JPS62188975A - Piezoelectric angular velocity sensor - Google Patents

Piezoelectric angular velocity sensor

Info

Publication number
JPS62188975A
JPS62188975A JP60220892A JP22089285A JPS62188975A JP S62188975 A JPS62188975 A JP S62188975A JP 60220892 A JP60220892 A JP 60220892A JP 22089285 A JP22089285 A JP 22089285A JP S62188975 A JPS62188975 A JP S62188975A
Authority
JP
Japan
Prior art keywords
sensor
section
angular velocity
sensor section
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60220892A
Other languages
Japanese (ja)
Inventor
Masashi Takeuchi
正志 竹内
Junichi Kawamura
河村 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60220892A priority Critical patent/JPS62188975A/en
Publication of JPS62188975A publication Critical patent/JPS62188975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sensor having a stable performance suitable for mass production with a simple construction, by arranging a drive section vibrating vertically or laterally along the length thereof and a sensor section extended vertically thereto, both made up of a uniform one piece piezoelectric body. CONSTITUTION:When a voltage is applied from an AC power source 6, a drive section 1 vibrates laterally in the direction X being parallel with electrodes 3a and 3b with a resonance frequency according to the length and a sensor section 2 integral with this portion does so in the direction of X accordingly. Under such a condition, as an angular velocity OMEGA of rotation is applied about an axis in the direction of the sensor section 2 extends, namely, in the direction Z, a force works in the direction Y vertical to both directions X and Z to cause the sensor section 2 to perform a bending vibration in the direction Y starting from the joint with the drive section 1. With the bending vibration of the sensor section 2, voltages, with the size almost equal, proportional to forces working on respective electrode faces are generated by a piezoelectric property, but opposite in the porality to each other. The voltages opposite in the porality are added up respectively by conducting connections properly to obtain a large voltage. So to speak, it possible to detect a voltage with a size proportional to an angular velocity OMEGA of rotation about the Z axis.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は振動形の圧電体角速度センサーに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vibrating piezoelectric angular velocity sensor.

従来の技術 従来、第7図に示すように構成された角速度センサーが
市販されている。図において、丁はバイモルフからなる
駆動部、2′は同じくバイモルフからなるセンサー部で
、これらは端部で直角に突合わされ、接着剤で接合され
ている。
2. Description of the Related Art Conventionally, an angular velocity sensor configured as shown in FIG. 7 has been commercially available. In the figure, numeral 2 is a drive section made of bimorph, and 2' is a sensor section also made of bimorph, which are abutted at right angles at their ends and joined with adhesive.

バイモルフは両面にそれぞれ電極3’ a 、 3’ 
b  (または3’0.3’d )を付着させた圧電板
1丁(接着面の電極は図示していない)を中央金属板3
’eの両面に接着剤で貼合わせた構造になっており、両
表面の電極3’ a 、 3’ b間、あるいは電極3
′a(または3′b)と中央金属板3’eの間に電圧を
印加すると、一方の圧電板が長さ方向に伸長し、他方の
圧電板が収縮するので、その一端を固定して屈曲変位を
起させることが出来る。また、逆にバイモルフに力を加
え、屈曲変位を生じさせると両表面の?Il&3’ c
 、 3’ d間、あるいは電極3′C(または3′d
)と中央金属板3’eとの間に電圧が発生する。
The bimorph has electrodes 3' a and 3' on both sides, respectively.
b (or 3'0.3'd) attached to the central metal plate 3 (the electrode on the adhesive surface is not shown).
It has a structure in which both sides of 'e are bonded with adhesive, and between electrodes 3'a and 3'b on both surfaces, or between electrodes 3'a and 3'b,
When a voltage is applied between 'a (or 3'b) and the central metal plate 3'e, one piezoelectric plate expands in the length direction and the other piezoelectric plate contracts. It is possible to cause bending displacement. Conversely, if force is applied to the bimorph to cause bending displacement, what happens to both surfaces? Il&3'c
, 3'd, or between electrodes 3'C (or 3'd
) and the central metal plate 3'e.

