JPH0627134A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH0627134A
JPH0627134A JP20457692A JP20457692A JPH0627134A JP H0627134 A JPH0627134 A JP H0627134A JP 20457692 A JP20457692 A JP 20457692A JP 20457692 A JP20457692 A JP 20457692A JP H0627134 A JPH0627134 A JP H0627134A
Authority
JP
Japan
Prior art keywords
displacement
cantilever
acceleration
circuit
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20457692A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tanaka
克彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP20457692A priority Critical patent/JPH0627134A/en
Publication of JPH0627134A publication Critical patent/JPH0627134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the detecting accuracy, reliability and the like in detection of acceleration by detecting the displacement of a movable part highly accurately with a displacement detecting part. CONSTITUTION:A displacement detecting part 26 is formed of a piezoelectric body 27, which is provided on a supporting part 25A of a cantilever 25 as a movable part, and a displacement detecting circuit 29, which is provided at the side of the protruding end of the supporting part 25A in adjacent to the piezoelectric body 27. The charge signal, which is outputted from the piezoelectric body 27 through an electrode 28, is converted into the voltage value in the displacement detection circuit 29. The driving voltage signals are outputted from an electrostatic drive circuit 34 of a driving part 32 into electrodes 32 and 33. Specified static electricity is generated between each of the electrodes 32 and 33 and a mass part 25B. Thus, the position of the cantilever 25 is controlled with the driving part 31. In this way, the displacement of the cantilever 31 caused by vibration is detected as the charge signal with the piezoelectric body 27. The charge signal is converted into the voltage signal with the displacement detection circuit 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車等の運動
体の加速度を検出するのに用いて好適な加速度センサに
関し、特に、可動部の変位に応じて駆動部の信号をフィ
ードバック制御するサーボ型加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor suitable for detecting the acceleration of a moving body such as an automobile, and more particularly to a servo which feedback-controls a signal of a drive unit according to a displacement of a movable unit. Type acceleration sensor.

【0002】[0002]

【従来の技術】一般に、加速度センサとしては、シリコ
ン材料から形成され、基端側が固定端となり先端側が質
量部となった可動部と、該可動部の変位を検出する変位
検出部と、該変位検出部からの変位検出信号に基づき、
可動部の変位が零となるように該可動部を復帰させる駆
動部とから構成され、前記変位検出部は静電容量変化に
基づいて可動部の変位を検出し、前記駆動部は静電力に
よって可動部を復帰させるようにしたものが知られてい
る。
2. Description of the Related Art Generally, as an acceleration sensor, a movable portion formed of a silicon material, the base end side of which is a fixed end and the tip end side of which is a mass portion, a displacement detecting portion for detecting displacement of the movable portion, and the displacement Based on the displacement detection signal from the detector,
The displacement detecting unit detects the displacement of the movable unit based on a change in capacitance, and the driving unit uses an electrostatic force to move the movable unit so that the displacement of the movable unit becomes zero. It is known that the movable part is returned.

【0003】一方、この種の検出系,駆動系のいずれに
も静電力(静電容量)を利用した加速度センサにおいて
は、検出系と駆動系との間の寄生容量によって信号干渉
が生じ易く、加速度の検出精度が低いため、変位検出部
にピエゾ抵抗素子を用い、該ピエゾ抵抗素子の抵抗変化
に基づいて可動部の変位を検出するようにした加速度セ
ンサが例えば特開平1−240865号公報等によって
提案されている。
On the other hand, in an acceleration sensor using electrostatic force (electrostatic capacity) for both this type of detection system and drive system, signal interference is likely to occur due to parasitic capacitance between the detection system and drive system. Since the detection accuracy of acceleration is low, an acceleration sensor that uses a piezoresistive element for the displacement detecting section and detects the displacement of the movable section based on the resistance change of the piezoresistive element is disclosed in, for example, Japanese Patent Laid-Open No. 1-240865. Have been proposed by.

【0004】そこで、図2に、この種の従来技術による
加速度センサとして、特開平1−240865号公報に
記載の加速度センサを例に挙げて説明する。
Therefore, an acceleration sensor disclosed in Japanese Patent Laid-Open No. 1-240865 will be described with reference to FIG. 2 as an acceleration sensor according to this type of prior art.

【0005】図において、1は加速度センサのセンサ本
体を示し、該センサ本体1は、後述のスイッチング回路
9等と共に加速度センサを構成している。
In the figure, reference numeral 1 denotes a sensor body of an acceleration sensor, and the sensor body 1 constitutes an acceleration sensor together with a switching circuit 9 and the like which will be described later.

