JPH02248865A - Acceleration detector - Google Patents

Acceleration detector

Info

Publication number
JPH02248865A
JPH02248865A JP6921589A JP6921589A JPH02248865A JP H02248865 A JPH02248865 A JP H02248865A JP 6921589 A JP6921589 A JP 6921589A JP 6921589 A JP6921589 A JP 6921589A JP H02248865 A JPH02248865 A JP H02248865A
Authority
JP
Japan
Prior art keywords
vibrator
acceleration
piezoelectric
frequency
piezo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6921589A
Other languages
Japanese (ja)
Inventor
Toshimi Okazaki
岡崎 俊実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6921589A priority Critical patent/JPH02248865A/en
Publication of JPH02248865A publication Critical patent/JPH02248865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To enable the detection not only of vibration acceleration but also static acceleration with a simple construction by vibrating a vibrator provided with a piezo-electric element at a frequency near a resonance frequency thereof to detect a voltage of a piezo-electric element. CONSTITUTION:A piezo-electric vibrator 10 is provided on a substrate 11 such as Si wafer and a recess 11a is formed on the top of the substrate 11 to provide a cantilever 12, which is formed with a free end thereof positioned on the top of the recess 11a. A piezo-electric 13 element having metal electrodes 14 and 15 is provided on the top of the lever 12 while the electrodes 14 and 15 are equipped with terminals 14a and 15a. When acceleration is applied to the vibrator 10 while the piezo-electric vibrator 10 is excited at a frequency near a resonance frequency thereof, a stress such as being, elongation or shrinkage is caused in the vibrator 10 and the resonance frequency of the vibrator 10 varies. As a result, a value of impedance changes with respect to an excitation frequency to cause a change in an output voltage of a piezo-electric vibrator 11 so as to be proportional to the acceleration. Thus, the acceleration is detected by checking the output voltage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧電素子の圧電効果を利用して運動加速度を
検出する加速度検出装置に関し、更に詳しくは、振動加
速度のみならず静加速度をも検出する加速度検出装置に
関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an acceleration detection device that detects motion acceleration using the piezoelectric effect of a piezoelectric element. The present invention relates to an acceleration detection device for detecting acceleration.

(従来技術) 車両運動制御システムによって自動車の運動性能を高め
たり、ドライバの運転技量を補助するためのシステムが
多く開発されている。このようなシステムに必要な車体
運動検知用センサとしては加速度センサが多く用いられ
ているが、特に、小型軽量で量産性に富み、高性能なセ
ンサを容易に得ることができる圧電型加速度センサが注
目されている。圧電型加速度センサは、圧電素子の圧電
効果、すなわち、物質に外力を加えて歪みを与えると電
荷が生じ、逆に電圧を加えると機械的歪みが生じる現象
を利用したもので、加速度を受けて偏位する例えばカン
チレバー(片持ち支持梁)状の振動子に圧電素子を配設
し、圧電素子の両面に電極膜を形成したものとなってい
る。このような圧電素子の圧電効果を利用したセンサ構
造は、例えば、特開昭61−97572号公報、特開昭
61−220596号公報等に開示されている。
(Prior Art) Many systems have been developed to improve the dynamic performance of an automobile or to assist the driver's driving skills using a vehicle motion control system. Acceleration sensors are often used as sensors for detecting vehicle body motion necessary for such systems, but piezoelectric acceleration sensors are particularly popular because they are small, lightweight, mass-producible, and can easily produce high-performance sensors. Attention has been paid. Piezoelectric acceleration sensors utilize the piezoelectric effect of piezoelectric elements, which is a phenomenon in which electric charges are generated when an external force is applied to a material to cause strain, and conversely, mechanical strain is generated when a voltage is applied. A piezoelectric element is disposed on a vibrator shaped like a cantilever (cantilever support beam), which is deflected, and electrode films are formed on both sides of the piezoelectric element. Sensor structures that utilize the piezoelectric effect of such piezoelectric elements are disclosed in, for example, Japanese Patent Laid-Open No. 61-97572, Japanese Patent Laid-Open No. 61-220596, and the like.