4′は駆動部下の一端を固定する支持台、5′は駆動部
下に電圧を印加するためのリード線、6′は電源である
。また、7’ a 、 7’ bはセンサー部2′で発
生する電圧を検出するためのリード線である。
4' is a support for fixing one end of the drive section, 5' is a lead wire for applying voltage to the drive section, and 6' is a power source. Further, 7'a and 7'b are lead wires for detecting the voltage generated in the sensor section 2'.

今、電[6’より駆動部下の電極3’aと3’bに交流
電圧を印加すると、駆動部下は屈曲振動を起し、センサ
ー部2′の先端は駆動部下の屈曲方向、すなわちX方向
に振動する。この状態でZ軸の回りに角速度Ωが加わる
とY方向にコリオリの力(Coriolis  for
ce)が働くため、下端が駆動部下に固定されているセ
ンサー部2′はその屈曲変位方向(Y方向)に屈曲振動
を生じ、その変位、すなわち、コリオリの力に比例した
電圧がリード線7′a。
Now, when an AC voltage is applied to the electrodes 3'a and 3'b under the drive part from the electric current [6', the drive part causes bending vibration, and the tip of the sensor part 2' moves in the bending direction of the drive part, that is, in the X direction. It vibrates. In this state, when an angular velocity Ω is applied around the Z axis, a Coriolis force is generated in the Y direction.
ce), the sensor part 2', whose lower end is fixed under the drive, generates bending vibration in its bending displacement direction (Y direction), and a voltage proportional to the displacement, that is, the Coriolis force, is applied to the lead wire 7. 'a.

7’b間に発生し、角速度Ωに比例した電圧■が検出で
きる。(摂動速度をVとしたときV ac vΩ)発明
が解決しようとする問題点 この種の角速度センサーは小形、軒昂で構造も簡単であ
って、感度の優れたセンサーになり得る。
7'b, and a voltage ■ proportional to the angular velocity Ω can be detected. (V ac vΩ when the perturbation velocity is V) Problems to be Solved by the Invention This type of angular velocity sensor is small, has a large eaves, has a simple structure, and can be a highly sensitive sensor.

しかし、バイモルフ構造の振動子を使用するとき、種々
の問題が発生する。例えば、中央金属板3’eの両面に
貼合わせる2枚の圧電板1丁は全く同一形状で同一性能
であることが要求される。もし、2枚の圧電板の性能が
異なると温度変化に伴ってバイモルフが屈曲したり、捩
れを起し、結果として精度の低下や温度ドリフトを生じ
てしまう。さらに中央金属板への接着の状態が異なるこ
とによっても同様な現象が生じる。これらは通常の製造
条件では制御し得ない範囲のものである。また、接着剤
は可塑性があり、熱的にも力学的特性は安定なものと言
えず、角速度センサーに力が加わった後や、混疫が変化
した後に必ずしも元の位冒に戻らず、零点のドリフトを
生ずる。
However, various problems occur when using a bimorph-structured vibrator. For example, the two piezoelectric plates attached to both sides of the central metal plate 3'e are required to have exactly the same shape and the same performance. If the performance of the two piezoelectric plates is different, the bimorph will bend or twist as the temperature changes, resulting in a decrease in accuracy and temperature drift. Furthermore, a similar phenomenon occurs when the state of adhesion to the central metal plate is different. These are in a range that cannot be controlled under normal manufacturing conditions. In addition, the adhesive is plastic, and its thermal and mechanical properties cannot be said to be stable, and it does not necessarily return to its original position after force is applied to the angular velocity sensor or after the infection changes, and it does not return to zero point. This causes a drift.

さらに、これらの現象には中央金属板と圧電板の熱膨張
の差なども関係してくる。中央金属板の代りに金属層を
埋め込んで一体に焼結した、接着剤を用いないタイプの
バイモルフでも同様である。
Furthermore, these phenomena are also related to the difference in thermal expansion between the central metal plate and the piezoelectric plate. The same is true for bimorphs that do not use adhesive, in which a metal layer is embedded in place of the central metal plate and sintered together.