【0006】2はガラス材料等の絶縁材料から形成され
た下側基板、3は該下側基板2上に後述の片持梁5を介
して設けられ、ガラス材料等の絶縁性材料から形成され
た上側基板をそれぞれ示し、該各基板2,3間には片持
梁5が変位可能に設けられる空間4が画成されている。
Reference numeral 2 denotes a lower substrate made of an insulating material such as a glass material, and 3 is provided on the lower substrate 2 via a cantilever 5 described later, and made of an insulating material such as a glass material. The upper substrate is shown, and a space 4 in which a cantilever 5 is displaceably provided is defined between the substrates 2 and 3.

【0007】5は各基板2,3間に設けられ、単結晶シ
リコン材料から形成された可動部としての片持梁を示
し、該片持梁5は、基端側が各基板2,3間に挟持され
た厚肉な固定端となり、先端側が空間4内に延びる自由
端となった支持部5Aと、該支持部5Aの先端側に一体
形成され、所定の質量を有するように厚肉に形成された
質量部5Bとから構成されている。また、該片持梁5は
アースされている。そして、該片持梁5は、加速度が加
わると、この加速度に応じて質量部5Bが空間4内を
上,下方向に振動(変位)するものである。
Reference numeral 5 denotes a cantilever which is provided between the substrates 2 and 3 and is made of a single crystal silicon material as a movable portion. The cantilever 5 has a base end side between the substrates 2 and 3. A support portion 5A having a thick fixed end sandwiched and a free end extending into the space 4 and a support portion 5A integrally formed on the front end side of the support portion 5A and formed to have a predetermined mass And a mass part 5B that is formed. The cantilever 5 is grounded. When an acceleration is applied to the cantilever 5, the mass portion 5B vibrates (displaces) in the space 4 in the upward and downward directions according to the acceleration.

【0008】6は片持梁5の支持部5Aに設けられた変
位検出部を示し、該変位検出部6はピエゾ抵抗素子から
構成され、後述の位相進み回路8に接続されている。そ
して、該変位検出部6は、加速度に応じて振動する片持
梁5の変位を支持部5Aのひずみによる抵抗値変化とし
て検出し、これを位相進み回路8に出力するものであ
る。
Reference numeral 6 denotes a displacement detecting portion provided on the support portion 5A of the cantilever 5, and the displacement detecting portion 6 is composed of a piezoresistive element and is connected to a phase advance circuit 8 described later. The displacement detector 6 detects the displacement of the cantilever 5 that vibrates according to the acceleration as a resistance value change due to the strain of the support 5A, and outputs this to the phase advance circuit 8.

【0009】7は変位検出部6に接続されたアンプ、8
は該アンプ7を介して変位検出部6に接続された位相進
み回路、9は該位相進み回路8に接続されたスイッチン
グ回路をそれぞれ示し、これらアンプ7,位相進み回路
8,スイッチング回路9によってサーボ回路が形成され
ている。そして、変位検出部6からの抵抗値変化に基づ
く変位検出信号がアンプ7,位相進み回路8を介してス
イッチング回路9に入力されると、該スイッチング回路
9は、この変位検出信号に基づいた駆動電圧信号を後述
する下側駆動電極10,上側駆動電極11のいずれかに
選択的に出力するようになっている。
Reference numeral 7 is an amplifier connected to the displacement detector 6, and 8
Is a phase lead circuit connected to the displacement detector 6 via the amplifier 7, and 9 is a switching circuit connected to the phase lead circuit 8, respectively. The amplifier 7, the phase lead circuit 8 and the switching circuit 9 serve as servo circuits. A circuit is formed. When the displacement detection signal based on the resistance value change from the displacement detection unit 6 is input to the switching circuit 9 via the amplifier 7 and the phase advance circuit 8, the switching circuit 9 drives based on this displacement detection signal. The voltage signal is selectively output to either the lower drive electrode 10 or the upper drive electrode 11 described later.

【0010】10は片持梁5の質量部5B下側に位置し
て下側基板2の上面側に設けられた下側駆動電極、11
は該下側駆動電極10と対向するように上側基板3の下
面側に設けられ、該下側駆動電極10と共に静電型の駆
動部を構成する上側駆動電極をそれぞれ示し、該各電極
10,11はスイッチング回路9にそれぞれ接続されて
いる。そして、該各電極10,11はスイッチング回路
9から選択的に出力された駆動電圧信号によって、アー
スされた片持梁5の質量部5Bとの間に静電力を発生せ
しめ、この静電力によって片持梁5の変位を零、即ち無
振動状態(原点)に復帰させるものである。
Reference numeral 10 is a lower drive electrode which is located below the mass portion 5B of the cantilever 5 and which is provided on the upper surface side of the lower substrate 2.
Are upper drive electrodes which are provided on the lower surface side of the upper substrate 3 so as to face the lower drive electrodes 10 and which constitute an electrostatic drive unit together with the lower drive electrodes 10, respectively. 11 are connected to the switching circuit 9, respectively. The electrodes 10 and 11 generate an electrostatic force between the electrodes 10 and 11 and the mass portion 5B of the grounded cantilever 5 by the drive voltage signal selectively output from the switching circuit 9, and the electrostatic force causes the electrodes 10 and 11 to move. The displacement of the cantilever beam 5 is returned to zero, that is, the vibration-free state (origin).