(発明が解決しようとする課題) しかしながら、従来の圧電型加速度検出装置すなわち加
速度センサは、圧電効果によって生ずる電荷を直接出力
として取り出すように構成されているため、周期的な振
動加速度は測定可能であるが、一定の加速度が連続的に
加わるような静加速度は測定することができない。
(Problem to be Solved by the Invention) However, conventional piezoelectric acceleration detection devices, that is, acceleration sensors, are configured to directly output the charge generated by the piezoelectric effect, and therefore cannot measure periodic vibration acceleration. However, it is not possible to measure static acceleration where constant acceleration is applied continuously.

したがって、本発明の目的は、簡単な構造で振動加速度
のみならず静加速度をも検出することができる加速度検
出装置を提供することある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an acceleration detection device that has a simple structure and is capable of detecting not only vibrational acceleration but also static acceleration.

(課題を解決するための手段) 上記目的を達成するために、本発明にあっては、加速度
検出装置を次のような構成とする。すなわち、 圧電素子を備え、加速度を受けて偏位する振動子と、 前記振動子をその共振周波数近傍の周波数で励振させる
励振手段と、 前記圧電素子の出力電圧を検出する電圧検出手段と、 を備えるような構成とする。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, an acceleration detection device has the following configuration. That is, a vibrator that includes a piezoelectric element and deflects in response to acceleration; excitation means that excites the vibrator at a frequency near its resonance frequency; and voltage detection means that detects the output voltage of the piezoelectric element. The structure shall be such that it is prepared.

(発明の作用、効果) 上記構成を有する加速度検出装置においては、圧電素子
を備えた振動子をその共振周波数近傍の周波数で励振さ
せた状態で、圧電素子の出力電圧を検出すると、この出
力電圧の大きさは振動子に加わる加速度の大きさに比例
することとなる。すなわち、振動子を励振させる周波数
を振動子の共振周波数近傍で変化させると振動子のイン
ピーダンスが一定の関係で変化する(インピーダンスが
極大、極小になる周波数が存在する)。一方、振動子を
その共振周波数近傍の一定の周波数で励振させた状態で
、振動子に加速度による曲げ応力、引張り応力、圧縮応
力等を生じさせると、振動子の共振周波数が変化するの
で、励振周波数に対する振動子のインピーダンスの大き
さが変化することとなる。したがって、圧電素子から取
り出される出力電圧は振動子に加わる加速度に比例した
ものとなる。
(Operations and Effects of the Invention) In the acceleration detection device having the above configuration, when the output voltage of the piezoelectric element is detected while the vibrator including the piezoelectric element is excited at a frequency near its resonance frequency, the output voltage The magnitude of is proportional to the magnitude of acceleration applied to the vibrator. That is, when the frequency at which the vibrator is excited is changed near the resonant frequency of the vibrator, the impedance of the vibrator changes in a fixed relationship (there are frequencies where the impedance is maximum and minimum). On the other hand, when the vibrator is excited at a constant frequency near its resonant frequency, if bending stress, tensile stress, compressive stress, etc. are generated in the vibrator due to acceleration, the resonant frequency of the vibrator changes, so the excitation The magnitude of the impedance of the vibrator changes with frequency. Therefore, the output voltage extracted from the piezoelectric element is proportional to the acceleration applied to the vibrator.

以上の如く、本発明によれば、圧電型振動子をその共振
周波数近傍の周波数で励振させる励振手段を付加したこ
とにより、簡単な構造で、振動子に加わる振動加速度は
もとより静加速度をも検出可能な圧電型加速度検出装置
を提供できることとなる。
As described above, according to the present invention, by adding an excitation means that excites the piezoelectric vibrator at a frequency near its resonance frequency, not only vibration acceleration but also static acceleration applied to the vibrator can be detected with a simple structure. This makes it possible to provide a piezoelectric acceleration detection device that is possible.