以上の問題点の大部分は振動子に二枚の圧電板を使用し
ているために、両側の圧電体の性能が不均一になって生
じるものである。
Most of the above problems are caused by the use of two piezoelectric plates in the vibrator, which results in uneven performance of the piezoelectric bodies on both sides.

問題点を解決するための手段 本発明は長さ方向に縦または横振動づる駆動部と、これ
と垂直方向に伸びるセンサー部とが均質な一体の圧電体
よりなり、駆動振動方向とセンサーの伸びる方向の両方
に対し垂直方向に作用する力によりセンサー部が屈曲す
るように構成されており、屈曲により発生する電圧を検
出することによって、回転の角速度を測定することを特
徴とするものであり、全体が均質で一体である圧電体を
用いることにより、接合部分や接合層の存在に起因する
問題を解消すると共に、駆動にはバイモルフの屈曲振動
に比べ、一方向に安定な振動が得られやすい圧電体の縦
または横振動を用い、センサー部には検出しやすい屈曲
振動を用いた、模造がallで量産に適し、性能の安定
した角速度センサーを得るものである。
Means for Solving the Problems In the present invention, a drive section that vibrates vertically or transversely in the length direction and a sensor section that extends perpendicularly to the drive section are made of a homogeneous integral piezoelectric material, and the drive section vibrates vertically or horizontally in the direction of the sensor. The sensor part is configured to bend due to a force acting perpendicularly to both directions, and the angular velocity of rotation is measured by detecting the voltage generated by the bending. By using a piezoelectric body that is homogeneous and integrated as a whole, problems caused by the presence of bonded parts and layers are eliminated, and stable vibration in one direction is easier to obtain for driving than the bending vibration of bimorphs. To obtain an angular velocity sensor that uses vertical or transverse vibration of a piezoelectric body and easy-to-detect bending vibration in the sensor part, is suitable for mass production, and has stable performance.

実  施  例 第1図は振動子、電源、固定台等からなる本発明角速度
センサーの一実施例を示すものである。
Embodiment FIG. 1 shows an embodiment of the angular velocity sensor of the present invention, which comprises a vibrator, a power source, a fixing base, etc.

図において、20は角速度センサーの主要部分を構成す
る圧電体からなる振動子であり、1は図面で下部に設置
プられた駆動部で、その両面には斜線で示すように銀や
白金等からなる電極3aと3bが設けられ、この電[!
間は、例えば、電極面に垂直に分極されている。2は駆
動部より垂直方向に伸びるセンサー部で、その両面には
面対象に銀や白金等の聯電牲金属からなる交差指形の電
極3c。
In the figure, 20 is a piezoelectric vibrator that constitutes the main part of the angular velocity sensor, and 1 is a drive unit installed at the bottom of the drawing, and both sides are made of silver, platinum, etc. as indicated by diagonal lines. Electrodes 3a and 3b are provided, and this electrode [!
For example, the electrodes are polarized perpendicularly to the electrode plane. Reference numeral 2 denotes a sensor section extending perpendicularly from the drive section, and on both sides of the sensor section are interdigitated electrodes 3c made of an electrically conductive metal such as silver or platinum.

3dが設置:lられ、交差指電極30.3dlOは両面
とも電極に垂直方向に分極されている。9はセンサー部
と同一平面上にあり、かつ駆動部1より垂直方向に伸び
る支持部であり、該部分は分極されている必要はない。
3d is installed, and the interdigital electrodes 30.3dlO are polarized on both sides in the direction perpendicular to the electrodes. Reference numeral 9 denotes a support section that is on the same plane as the sensor section and extends perpendicularly from the drive section 1, and this section does not need to be polarized.

4は支持部9を固定する固定台である。、5は電極3a
、3bに接続されたリード線、6は交流電源である。7
 a、 7 bは交差指電極3c。
4 is a fixing base for fixing the support part 9. , 5 is the electrode 3a
, 3b are connected to lead wires, and 6 is an AC power source. 7
a, 7b are interdigital electrodes 3c.