【0011】12はスイッチング回路9に接続された演
算処理回路を示し、該演算処理回路12は、スイッチン
グ回路9から各電極10,11に出力されたフィードバ
ック信号たる駆動電圧信号に基づき、外部のコントロー
ルユニット(図示せず)等に加速度検出信号を出力する
ようになっている。
Reference numeral 12 denotes an arithmetic processing circuit connected to the switching circuit 9. The arithmetic processing circuit 12 controls externally on the basis of a drive voltage signal which is a feedback signal output from the switching circuit 9 to each of the electrodes 10 and 11. An acceleration detection signal is output to a unit (not shown) or the like.

【0012】従来技術による加速度センサは上述の如き
構成を有するもので、センサ本体1に加速度が加わる
と、片持梁5の質量部5Bは支持部5Aによって支持さ
れつつ空間4内を上,下方向に振動し、この振動によっ
て片持梁5の支持部5Aには歪みが生じる。そして、変
位検出部6がこの歪みによる抵抗値変化を検出し、片持
梁5の変位検出信号を出力すると、この変位検出信号は
アンプ7,位相進み回路8を介してスイッチング回路9
に入力され、該スイッチング回路9は、片持梁5の変位
を零にすべく、変位検出信号に応じた駆動電圧信号を各
電極10,11に出力する。これにより、各電極10,
11と片持梁5の質量部5Bとの間には静電力が生じ、
この静電力によって片持梁5が復帰し、その位置が制御
される。
The acceleration sensor according to the prior art has the above-mentioned structure, and when acceleration is applied to the sensor body 1, the mass portion 5B of the cantilever 5 is supported by the support portion 5A while moving up and down in the space 4. The support portion 5A of the cantilever 5 is distorted by this vibration. When the displacement detector 6 detects a change in resistance value due to this distortion and outputs a displacement detection signal for the cantilever 5, the displacement detection signal is passed through the amplifier 7 and the phase advance circuit 8 to the switching circuit 9
The switching circuit 9 outputs a drive voltage signal corresponding to the displacement detection signal to each of the electrodes 10 and 11 in order to make the displacement of the cantilever 5 zero. As a result, each electrode 10,
11 and the mass portion 5B of the cantilever 5, an electrostatic force is generated,
The electrostatic force causes the cantilever beam 5 to return, and its position is controlled.

【0013】[0013]

【発明が解決しようとする課題】ところで、上述した従
来技術による加速度センサでは、変位検出部6にピエゾ
抵抗素子を用い、該ピエゾ抵抗素子の抵抗変化に基づい
て片持梁5の変位を検出し、各電極10,11による静
電力によって該片持梁5を復帰させる構成であるから、
検出系(変位検出部6)と駆動系(各電極10,11)
との信号の種類が異なり、寄生容量による信号干渉の発
生を防止できるようになっている。
By the way, in the acceleration sensor according to the above-mentioned prior art, a piezoresistive element is used for the displacement detecting section 6, and the displacement of the cantilever 5 is detected based on the resistance change of the piezoresistive element. Since the structure is such that the cantilever 5 is returned by the electrostatic force generated by the electrodes 10 and 11,
Detection system (displacement detection unit 6) and drive system (each electrode 10, 11)
The signal types of and are different, and it is possible to prevent signal interference due to parasitic capacitance.

【0014】しかし、一般に、ピエゾ抵抗素子は感度が
低いため、片持梁5の変位を高精度に検出することがで
きず、加速度検出の検出精度、信頼性等が低いという問
題がある。
However, in general, since the piezoresistive element has low sensitivity, the displacement of the cantilever 5 cannot be detected with high accuracy, and there is a problem that the detection accuracy and reliability of acceleration detection are low.

【0015】本発明は上述した従来技術の問題に鑑みな
されたもので、変位検出部によって可動部の変位を高精
度に検出することができ、加速度検出の検出精度や信頼
性等を向上できるようにした加速度センサを提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to detect the displacement of the movable part with high accuracy by the displacement detection part, and to improve the detection accuracy and reliability of acceleration detection. It is an object of the present invention to provide an acceleration sensor having the above structure.