(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図及び第2図は本発明の一実施例に係る圧電型加速
度検出装置のカンチレバー型圧電振動子の縦断面図及び
平面図である。これらの図を参照すると、この圧電振動
子10はシリコンウェハ等の基板11に設けられており
、基板11の上面には、半導体の微細加工技術(シリコ
ンウェハのマイクロマシニング技術)により、凹所11
aが形成されている。圧電振動子10は例えばシリコン
、酸化シリコン等からなるカンチレバー(片持ち粱)1
2を備えており、カンチレバー12は、その先端すなわ
ち自由端が凹所11aの上部に位置するように、基板1
1の上面に形成されている。更に、このカンチレバー1
2の上面には、上下両面をそれぞれ白金(Pt)等の金
属電極膜14.15を形成した圧電素子膜13が形成さ
れている。下側及び上側金属電極14.15は互いに絶
縁状態に保たれており、画電極膜14.15の一端はそ
れぞれ、第2図に示すように、基板11の上面に沿って
延びており、電極14.15の端子14a。
1 and 2 are a longitudinal sectional view and a plan view of a cantilever type piezoelectric vibrator of a piezoelectric acceleration detection device according to an embodiment of the present invention. Referring to these figures, this piezoelectric vibrator 10 is provided on a substrate 11 such as a silicon wafer, and a recess 11 is formed on the upper surface of the substrate 11 by semiconductor microfabrication technology (silicon wafer micromachining technology).
a is formed. The piezoelectric vibrator 10 is a cantilever 1 made of silicon, silicon oxide, etc.
2, and the cantilever 12 is attached to the substrate 1 such that its tip, that is, its free end is located above the recess 11a.
It is formed on the top surface of 1. Furthermore, this cantilever 1
A piezoelectric element film 13 having metal electrode films 14 and 15 made of platinum (Pt) or the like formed on both upper and lower surfaces thereof is formed on the upper surface of the piezoelectric element 2 . The lower and upper metal electrodes 14.15 are kept insulated from each other, and one end of each picture electrode film 14.15 extends along the upper surface of the substrate 11, as shown in FIG. 14.15 terminal 14a.

15aがそれぞれパターン形成されている。15a are each patterned.

圧電素子膜13の材料としては、例えば、チタン酸鉛(
PbTiOs)、チタン酸ジルコン酸鉛(PZT) 、
酸化亜鉛(ZnO)等を使用することができる。圧電素
子膜13の膜厚は1〜3μmが好適であり、このような
圧電薄膜13はスパッタリング法、CVD法等の薄膜形
成技術により形成することができる。
As the material of the piezoelectric element film 13, for example, lead titanate (
PbTiOs), lead zirconate titanate (PZT),
Zinc oxide (ZnO) or the like can be used. The thickness of the piezoelectric element film 13 is preferably 1 to 3 μm, and such a piezoelectric thin film 13 can be formed by a thin film forming technique such as a sputtering method or a CVD method.

第3図は、圧電振動子104こ加速度が加わって該圧電
振動子IOの先端側が凹所10aの内方側に偏位した状
態を模式的に示している。
FIG. 3 schematically shows a state in which the piezoelectric vibrator 104 is subjected to acceleration and the tip side of the piezoelectric vibrator IO is deviated inward of the recess 10a.

第4図は、圧電振動子10をその共振周波数近傍の周波
数で励振させるための励振回路16を示したものである
。第4図において、17は発振器、18.19は抵抗、
20は電圧計である。圧電振動子10は、共振周波数近
傍においては、第5図にその電気的等価回路を示すよう
に、抵抗R1,インダクタンスL、キャパシタンスC,
、C2を成分とするインピーダンスを有する。
FIG. 4 shows an excitation circuit 16 for exciting the piezoelectric vibrator 10 at a frequency near its resonance frequency. In Figure 4, 17 is an oscillator, 18.19 is a resistor,
20 is a voltmeter. In the vicinity of the resonance frequency, the piezoelectric vibrator 10 has a resistance R1, an inductance L, a capacitance C, and an electric equivalent circuit shown in FIG.
, C2 as components.