3dに接続されたリード線であり、面対称に設けられた
両面の電極3c、3dの検出信号が加粋されるように、
裏面のリードa7′’a(図示せず)は表向のリード1
I7bと、裏面のリード線7″b(図示せず)は表面の
り一ドt/jA7aとそれぞれ接続されている。10は
センサー部2と支持部9を分離するためのスリットであ
る。
3d, so that the detection signals of the electrodes 3c and 3d on both sides, which are provided plane symmetrically, are added.
Lead a7''a (not shown) on the back side is lead 1 on the front side.
I7b and the lead wire 7''b (not shown) on the back side are connected to the glue dot t/jA7a on the front side. 10 is a slit for separating the sensor part 2 and the support part 9.

この装置において、駆動部1に交流電源6より電圧を印
加すると、駆動部は長さに応じた共振周波数で電極3a
、3bに平行な方向、すなわちX方向に横振動を行なう
ため、この部分と一体であるセンサー部2も、その幅方
向(X方向)に振動する。この場合、駆動部より伸びる
センサー部の長さによっては、センサー部はX方向に屈
曲振動も起す。このような条件でセンサー部の伸びる方
向、すなわち、Z方向の軸の回りに回転の角速度Ωが加
わるとXと2方向の両方に垂直な方向(Y方向)に力が
作用し、センサー部2は駆動部との接合部を起点として
Y方向に屈曲振動を行なう。センサー部が屈曲振動した
場合、一方のrrL極面はセンサーの伸長方向の長さ寸
法が収縮し、電極間は伸長する。また、他の電極面では
これと逆の寸法変化が生じる。このような寸法変化が生
じたときには、圧電性により、6電極面には加わった力
に比例した大きさの、はぼ等しい電圧が発生するが、そ
の符号は反対である。反対符号の電圧は接続を適当に行
なうことによって加算され、大きな電圧が得られる。す
なわち、Z軸の回りの回転の角速度Ωに比例した大きさ
の電圧が検出できる。
In this device, when a voltage is applied to the drive section 1 from the AC power source 6, the drive section moves to the electrode 3a at a resonant frequency depending on the length.
, 3b, that is, in the X direction, the sensor portion 2, which is integrated with this portion, also vibrates in its width direction (X direction). In this case, depending on the length of the sensor section extending from the drive section, the sensor section also causes bending vibration in the X direction. Under these conditions, when an angular velocity Ω of rotation is applied in the direction in which the sensor section extends, that is, around the axis in the Z direction, a force acts in a direction perpendicular to both the X and two directions (Y direction), and the sensor section 2 performs bending vibration in the Y direction starting from the joint with the drive section. When the sensor section undergoes bending vibration, the length of one rrL pole surface in the sensor extension direction contracts, and the distance between the electrodes expands. In addition, opposite dimensional changes occur on other electrode surfaces. When such a dimensional change occurs, due to piezoelectricity, approximately equal voltages are generated on the six electrode surfaces in proportion to the applied force, but with opposite signs. Voltages of opposite sign can be added by making suitable connections to obtain larger voltages. That is, a voltage proportional to the angular velocity Ω of rotation around the Z-axis can be detected.