【0016】[0016]

【課題を解決するための手段】上述した課題を解決する
ために、本発明が採用する構成は、シリコン材料または
一部がシリコンの化合物材料から形成され、基端側が固
定端となり先端側が加速度に応じて変位する質量部とな
った可動部と、該可動部の基端側に設けられた圧電体か
らなり、該可動部の変位を検出する変位検出部と、該変
位検出部からの変位検出信号に基づき、前記可動部の変
位が零となるように静電力を発生させて該可動部の位置
を制御する駆動部とからなる。
In order to solve the above-mentioned problems, the structure adopted by the present invention is such that a silicon material or a part thereof is made of a silicon compound material, and the base end side is a fixed end and the tip end side is an acceleration. A displacement detection section configured to detect displacement of the movable section, the displacement detection section including a movable section serving as a mass section that is displaced in response to the movable section, and a piezoelectric body provided on the base end side of the movable section. And a drive unit that controls the position of the movable unit by generating an electrostatic force so that the displacement of the movable unit becomes zero based on the signal.

【0017】[0017]

【作用】加速度が加わると、この加速度によって可動部
は変位し、変位検出部は該可動部の変位を圧電体に生じ
た電荷に基づいて検出する。そして、駆動部は、該変位
検出部からの変位検出信号に基づいて可動部の変位が零
となるように静電力を発生させ、該可動部の位置を制御
する。
When the acceleration is applied, the movable portion is displaced by this acceleration, and the displacement detecting portion detects the displacement of the movable portion based on the electric charge generated in the piezoelectric body. Then, the drive unit generates an electrostatic force so that the displacement of the movable unit becomes zero based on the displacement detection signal from the displacement detection unit, and controls the position of the movable unit.

【0018】[0018]

【実施例】以下、本発明の実施例を図1に基づいて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0019】図中、21は本実施例による加速度センサ
のセンサ本体を示し、該センサ本体21は後述の静電駆
動回路34等と共に加速度センサを構成している。
In the figure, reference numeral 21 denotes a sensor main body of the acceleration sensor according to this embodiment, and the sensor main body 21 constitutes an acceleration sensor together with an electrostatic drive circuit 34 and the like which will be described later.

【0020】22はガラス等の絶縁性材料から形成され
た下側基板、23は該下側基板22に後述の片持梁25
を介して設けられ、ガラス等の絶縁性材料から形成され
た上側基板をそれぞれ示し、各基板22,23間には片
持梁25が変位可能に設けられる空間24が画成されて
いる。また、該下側基板22の一端側(図中、左側)は
外部に突出して突出部22Aとなり、該突出部22A上
には後述の変位検出回路29が形成されている。
Reference numeral 22 denotes a lower substrate made of an insulating material such as glass, and 23 denotes a cantilever 25 to be described later on the lower substrate 22.
And an upper substrate formed of an insulating material such as glass, respectively, and a space 24 in which a cantilever 25 is displaceably provided is defined between the substrates 22 and 23. Further, one end side (the left side in the drawing) of the lower substrate 22 projects to the outside to form a protrusion 22A, and a displacement detection circuit 29 described later is formed on the protrusion 22A.

【0021】25は各基板22,23間に設けられ、単
結晶シリコン材料から形成された可動部としての片持梁
を示し、該片持梁25は、基端側が各基板22,23間
に挟持された固定端となり、先端側が空間24内に延び
る自由端となった薄肉平板状の支持部25Aと、該支持
部25Aの先端側に一体形成され、所定の質量を有する
ように厚肉に形成された質量部25Bとから構成され、
かつ該片持梁25はアースされている。また、該片持梁
25の突出端側は下側基板22の突出部22A上に延設
され、変位検出回路29が形成されている。そして、該
片持梁25は、センサ本体21に加速度が加わると、こ
の加速度に応じて質量部25Bが空間24内を上,下方
向に振動するものである。
Reference numeral 25 denotes a cantilever which is provided between the substrates 22 and 23 and is made of a single crystal silicon material as a movable portion. The cantilever 25 has a base end side between the substrates 22 and 23. A thin flat plate-shaped support portion 25A having a fixed end sandwiched and a free end extending into the space 24 is integrally formed on the front end side of the support portion 25A, and is thick so as to have a predetermined mass. And the formed mass portion 25B,
Moreover, the cantilever 25 is grounded. Further, the projecting end side of the cantilever 25 extends on the projecting portion 22A of the lower substrate 22, and a displacement detecting circuit 29 is formed. When the sensor body 21 is subjected to acceleration, the cantilever 25 causes the mass portion 25B to vibrate upward and downward in the space 24 in response to the acceleration.