第4図に示す励振回路16により圧電振動子10を励振
させ、且つ、圧電振動子JOの共振周波数の近傍で励振
周波数を変化させると、インピーダンスが極大、極小に
なる周波数f、、f、、が存在する。これを電圧として
取り出すと、第6図に示すように、電圧が極大、極小に
なる周波数f+、fzが観察される。第6図において、
横軸は振動子10に加える励振周波数、縦軸は第4図の
電圧計20で観察される圧電振動子10の出力電圧であ
る。
When the piezoelectric vibrator 10 is excited by the excitation circuit 16 shown in FIG. 4 and the excitation frequency is changed in the vicinity of the resonant frequency of the piezoelectric vibrator JO, the impedance becomes maximum and minimum at frequencies f, , f, . exists. When this is taken out as a voltage, as shown in FIG. 6, frequencies f+ and fz at which the voltage becomes maximum and minimum are observed. In Figure 6,
The horizontal axis is the excitation frequency applied to the vibrator 10, and the vertical axis is the output voltage of the piezoelectric vibrator 10 observed with the voltmeter 20 in FIG.

上記構成を有する圧電型加速度検出装置を使用した場合
、第7図に示すように、圧電振動子10をその共振周波
数近傍の周波数、例えば、インピーダンスが極大、極小
になる周波数f1.f2の間の周波数f0で励振させた
状態で、圧電振動子lOに加速度が加わると、圧電振動
子10に曲げ、伸び、縮み等による応力が生じるため、
圧電振動子10の共振周波数が変化する。このため、励
振周波数f0に対するインピーダンスの値が変化し、そ
の結果、励振周波数f0に対する圧電振動子10の出力
電圧が、第7図に示すように、電圧v0からV、へと変
化することとなる。すなわち、励振周波数を一定とした
状態では、第8図に示すように、圧電振動子lOから取
り出される出力電圧の値は圧電振動子10に加わる加速
度の大きさに比例することとなる。したがって、圧電振
動子IOの出力電圧を検出することにより、圧電振動子
10に加わる加速度、すなわち、振動加速度のみならず
静加速度をも検出することができる。
When the piezoelectric acceleration detection device having the above configuration is used, as shown in FIG. 7, the piezoelectric vibrator 10 is moved to a frequency near its resonance frequency, for example, a frequency f1 at which the impedance becomes maximum or minimum. When acceleration is applied to the piezoelectric vibrator 10 while it is excited at a frequency f0 between f2, stress due to bending, elongation, contraction, etc. is generated in the piezoelectric vibrator 10.
The resonant frequency of the piezoelectric vibrator 10 changes. Therefore, the value of impedance with respect to the excitation frequency f0 changes, and as a result, the output voltage of the piezoelectric vibrator 10 with respect to the excitation frequency f0 changes from voltage v0 to V as shown in FIG. . That is, when the excitation frequency is kept constant, the value of the output voltage taken out from the piezoelectric vibrator 10 is proportional to the magnitude of the acceleration applied to the piezoelectric vibrator 10, as shown in FIG. Therefore, by detecting the output voltage of the piezoelectric vibrator IO, it is possible to detect not only the acceleration applied to the piezoelectric vibrator 10, that is, the vibrational acceleration but also the static acceleration.

上記構成を有する圧電型加速度検出装置は、上述したよ
うに、半導体の微細加工技術及び薄膜形成技術を利用し
て製造することができるので、超小型軽量で、高精度な
加速度検出装置を比較的安価に量産することができる。
As described above, the piezoelectric acceleration detection device having the above configuration can be manufactured using semiconductor microfabrication technology and thin film formation technology. It can be mass-produced at low cost.

なお、圧電振動子10の圧電素子膜13及び電極膜14
.15は厚膜形成技術により形成してもよく、また、圧
電材料を電極と共に直接焼成したセラミック材料で形成
し、その一端を基板に固定することによりカンチレバー
型振動子を構成することもできる。これらの製法では、
薄膜技術にょる製法に比べて圧電振動子が若干大型化す
るが、圧電振動子の機械的強度が高まるという利点があ
る。
Note that the piezoelectric element film 13 and electrode film 14 of the piezoelectric vibrator 10
.. 15 may be formed by a thick film forming technique, or a cantilever type vibrator may be constructed by forming a piezoelectric material and a ceramic material directly fired together with an electrode, and fixing one end of the piezoelectric material to a substrate. In these manufacturing methods,
Although the piezoelectric vibrator is slightly larger than the manufacturing method using thin film technology, it has the advantage of increasing the mechanical strength of the piezoelectric vibrator.