本発明の均質で一体物よりなる振動子20は切断等の方
法で圧電板にスリット10を設けることによって簡単に
製作できる。すなわち、チタン酸ジルコン酸鉛などの材
料を焼結した圧電板にカッター等でスリット10を設け
る。次いで、スクリーン印刷や蒸着などの方法で電極3
8〜3dを股【プる。前記用g+3aと3b問およびセ
ンサー部両面の電極のそれぞれ3Cと3d間に常法によ
り直流高電圧を印加し分極゛する。センサー部両面の電
極30,3dは前述のように配置はもちろん、分極状態
も互いに面対称にすることにより、製造時に生じる応力
がセンサー部の屈曲や捩れを起すのを防ぐのに有効であ
る。尚、スリット10は分極終了後に設けることもでき
る。
The homogeneous, integral vibrator 20 of the present invention can be easily manufactured by providing slits 10 in a piezoelectric plate by cutting or other methods. That is, slits 10 are formed in a piezoelectric plate made of sintered material such as lead zirconate titanate using a cutter or the like. Next, the electrode 3 is formed by a method such as screen printing or vapor deposition.
8-3d [pull]. A DC high voltage is applied in a conventional manner between the electrodes g+3a and 3b and between the electrodes 3C and 3d on both sides of the sensor section to polarize them. By making the electrodes 30 and 3d on both sides of the sensor section plane symmetrical not only in their arrangement but also in their polarization as described above, it is effective to prevent bending or twisting of the sensor section due to stress generated during manufacturing. Incidentally, the slit 10 can also be provided after the polarization is completed.

第2図は本発明の他実施例を示すもので、駆動部より伸
びるセンサー部が2個対になっていることと、固定のた
めの支持部9を駆動部の中央に設けている点が第1図に
示した実施例と異なるもので、駆動部やセンサー部の機
能は第1図と同じである。この実施例では駆動部が電極
3a、3bに平行な方向、すなわち、X方向に振動する
とぎ、それぞれ一対のセンサーはその幅方向、すなわち
X方向に互いに反対方向に振動する。従ってセンサーの
伸びる方向、すなわちZ方向の軸の回りに角速度Ωが加
わるとY方向の力により生じるそれぞれのセンサーの振
動の方向も互いに逆方向となり、第1図で述べた1枚の
センサー部の表裏で加算された電圧は1対のセンサー部
では大きさはほぼ同じであるが、逆極性となる。
Fig. 2 shows another embodiment of the present invention, which has two sensor parts extending from the drive part in a pair and a support part 9 for fixing it in the center of the drive part. This embodiment is different from the embodiment shown in FIG. 1, but the functions of the drive section and sensor section are the same as in FIG. In this embodiment, when the drive section vibrates in a direction parallel to the electrodes 3a and 3b, that is, in the X direction, each pair of sensors vibrates in opposite directions in the width direction, that is, in the X direction. Therefore, when an angular velocity Ω is applied in the direction in which the sensor extends, that is, around the axis in the Z direction, the directions of vibration of each sensor caused by the force in the Y direction also become opposite to each other, and the single sensor section described in Fig. 1. The voltages added on the front and back sides are almost the same in magnitude for a pair of sensor sections, but have opposite polarities.

逆方向に振動する一対の振動子の信号を加筒するように
接続するときは、信号それ自体が大きくなることの他に
、外部より加わる様々な音響ノイズを消去する効果があ
ることは特開昭58−174854号公報にも述べられ
ているところである。
It has been disclosed in Japanese Patent Application Publication No. 2003-11111 that when the signals of a pair of vibrators vibrating in opposite directions are connected in a cylinder manner, the signal itself becomes larger, and also has the effect of canceling out various acoustic noises added from the outside. This is also described in Publication No. 174854/1982.

本実施例の角速度センサーも第1図と同様、均質な圧電
板を用いて切断やスリット加工の方法で一体物として製
作できる。
Similarly to FIG. 1, the angular velocity sensor of this embodiment can also be manufactured as an integral piece by cutting or slitting a homogeneous piezoelectric plate.

第3図は均質な圧電板にスリット10を2個所設け、そ
の両端をセンサー部とし、二つのスリットの間に支持部
9を設けた角速度センサーの主要部分である振動子20
の他実施例を示すもので、その動作・機能は第2図の実
施例と全く同じである。この実施例においてはスリット
部10により支持部が形成されることと、駆動部の長さ
やセンサー部の幅寸法に設計の余裕が生れる利点がある
Fig. 3 shows a vibrator 20, which is the main part of an angular velocity sensor, in which two slits 10 are provided in a homogeneous piezoelectric plate, both ends of which are used as sensor sections, and a support section 9 is provided between the two slits.
This shows another embodiment, and its operation and functions are exactly the same as the embodiment shown in FIG. This embodiment has the advantage that the support section is formed by the slit section 10, and that there is a margin in design for the length of the drive section and the width dimension of the sensor section.