【0022】26は本実施例による変位検出部を示し、
該変位検出部26は、片持梁25の支持部25A上に設
けられ、ZnO薄膜等の圧電材料から平板状に形成され
た圧電体27と、該圧電体27の上面側に設けられた電
極28と、圧電体27に隣接して片持梁25の支持部2
5A突出端側に設けられ、該電極28を介して圧電体2
7に接続された電界効果型トランジスタ(FET)等か
らなる変位検出回路29とから構成されている。ここ
で、該変位検出回路29は、シリコン材料からなる片持
梁25の支持部25A上にエッチング技術等の半導体製
造技術を用いて一体的に形成されるもので、圧電体27
から出力された電荷を電圧値に変換する等の処理を行う
ものである。そして、該変位検出部26は、空間24内
を上,下に振動する片持梁25の変位を、片持梁25の
支持部25Aに生じた歪みにより圧電体27に発生した
電荷に基づいて検出し、この電荷信号たる変位検出信号
を変位検出回路29を介して信号処理回路30に出力す
るものである。
Reference numeral 26 denotes a displacement detector according to this embodiment,
The displacement detecting section 26 is provided on the supporting section 25A of the cantilever 25, a piezoelectric body 27 formed in a flat plate shape from a piezoelectric material such as a ZnO thin film, and an electrode provided on the upper surface side of the piezoelectric body 27. 28 and the supporting portion 2 of the cantilever 25 adjacent to the piezoelectric body 27.
5A is provided on the protruding end side, and the piezoelectric body 2 is provided through the electrode 28.
7 and a displacement detection circuit 29 composed of a field effect transistor (FET) or the like. Here, the displacement detection circuit 29 is integrally formed on the supporting portion 25A of the cantilever 25 made of a silicon material by using a semiconductor manufacturing technique such as an etching technique.
The electric charge output from the device is converted into a voltage value. Then, the displacement detector 26 determines the displacement of the cantilever 25 that vibrates up and down in the space 24 based on the electric charge generated in the piezoelectric body 27 by the strain generated in the support portion 25A of the cantilever 25. It detects and outputs the displacement detection signal which is the electric charge signal to the signal processing circuit 30 through the displacement detection circuit 29.

【0023】31は本実施例による駆動部を示し、該駆
動部31は、片持梁25の質量部25B下側に位置して
下側基板22の上面側に設けられた下側駆動電極32
と、該下側駆動電極32に対向して上側基板23の下面
側に設けられた上側駆動電極33と、該各電極32,3
3に接続された静電駆動回路34とからなる静電力型の
駆動部として構成されている。そして、該駆動部31
は、変位検出部26から信号処理回路30を介して出力
された変位検出信号に基づき、片持梁25の変位を零に
すべく、駆動電圧信号を各電極32,33に選択的に出
力し、これにより、片持梁25の質量部25Bと各電極
32,33との間に所定の静電力を発生させて、該片持
梁25の位置を制御するようになっている。
Reference numeral 31 denotes a drive unit according to the present embodiment. The drive unit 31 is located below the mass portion 25B of the cantilever 25 and is provided on the upper surface side of the lower substrate 22 on the lower drive electrode 32.
An upper drive electrode 33 provided on the lower surface of the upper substrate 23 so as to face the lower drive electrode 32, and the electrodes 32, 3
3 and the electrostatic drive circuit 34 connected to the electrostatic drive circuit 34. Then, the drive unit 31
On the basis of the displacement detection signal output from the displacement detection unit 26 via the signal processing circuit 30, selectively outputs a drive voltage signal to each of the electrodes 32 and 33 in order to reduce the displacement of the cantilever 25 to zero. As a result, a predetermined electrostatic force is generated between the mass portion 25B of the cantilever 25 and each of the electrodes 32 and 33, and the position of the cantilever 25 is controlled.

【0024】35は静電駆動回路34に接続された演算
処理回路を示し、該演算処理回路35は、静電駆動回路
34から出力されたフィードバック信号たる駆動電圧信
号に基づき、外部のコントロールユニット(図示せず)
等に加速度検出信号を出力するものである。
Reference numeral 35 denotes an arithmetic processing circuit connected to the electrostatic drive circuit 34. The arithmetic processing circuit 35 is based on a drive voltage signal, which is a feedback signal output from the electrostatic drive circuit 34, and is connected to an external control unit ( (Not shown)
Etc. to output an acceleration detection signal.

【0025】本実施例による加速度センサは上述の如き
構成を有するもので、センサ本体21に加速度が加わる
と、片持梁25の質量部25Bは支持部25Aによって
支持されつつ空間24内を上,下方向に振動し、この振
動によって該支持部25Aには応力(歪み)が発生す
る。そして、この支持部25Aに生じた応力は、圧電体
27により片持梁25の変位に応じた電荷信号に変換さ
れ、この電荷信号たる変位検出信号は変位検出回路29
によって電圧値に変換された後、信号処理回路30に出
力され、該信号処理回路30から静電駆動回路34に出
力される。
The acceleration sensor according to this embodiment has the above-mentioned structure. When acceleration is applied to the sensor body 21, the mass portion 25B of the cantilever 25 is supported by the support portion 25A and moves upward in the space 24. The support portion 25A vibrates downward, and stress (strain) is generated in the support portion 25A. Then, the stress generated in the support portion 25A is converted into a charge signal according to the displacement of the cantilever 25 by the piezoelectric body 27, and the displacement detection signal as the charge signal is a displacement detection circuit 29.
After being converted into a voltage value by, the signal is output to the signal processing circuit 30, and then output from the signal processing circuit 30 to the electrostatic drive circuit 34.

