Silicon element, 6... Temperature compensation circuit. Agent: Takashi Akiyama Figure 1 Figure 7 T-Ra Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 91-

Claims (1)

【特許請求の範囲】[Claims] 圧電振動子とシリコン圧力センサとを一体化した複合セ
ンサを用いた温度圧力検出装置において、上記圧電振動
子の出力を温度補償回路に供給することにより上記シリ
コン圧力センサの出力から温度補償された圧力及び温度
を同時に検出するようにしたことを特徴とする温度圧力
検出装置。
In a temperature and pressure detection device using a composite sensor that integrates a piezoelectric vibrator and a silicon pressure sensor, the output of the piezoelectric vibrator is supplied to a temperature compensation circuit to obtain temperature-compensated pressure from the output of the silicon pressure sensor. A temperature and pressure detection device characterized in that it detects both temperature and temperature at the same time.
JP57179277A 1982-10-12 1982-10-12 Temperature pressure detector Expired - Lifetime JPH0615997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57179277A JPH0615997B2 (en) 1982-10-12 1982-10-12 Temperature pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57179277A JPH0615997B2 (en) 1982-10-12 1982-10-12 Temperature pressure detector

Publications (2)

Publication Number Publication Date
JPS5967433A true JPS5967433A (en) 1984-04-17
JPH0615997B2 JPH0615997B2 (en) 1994-03-02

Family

ID=16063022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57179277A Expired - Lifetime JPH0615997B2 (en) 1982-10-12 1982-10-12 Temperature pressure detector

Country Status (1)

Country Link
JP (1) JPH0615997B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239136A (en) * 1985-04-16 1986-10-24 Yokogawa Electric Corp Pressure detector
JPS61239135A (en) * 1985-04-16 1986-10-24 Yokogawa Electric Corp Differential pressure transmitter
KR100435318B1 (en) * 2001-07-03 2004-06-10 현대자동차주식회사 Apparatus for testing oil pressure and temparature of the power steering system for an automobile
JP2013113774A (en) * 2011-11-30 2013-06-10 Fujikura Ltd Pressure sensor module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944675A (en) * 1972-06-16 1974-04-26
JPS55110926A (en) * 1979-01-08 1980-08-27 Cise Spa Probe for measuring temperature and pressure
JPS5631336U (en) * 1979-08-20 1981-03-26

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944675A (en) * 1972-06-16 1974-04-26
JPS55110926A (en) * 1979-01-08 1980-08-27 Cise Spa Probe for measuring temperature and pressure
JPS5631336U (en) * 1979-08-20 1981-03-26

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239136A (en) * 1985-04-16 1986-10-24 Yokogawa Electric Corp Pressure detector
JPS61239135A (en) * 1985-04-16 1986-10-24 Yokogawa Electric Corp Differential pressure transmitter
JPH0556458B2 (en) * 1985-04-16 1993-08-19 Yokogawa Electric Corp
KR100435318B1 (en) * 2001-07-03 2004-06-10 현대자동차주식회사 Apparatus for testing oil pressure and temparature of the power steering system for an automobile
JP2013113774A (en) * 2011-11-30 2013-06-10 Fujikura Ltd Pressure sensor module

Also Published As

Publication number Publication date
JPH0615997B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US5663505A (en) Pressure sensor having a piezoelectric vibrator with concencentric circular electrodes
US5142912A (en) Semiconductor pressure sensor
US6282957B1 (en) Angular velocity sensor and diagnosis system for this sensor
US7343802B2 (en) Dynamic-quantity sensor
JPS5967433A (en) Temperature/pressure detector
JP3937589B2 (en) Angular velocity sensor
JPH0694744A (en) Semiconductor acceleration detector
JP2524518B2 (en) Acceleration sensor
JP2003156524A (en) Potential fixing apparatus and potential fixing method
JP3148940B2 (en) Acceleration sensor
JP3191404B2 (en) Temperature detection method for piezoelectric vibrator
JPH02502267A (en) Self-oscillation circuit device for mechanical vibration system for natural resonance vibration
JPH0412398Y2 (en)
TWI835954B (en) Micromechanical component for a capacitive pressure sensor device
JPS62291535A (en) Piezoelectric element applied sensor apparatus
JPS6029673A (en) Surface potential sensor
JPH0519795Y2 (en)
JPH11325908A (en) Piezoelectric angular speed sensor
JPH0627134A (en) Acceleration sensor
JPH0554705B2 (en)
JP2001083177A (en) Electret capacitor type acceleration sensor
JPH0418608B2 (en)
JPH0832089A (en) Electrostatic capacitance pressure sensor
JPS59147256A (en) Piezoelectric sensor
JPS61215916A (en) Angular velocity sensor