均質な圧電板にスリット加工することによって製造でき
ることも前実施例と同じである。
As in the previous embodiment, it can be manufactured by slitting a homogeneous piezoelectric plate.

第4図は振動子の他実施例を示すもので、第3図の実施
例において、電極面に平行にセンサー部の中央にスリッ
ト10′を設けた振動子20であり、各センサー部の厚
さを薄クシて、屈曲振動を生じ易くし、また、この厚さ
と交差指1!I#I3c、3dll&のピッチとの関係
に設計上の余裕をもたせて電圧の検出に最適な状態を得
ようとするものである。
FIG. 4 shows another embodiment of the vibrator. In the embodiment of FIG. 3, the vibrator 20 has a slit 10' in the center of the sensor section parallel to the electrode surface, and The thin comb makes it easier to cause bending vibration, and this thickness also makes interdigitation 1! The purpose is to provide a design margin in the relationship between I#I3c and 3dll& to obtain an optimal state for voltage detection.

この実施例では各センサー部にはそれぞれ片面にのみ電
極3c、3dが設けられており、各電極間が分極されて
いる。従って表裏二つのセンサーを1個のセンサーとし
て第3図と同様に使うことができるし、また対角線にあ
るセンサーを一対のセンサーとして使用するなど種々な
方法がとれる。
In this embodiment, each sensor section is provided with electrodes 3c and 3d on only one side, and the electrodes are polarized. Therefore, the two sensors on the front and back sides can be used as one sensor in the same way as shown in FIG. 3, or the sensors on the diagonals can be used as a pair of sensors, and various other methods can be used.

第5図は1字レール状に形成した振動子20の他実施例
を示すものであり、1は駆動部で、両面に電極3a、3
bが設けられ、該電極間が分極されている。駆動部電極
面に垂直方向に伸びる2個のスリット10により、両端
部にそれぞれ交差指電極3c、3dを設けたセンサー部
2が設けられ、第3図と同様の構成となっている。すな
わち、駆動部の電極3aと3b間に交流電圧を印加し、
X方向に横振動で加振すると両端のセンサー部2は、そ
の幅方向に互いに逆方向に振動し、第3図に示した実施
例と同様に機能する。
FIG. 5 shows another embodiment of the vibrator 20 formed in the shape of a single rail, in which numeral 1 denotes a driving section, and electrodes 3a and 3 are provided on both sides of the vibrator 20.
b is provided, and the electrodes are polarized. Two slits 10 extending perpendicularly to the electrode surface of the driving section provide a sensor section 2 having interdigital electrodes 3c and 3d at both ends, respectively, and has a configuration similar to that shown in FIG. 3. That is, an AC voltage is applied between the electrodes 3a and 3b of the drive section,
When vibrated horizontally in the X direction, the sensor sections 2 at both ends vibrate in opposite directions in the width direction, and function similarly to the embodiment shown in FIG. 3.

この振動子は一点鎖線で示す圧電体ブロックから切断に
よって、均質な一体物として得ることが出来る。
This vibrator can be obtained as a homogeneous integral body by cutting the piezoelectric block shown by the dashed line.

ff16図は互いに直交でる二方向での回転角速度を検
出することのできる振動子20の実施例を示すものであ
る。
Figure ff16 shows an embodiment of the vibrator 20 that can detect rotational angular velocities in two directions that are perpendicular to each other.