【0026】次に、駆動部31を構成する静電駆動回路
34は、変位検出部26からの変位検出信号に応じた駆
動電圧信号を各電極32,33に選択的に出力し、該各
電極32,33と質量部25Bとの間に所定の静電力を
発生させ、該駆動部31は片持梁25の変位を無振動状
態(原点)に復帰させる。
Next, the electrostatic drive circuit 34 constituting the drive unit 31 selectively outputs a drive voltage signal corresponding to the displacement detection signal from the displacement detection unit 26 to each of the electrodes 32 and 33, and each of the electrodes 32 and 33. A predetermined electrostatic force is generated between 32 and 33 and the mass portion 25B, and the drive portion 31 restores the displacement of the cantilever 25 to the vibration-free state (origin).

【0027】これにより、演算処理回路35は、静電駆
動回路34から出力された駆動電圧信号に基づき、コン
トロールユニット等に加速度検出信号を出力する。
As a result, the arithmetic processing circuit 35 outputs an acceleration detection signal to the control unit or the like based on the drive voltage signal output from the electrostatic drive circuit 34.

【0028】かくして、本実施例によれば、片持梁25
の支持部25A上に設けた圧電体27と、該圧電体27
に隣接して支持部25A上に設けられ、圧電体27から
電極28を介して出力された電荷信号を電圧値に変換す
る変位検出回路29とによって変位検出部26を構成し
たから、圧電体27の有する優れた電気量−機械量変換
特性を利用して、片持梁25の変位を高感度で検出する
ことができる。
Thus, according to this embodiment, the cantilever 25
Of the piezoelectric body 27 provided on the supporting portion 25A of the
Since the displacement detecting unit 26 is configured by the displacement detecting circuit 29 which is provided adjacent to the supporting portion 25A and converts the charge signal output from the piezoelectric body 27 through the electrode 28 into a voltage value, the piezoelectric body 27 is formed. It is possible to detect the displacement of the cantilever 25 with high sensitivity by utilizing the excellent electric quantity-mechanical quantity conversion characteristic of.

【0029】この結果、変位検出部26からの高感度な
変位検出信号に基づき、駆動部31は正確に片持梁25
の位置を制御することができ、加速度の検出精度や信頼
性等を大幅に向上することができる。
As a result, based on the highly sensitive displacement detection signal from the displacement detection unit 26, the drive unit 31 accurately causes the cantilever 25.
The position can be controlled, and the accuracy of acceleration detection, reliability, etc. can be greatly improved.

【0030】また、片持梁25の支持部25A基端側を
下側基板22の突出部22A上まで延設し、該支持部2
5Aの突出端側に半導体製造技術を用いてFET等から
なる変位検出回路29を一体形成する構成としたから、
圧電体27からの電荷信号を速やかに電圧値に変換する
ことができる。この結果、変位検出信号に生じるノイズ
を効果的に低減して、加速度の検出精度を大幅に向上す
ることができ、低周波までの加速度検出を正確に行うこ
とができ、性能や信頼性等を向上することができる。
Further, the base end side of the supporting portion 25A of the cantilever 25 is extended to above the projecting portion 22A of the lower substrate 22, and the supporting portion 2
Since the displacement detection circuit 29 including an FET or the like is integrally formed on the protruding end side of the 5A by using semiconductor manufacturing technology,
The charge signal from the piezoelectric body 27 can be quickly converted into a voltage value. As a result, noise generated in the displacement detection signal can be effectively reduced, acceleration detection accuracy can be significantly improved, and acceleration detection up to low frequencies can be accurately performed, resulting in improved performance and reliability. Can be improved.

【0031】さらに、変位検出部26を圧電体27等か
ら構成し、駆動部31を各電極32,33等から静電力
型の駆動部として構成したから、検出系と駆動系との間
に寄生容量による信号干渉が生じるのを確実に防止し、
加速度の検出精度を大幅に向上することができる。
Further, since the displacement detecting section 26 is composed of the piezoelectric body 27 and the like and the driving section 31 is composed of the electrodes 32 and 33 and the like as an electrostatic force type driving section, it is parasitic between the detection system and the driving system. Surely prevent signal interference due to capacity,
Acceleration detection accuracy can be significantly improved.

【0032】なお、前記実施例では、圧電体27はZn
O圧電性薄膜から形成するものとして述べたが、本発明
はこれに限らず、例えばPZT薄膜,チタン酸鉛薄膜等
の圧電性薄膜や、PZT,チタン酸鉛,ZnO等の圧電
セラミックス薄片を用いる構成としてもよい。
In the above embodiment, the piezoelectric body 27 is made of Zn.
Although the present invention is described as being formed from an O piezoelectric thin film, the present invention is not limited to this, and a piezoelectric thin film such as a PZT thin film or a lead titanate thin film, or a piezoelectric ceramic thin piece such as PZT, lead titanate, or ZnO is used. It may be configured.