第9図はカンチレバー型圧電振動子1oの構造の変形例
を示している。第9図において上記実施例と同様の構成
要素には同一の参照符号が付されている。この実施例で
は、圧電振動子IQの一端を支える基板11がケーシン
グllbと一体的に形成されている。また、ケーシング
llb内において、圧電振動子10の先端側には加速度
検出感度を高めるためのおもり2】が設けられている。
FIG. 9 shows a modification of the structure of the cantilever type piezoelectric vibrator 1o. In FIG. 9, the same reference numerals are given to the same components as in the above embodiment. In this embodiment, a substrate 11 supporting one end of the piezoelectric vibrator IQ is formed integrally with the casing llb. Furthermore, within the casing llb, a weight 2] is provided on the tip side of the piezoelectric vibrator 10 for increasing the acceleration detection sensitivity.

このような構成の場合、上述した厚膜形成技術或いはセ
ラミック焼成による、比較的高強度の圧電振動子IOと
することが好ましい。
In the case of such a configuration, it is preferable to use a relatively high-strength piezoelectric vibrator IO using the above-mentioned thick film forming technique or ceramic firing.

以上、本発明の好ましい実施例につき説明したが、本発
明は上記実施例の構造のみに限定されるものではない。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the structure of the above embodiments.

例えば、本発明による加速度検出装置の圧電振動子はカ
ンチレバー型のものに限られず、加速度を受けることに
よって曲がり、伸び、縮み等の変形を生じるものであれ
ば、例えば両端支持構造等、他の如何なる支持構造とし
てもよい。
For example, the piezoelectric vibrator of the acceleration detection device according to the present invention is not limited to a cantilever type, but may be of any other type as long as it bends, expands, contracts, or otherwise deforms when subjected to acceleration, such as a structure with both ends supported. It may also be used as a support structure.

また、図示した圧電振動子は、圧電素子膜の両面にそれ
ぞれ電極膜を形成した所謂モノモルフ型の振動素子であ
るが、本発明による加速度検出装置にはバイモフル型圧
電振動子を用いてもよい。
Further, although the illustrated piezoelectric vibrator is a so-called monomorph type vibrating element in which electrode films are formed on both sides of a piezoelectric element film, a bimorph type piezoelectric vibrator may be used in the acceleration detection device according to the present invention.

更に、圧電振動子に与える励振周波数としては、上述し
たように、インピーダンスが極大、極小となる周波数の
間の周波数とすることが、加速度に比例した出力電圧を
得る上で好ましいが、圧電振動子の共振周波数近傍の周
波数であれば、上記範囲外の周波数であっても本発明の
所期の目的を達成することができる。
Furthermore, as mentioned above, it is preferable to set the excitation frequency given to the piezoelectric vibrator at a frequency between the frequencies at which the impedance is maximum and minimum in order to obtain an output voltage proportional to acceleration. As long as the frequency is close to the resonance frequency of , the intended purpose of the present invention can be achieved even if the frequency is outside the above range.

【図面の簡単な説明】[Brief explanation of drawings]