互いに直交する4枚の板状の胃で一体に構成され、相隣
る二つの翼はそれぞれセンサー部2−1および2−2(
表面の電圧検出用交差指電極は図示していない)を有し
、下部にそれぞれ駆動部1−1゜1−2を有するもので
、第3図の実施例と類似の構成となっている。他の2枚
の11−3.1−4は駆動部の一部をなすもので、平板
の表面には電極3a。
It is integrally composed of four plate-shaped stomachs that are orthogonal to each other, and the two adjacent wings are sensor parts 2-1 and 2-2 (
The device has interdigital electrodes (not shown) for detecting voltage on the surface, and drive portions 1-1 and 1-2 at the bottom, respectively, and has a structure similar to that of the embodiment shown in FIG. The other two plates 11-3, 1-4 form part of the driving section, and electrodes 3a are provided on the surface of the flat plate.

3bが設けられ、この間が板厚方向に分極されている。3b, and the space between them is polarized in the thickness direction.

すなわち、支持部9を固定した状態で電極3a、3b間
に交流電圧を印加すると、駆動部1は横振動でセンサー
部2をその幅方向に加振し、両端にあるセンサー2−1
および2−2は、いずれも的の実施例同様、互いに逆方
向に振動する。この状態でZ軸方向に対し、回転の角速
度Ωが加わるとセンサー部2−1がY方向に屈曲して信
号を発生し、また、Z−軸方向に対する回転の角速度Ω
′が加わったときにはセンサー部2−2がY−(Z)方
向に屈曲して信号を発生づる。本実施例において、板状
の駆動部1−3.1−4は加振力を強めると同時にバラ
ンスを保つ上で有効である。
That is, when an AC voltage is applied between the electrodes 3a and 3b with the support part 9 fixed, the drive part 1 vibrates the sensor part 2 in the width direction by transverse vibration, and the sensor part 2-1 at both ends
and 2-2 both vibrate in opposite directions as in the target embodiment. In this state, when an angular velocity Ω of rotation is applied in the Z-axis direction, the sensor section 2-1 bends in the Y direction and generates a signal, and the angular velocity Ω of rotation in the Z-axis direction is applied.
When ' is applied, the sensor section 2-2 bends in the Y-(Z) direction and generates a signal. In this embodiment, the plate-shaped drive portion 1-3.1-4 is effective in increasing the excitation force and at the same time maintaining balance.

本実施例も第5図から類推できるように、均質な圧電体
からなるブロックから切断等の方法で一体物として製作
できる。
As can be inferred from FIG. 5, this embodiment can also be manufactured as an integral piece by cutting or other methods from a block made of a homogeneous piezoelectric material.

発明の効果 本発明振動子は板状またはブロック状として製作された
1個の材料で製作できるため、全体が均質である。また
、構造も簡単で切断という最小限の加工によって一体物
として製作でき、従来例のような複数の材料を用いたり
、接着や接合などの加工を加えた複合物を使用した場合
に生じる性能の偏りが防止でき、高いm度や再現性を必
要とするこの種センサーとして優れたものである。
Effects of the Invention Since the vibrator of the present invention can be manufactured from a single plate-shaped or block-shaped material, the entire vibrator is homogeneous. In addition, the structure is simple and can be manufactured as a single piece with minimal processing such as cutting, which improves the performance that would otherwise occur when using multiple materials or using a composite material that has undergone processing such as adhesion or bonding. It is excellent for this type of sensor that can prevent bias and requires high accuracy and reproducibility.

各実施例でも明らかな如く、構造が極めて簡単で、製作
が溶易なので、高い精度を維持しながら、愚産が可能で
安価に製造できることも本発明の大きな特徴である。
As is clear from each of the embodiments, the structure is extremely simple and the manufacturing process is easy, so another major feature of the present invention is that it can be easily produced and manufactured at low cost while maintaining high precision.

バイモルフの屈曲振動にくらべ、方向性に優れた圧電体
の縦または横振動駆動と、信号検出が容易な屈曲振動と
を組合わせるとともに、上述の如き特徴をもつ振動形の
圧電体角速度センサーが得られる。
By combining the vertical or transverse vibration drive of a piezoelectric material with excellent directionality compared to the bending vibration of a bimorph, and the bending vibration that allows easy signal detection, a vibrating piezoelectric angular velocity sensor with the above-mentioned characteristics can be obtained. It will be done.