【0033】また、前記実施例では、各基板22,23
はガラス等の絶縁性材料から形成するものとして述べた
が、本発明はこれに限らず、各基板および片持梁をシリ
コン材料から形成する構成としてもよい。この場合に
は、各電極と基板との間等に絶縁膜を形成すればよい。
Further, in the above embodiment, each of the substrates 22 and 23 is
However, the present invention is not limited to this, and each substrate and the cantilever may be formed of a silicon material. In this case, an insulating film may be formed between each electrode and the substrate.

【0034】さらに、片持梁25をシリコン材料から形
成するものとして述べたが、本発明はこれに限らず、片
持梁25のうち変位検出回路29を形成する部分を除く
残りの全体または一部を窒化シリコンや酸化シリコン等
のシリコン化合物材料で形成してもよい。この場合は、
シリコン化合物材料の表面にアース電極形成用の導電性
薄膜を形成する。
Further, although the cantilever 25 has been described as being formed of a silicon material, the present invention is not limited to this, and the whole or one portion of the cantilever 25 excluding the portion forming the displacement detection circuit 29 is used. The portion may be formed of a silicon compound material such as silicon nitride or silicon oxide. in this case,
A conductive thin film for forming a ground electrode is formed on the surface of a silicon compound material.

【0035】さらにまた、前記実施例では、変位検出回
路29のみを片持梁25上に一体形成する場合を例に挙
げて説明したが、これに限らず、場合によっては信号処
理回路30や静電駆動回路34等の他の回路も片持梁2
5の突出端側に一体形成する構成としてもよい。また、
下側基板,上側基板をシリコン材料から形成する場合に
は、該各基板の表面にこれら変位検出回路29等を一体
形成してもよい。
Furthermore, in the above embodiment, the case where only the displacement detection circuit 29 is integrally formed on the cantilever 25 has been described as an example, but the present invention is not limited to this, and in some cases, the signal processing circuit 30 or the static circuit. Other circuits such as the electric drive circuit 34 cantilever 2
It may be configured to be integrally formed on the protruding end side of 5. Also,
When the lower substrate and the upper substrate are made of a silicon material, these displacement detection circuits 29 and the like may be integrally formed on the surface of each substrate.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明によれば、シ
リコン材料から形成され、基端側が固定端となり先端側
が加速度に応じて変位する質量部となった可動部と、該
可動部の基端側に設けられた圧電体からなり、該可動部
の変位を検出する変位検出部と、該変位検出部からの変
位検出信号に基づき、前記可動部の変位が零となるよう
に静電力を発生させて該可動部の位置を制御する駆動部
とから構成したから、加速度が加わると、この加速度に
よって可動部は変位し、変位検出部は該可動部の変位を
圧電体に生じた電荷に基づいて検出し、駆動部は、該変
位検出部からの変位検出信号に基づいて可動部の変位が
零となるように静電力を発生させ、該可動部の位置を制
御することができる。この結果、圧電体の有する優れた
電気量−機械量変換特性を利用して、可動部の変位を高
感度で検出することができ、駆動部によって正確に可動
部の位置を制御することができ、加速度の検出精度や信
頼性等を向上することができる。
As described above in detail, according to the present invention, the movable portion, which is made of a silicon material and has a base end side which is a fixed end and a distal end side which is a mass portion which is displaced in accordance with acceleration, and the movable part of the movable portion. A displacement detection section that is composed of a piezoelectric body provided on the base end side and detects the displacement of the movable section, and an electrostatic force so that the displacement of the movable section becomes zero based on a displacement detection signal from the displacement detection section. And a drive unit that controls the position of the movable unit by generating an electric field. Therefore, when acceleration is applied, the movable unit is displaced by this acceleration, and the displacement detection unit causes the displacement of the movable unit to occur in the piezoelectric body. The drive unit can control the position of the movable unit by generating an electrostatic force so that the displacement of the movable unit becomes zero based on the displacement detection signal from the displacement detection unit. As a result, the displacement of the movable part can be detected with high sensitivity by utilizing the excellent electric quantity-mechanical quantity conversion characteristic of the piezoelectric body, and the position of the movable part can be accurately controlled by the driving part. The acceleration detection accuracy and reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による加速度センサを示す全体
構成図である。
FIG. 1 is an overall configuration diagram showing an acceleration sensor according to an embodiment of the present invention.

【図2】従来技術による加速度センサを示す全体構成図
である。
FIG. 2 is an overall configuration diagram showing an acceleration sensor according to a conventional technique.