第1ifflは本発明による加速度検出装置に用いられ
る圧電振動子の一構成例を示す第2図中2−2線に沿っ
た断面図。 第2図は上記加速度検出装置の平面図。 第3図は第1図に示す圧電振動子の加速度による偏位状
態を模式的に示す第1図と類似の断面図。 第4図は本発明による加速度検出装置の励娠回路構成例
を示す回路図。 第5図は第4図に示す励振回路における圧電振動子の共
振周波数近傍における電気的等価回路を示す回路図。 第6図は圧電振動子の励振周波数を変化させたときの圧
電振動子の出力電圧特性を示すグラフ。 第7図は圧電振動子に加速度による偏位が生じたときの
出力電圧特性の変化を示すグラフ。 第8図は励振周波数を一定としたときの圧電振動子に加
わる加速度と圧電振動子の出力電圧との関係を示すグラ
フ。 第9図は本発明による加速度検出装置の圧電振動子の変
形例を示す断面図。 10・・・圧電振動子 11・・・基板(シリコンウェハ) 12・・・カンチレバー 13・・・圧電素子膜 14.15・・・電極膜 16・・・励振回路 第4図 第5図 第1図 第2図 第3図 第6図 励11昭ヒ周ン[秋f。
1. IFFL is a sectional view taken along line 2-2 in FIG. 2, showing an example of the configuration of a piezoelectric vibrator used in the acceleration detection device according to the present invention. FIG. 2 is a plan view of the acceleration detection device. FIG. 3 is a cross-sectional view similar to FIG. 1, schematically showing a deflection state due to acceleration of the piezoelectric vibrator shown in FIG. FIG. 4 is a circuit diagram showing an example of the configuration of an excitation circuit of the acceleration detection device according to the present invention. FIG. 5 is a circuit diagram showing an electrical equivalent circuit near the resonance frequency of the piezoelectric vibrator in the excitation circuit shown in FIG. 4. FIG. 6 is a graph showing the output voltage characteristics of the piezoelectric vibrator when the excitation frequency of the piezoelectric vibrator is changed. FIG. 7 is a graph showing changes in output voltage characteristics when a deviation occurs in the piezoelectric vibrator due to acceleration. FIG. 8 is a graph showing the relationship between the acceleration applied to the piezoelectric vibrator and the output voltage of the piezoelectric vibrator when the excitation frequency is constant. FIG. 9 is a sectional view showing a modification of the piezoelectric vibrator of the acceleration detection device according to the present invention. 10... Piezoelectric vibrator 11... Substrate (silicon wafer) 12... Cantilever 13... Piezoelectric element film 14.15... Electrode film 16... Excitation circuit Fig. 4 Fig. 5 Fig. 1 Figure 2 Figure 3 Figure 6 Excitement 11 Showhi Shuun [Autumn f.

Claims (1)

【特許請求の範囲】[Claims] (1)圧電素子を備え、加速度を受けて偏位する振動子
と、  前記振動子をその共振周波数近傍の周波数で励振させ
る励振手段と、  前記圧電素子の出力電圧を検出する電圧検出手段と、 を備えてなる加速度検出装置。
(1) a vibrator including a piezoelectric element and deflecting in response to acceleration; excitation means for exciting the vibrator at a frequency near its resonance frequency; voltage detection means for detecting the output voltage of the piezoelectric element; An acceleration detection device equipped with
JP6921589A 1989-03-23 1989-03-23 Acceleration detector Pending JPH02248865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6921589A JPH02248865A (en) 1989-03-23 1989-03-23 Acceleration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6921589A JPH02248865A (en) 1989-03-23 1989-03-23 Acceleration detector

Publications (1)

Publication Number Publication Date
JPH02248865A true JPH02248865A (en) 1990-10-04

Family

ID=13396274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6921589A Pending JPH02248865A (en) 1989-03-23 1989-03-23 Acceleration detector

Country Status (1)

Country Link
JP (1) JPH02248865A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802475B2 (en) 2006-10-13 2010-09-28 Seiko Epson Corporation Acceleration sensor
US7950282B2 (en) 2007-03-23 2011-05-31 Seiko Epson Corporation Acceleration sensor incorporating a piezoelectric device
US7954377B2 (en) 2007-03-28 2011-06-07 Seiko Epson Corporation Acceleration sensor incorporating a piezoelectric device
JP2012184993A (en) * 2011-03-04 2012-09-27 Nec Tokin Corp Piezoelectric acceleration sensor
JP2013007653A (en) * 2011-06-24 2013-01-10 Nippon Dempa Kogyo Co Ltd External force detection device and external force detection sensor
WO2014169540A1 (en) * 2013-04-18 2014-10-23 厦门乃尔电子有限公司 Non-uniform cross section cantilever beam piezoelectricity acceleration sensor
CN105247335A (en) * 2012-09-24 2016-01-13 积水化学工业株式会社 Leakage detector, leakage detection method, and pipe network monitoring apparatus
CN107870348A (en) * 2017-12-13 2018-04-03 中国地质大学(武汉) A kind of both arms piezoelectric seismometer core body and both arms piezoelectric seismometer
CN107870350A (en) * 2017-12-13 2018-04-03 中国地质大学(武汉) A kind of differential type bimorph geophone core body and piezoelectric seismometer
CN107884816A (en) * 2017-12-13 2018-04-06 中国地质大学(武汉) A kind of piezoelectric seismometer
CN107884818A (en) * 2017-12-13 2018-04-06 中国地质大学(武汉) A kind of piezoelectric seismometer
CN107894610A (en) * 2017-12-13 2018-04-10 中国地质大学(武汉) A kind of both arms piezoelectric seismometer
CN107907909A (en) * 2017-12-13 2018-04-13 中国地质大学(武汉) A kind of piezoelectric seismometer core and piezoelectric seismometer
CN107918143A (en) * 2017-12-13 2018-04-17 中国地质大学(武汉) A kind of piezoelectric seismometer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802475B2 (en) 2006-10-13 2010-09-28 Seiko Epson Corporation Acceleration sensor
US7950282B2 (en) 2007-03-23 2011-05-31 Seiko Epson Corporation Acceleration sensor incorporating a piezoelectric device
US7954377B2 (en) 2007-03-28 2011-06-07 Seiko Epson Corporation Acceleration sensor incorporating a piezoelectric device
JP2012184993A (en) * 2011-03-04 2012-09-27 Nec Tokin Corp Piezoelectric acceleration sensor
JP2013007653A (en) * 2011-06-24 2013-01-10 Nippon Dempa Kogyo Co Ltd External force detection device and external force detection sensor
CN105247335A (en) * 2012-09-24 2016-01-13 积水化学工业株式会社 Leakage detector, leakage detection method, and pipe network monitoring apparatus
WO2014169540A1 (en) * 2013-04-18 2014-10-23 厦门乃尔电子有限公司 Non-uniform cross section cantilever beam piezoelectricity acceleration sensor
CN107870348A (en) * 2017-12-13 2018-04-03 中国地质大学(武汉) A kind of both arms piezoelectric seismometer core body and both arms piezoelectric seismometer
CN107870350A (en) * 2017-12-13 2018-04-03 中国地质大学(武汉) A kind of differential type bimorph geophone core body and piezoelectric seismometer
CN107884816A (en) * 2017-12-13 2018-04-06 中国地质大学(武汉) A kind of piezoelectric seismometer
CN107884818A (en) * 2017-12-13 2018-04-06 中国地质大学(武汉) A kind of piezoelectric seismometer
CN107894610A (en) * 2017-12-13 2018-04-10 中国地质大学(武汉) A kind of both arms piezoelectric seismometer
CN107907909A (en) * 2017-12-13 2018-04-13 中国地质大学(武汉) A kind of piezoelectric seismometer core and piezoelectric seismometer
CN107918143A (en) * 2017-12-13 2018-04-17 中国地质大学(武汉) A kind of piezoelectric seismometer

Similar Documents

Publication Publication Date Title
Devoe et al. Surface micromachined piezoelectric accelerometers (PiXLs)
Weinberg Working equations for piezoelectric actuators and sensors
US7036373B2 (en) MEMS gyroscope with horizontally oriented drive electrodes
JP5713737B2 (en) Noise sensor with reduced noise
US10742190B2 (en) Piezoelectric micromechanical resonator
US7318348B2 (en) Angular rate sensor and mounting structure of angular rate sensor
US20100037692A1 (en) Solid-state inertial sensor on chip
US20080202239A1 (en) Piezoelectric acceleration sensor
JPH02248865A (en) Acceleration detector
US7467553B2 (en) Capacitively coupled resonator drive
US20090320594A1 (en) Inertia force sensor
US20170052027A1 (en) Vibration angular velocity sensor
EP1678511A1 (en) Trapped charge field bias vibrating beam accelerometer
US8074517B2 (en) Inertia force sensor
US5396798A (en) Mechanical resonance, silicon accelerometer
JP2001133476A (en) Acceleration sensor
JPH10318758A (en) Piezoelectric micro angular speed sensor and fabrication thereof
JP4687085B2 (en) Compound sensor
JP3368744B2 (en) Vibration acceleration sensor
KR100277425B1 (en) Electrode Structure of Thin Film Moving Wave Rotation Sensor and Its Sensor
EP0737864A1 (en) Force sensor
JPH05322925A (en) Semiconductor acceleration sensor with driving part for self-diagnosis
JPS62188975A (en) Piezoelectric angular velocity sensor
JPH1038578A (en) Angular speed sensor
JPH10311767A (en) Physical quantity sensor