【符号の説明】[Explanation of symbols]

25 片持梁(可動部) 25A 支持部 25B 質量部 26 変位検出部 27 圧電体 31 駆動部 32 下側駆動電極 33 上側駆動電極 25 cantilever (movable part) 25A support part 25B mass part 26 displacement detection part 27 piezoelectric body 31 drive part 32 lower drive electrode 33 upper drive electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリコン材料または一部がシリコンの化
合物材料から形成され、基端側が固定端となり先端側が
加速度に応じて変位する質量部となった可動部と、該可
動部の基端側に設けられた圧電体からなり、該可動部の
変位を検出する変位検出部と、該変位検出部からの変位
検出信号に基づき、前記可動部の変位が零となるように
静電力を発生させて該可動部の位置を制御する駆動部と
から構成してなる加速度センサ。
1. A movable part, which is made of a silicon material or a part of which is made of a silicon compound material, has a base end side as a fixed end and a tip end side as a mass part which is displaced according to acceleration, and a base end side of the movable part. A displacement detection unit that is provided with a piezoelectric body and detects displacement of the movable unit, and generates an electrostatic force so that the displacement of the movable unit becomes zero based on a displacement detection signal from the displacement detection unit. An acceleration sensor including a drive unit that controls the position of the movable unit.
JP20457692A 1992-07-08 1992-07-08 Acceleration sensor Pending JPH0627134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20457692A JPH0627134A (en) 1992-07-08 1992-07-08 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20457692A JPH0627134A (en) 1992-07-08 1992-07-08 Acceleration sensor

Publications (1)

Publication Number Publication Date
JPH0627134A true JPH0627134A (en) 1994-02-04

Family

ID=16492759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20457692A Pending JPH0627134A (en) 1992-07-08 1992-07-08 Acceleration sensor

Country Status (1)

Country Link
JP (1) JPH0627134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313819A (en) * 2010-07-02 2012-01-11 罗伯特·博世有限公司 Be used to measure the sensor device of the micromechanics of acceleration, pressure and similar parameters
JP2017009562A (en) * 2015-06-26 2017-01-12 国立大学法人 東京大学 Pressure sensor
CN107064561A (en) * 2017-03-21 2017-08-18 华南理工大学 The caliberating device and scaling method of a kind of single-axis acceleration sensors
CN110849468A (en) * 2019-11-18 2020-02-28 清华大学 Vibration sensor and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313819A (en) * 2010-07-02 2012-01-11 罗伯特·博世有限公司 Be used to measure the sensor device of the micromechanics of acceleration, pressure and similar parameters
DE102010030878B4 (en) 2010-07-02 2023-08-17 Robert Bosch Gmbh Micromechanical sensor device for measuring an acceleration, a pressure and the like
JP2017009562A (en) * 2015-06-26 2017-01-12 国立大学法人 東京大学 Pressure sensor
CN107064561A (en) * 2017-03-21 2017-08-18 华南理工大学 The caliberating device and scaling method of a kind of single-axis acceleration sensors
CN107064561B (en) * 2017-03-21 2023-04-21 华南理工大学 Calibration device and calibration method for single-axis acceleration sensor
CN110849468A (en) * 2019-11-18 2020-02-28 清华大学 Vibration sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2776142B2 (en) Acceleration sensor
US7313958B2 (en) Rotational rate sensor
US6508126B2 (en) Dynamic quantity sensor having movable and fixed electrodes with high rigidity
US7302847B2 (en) Physical quantity sensor having movable portion
JPH1090299A (en) Electrostatic capacitance type acceleration sensor
KR19990083114A (en) A piezo-electric acceleration sensor, the manufacturing method thereof, and the method of detecting acceleration
JPH0627137A (en) Acceleration sensor
JP2004069562A (en) Capacitance type mechanical quantity sensor
JPH02248865A (en) Acceleration detector
JP3009104B2 (en) Semiconductor sensor and semiconductor sensor package
JPH0627134A (en) Acceleration sensor
JPH08247768A (en) Angular velocity sensor
JP2001044450A (en) Semiconductor dynamic quantity sensor
JP2773460B2 (en) Semiconductor acceleration sensor
JP3136888B2 (en) Accelerometer sensitivity adjustment device
JP3284921B2 (en) Acceleration sensor, angular acceleration sensor and method for manufacturing them
JP2002005954A (en) Semiconductor dynamical quantity sensor
JPH1096745A (en) Electrical capacitance type external force detecting device
JPH06194381A (en) Acceleration sensor
JP3289069B2 (en) Semiconductor acceleration sensor
JPH01240865A (en) Acceleration sensor
CN220872772U (en) Piezoelectric micro-mirror with self-detection electrode based on temperature feedback
JPH0275963A (en) Semiconductor sensor
JP2001099861A (en) Capacitance type physical quantity detector
JPH08105913A (en) Silicon accelerometer