なお、実施例では駆動部の振動としては電界に対し、垂
直方向の横振動の場合を述べたが、例えば、第3図の実
施例で駆動部1のX方向の両端に電極を設けて分極し、
同電極間に交流電圧を印加するときは縦振動としてX方
向に加振することもできる。
In addition, in the embodiment, the vibration of the drive unit is transverse vibration in the direction perpendicular to the electric field, but for example, in the embodiment shown in FIG. 3, electrodes are provided at both ends of the drive unit 1 in the death,
When applying an alternating current voltage between the same electrodes, it is also possible to vibrate in the X direction as longitudinal vibration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明角速度センサーの一実施例を示す斜視図
、第2図は本発明の他実施例を示す斜視図、第3〜6図
は本発明実施例角速度センサーの主要部である振動子の
実施例を示す斜視図、第7図は角速度センサーの従来例
を示す斜視図である。
Fig. 1 is a perspective view showing one embodiment of the angular velocity sensor of the present invention, Fig. 2 is a perspective view showing another embodiment of the invention, and Figs. FIG. 7 is a perspective view showing a conventional example of an angular velocity sensor.

Claims (1)

【特許請求の範囲】[Claims]  長さ方向に縦または横振動する駆動部と、これと垂直
方向に伸びるセンサー部とが均質で一体の圧電体からな
り、前記両方向に垂直に作用する力によってセンサー部
を屈曲させ、屈曲により生じる電圧を検出するように構
成したことを特徴とする圧電体角速度センサー。
A driving part that vibrates vertically or horizontally in the length direction and a sensor part that extends perpendicularly to the drive part are made of a homogeneous and integrated piezoelectric material, and the sensor part is bent by the force acting perpendicularly to both directions, and the sensor part is bent by the bending. A piezoelectric angular velocity sensor configured to detect voltage.
JP60220892A 1985-10-02 1985-10-02 Piezoelectric angular velocity sensor Pending JPS62188975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60220892A JPS62188975A (en) 1985-10-02 1985-10-02 Piezoelectric angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60220892A JPS62188975A (en) 1985-10-02 1985-10-02 Piezoelectric angular velocity sensor

Publications (1)

Publication Number Publication Date
JPS62188975A true JPS62188975A (en) 1987-08-18

Family

ID=16758166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60220892A Pending JPS62188975A (en) 1985-10-02 1985-10-02 Piezoelectric angular velocity sensor

Country Status (1)

Country Link
JP (1) JPS62188975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285314U (en) * 1988-12-20 1990-07-04
JPH04157311A (en) * 1990-10-19 1992-05-29 Nippondenso Co Ltd Manufacture of vibrating member of angular velocity sensor
US6484576B2 (en) 1996-02-21 2002-11-26 Fujitsu Limited Tuning-fork vibratory gyro
JP2005172542A (en) * 2003-12-10 2005-06-30 Murata Mfg Co Ltd Tuning fork type vibrator, its manufacturing method, and angular velocity sensor
USRE39416E1 (en) 1999-01-08 2006-12-05 Lg Electronics Inc. Structure of rotor for outer rotor type brushless motor
JP2008292477A (en) * 2007-05-23 2008-12-04 Seiko Epson Corp Angular velocity sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285314U (en) * 1988-12-20 1990-07-04
JPH04157311A (en) * 1990-10-19 1992-05-29 Nippondenso Co Ltd Manufacture of vibrating member of angular velocity sensor
US6484576B2 (en) 1996-02-21 2002-11-26 Fujitsu Limited Tuning-fork vibratory gyro
USRE39416E1 (en) 1999-01-08 2006-12-05 Lg Electronics Inc. Structure of rotor for outer rotor type brushless motor
JP2005172542A (en) * 2003-12-10 2005-06-30 Murata Mfg Co Ltd Tuning fork type vibrator, its manufacturing method, and angular velocity sensor
JP4507578B2 (en) * 2003-12-10 2010-07-21 株式会社村田製作所 Angular velocity sensor
JP2008292477A (en) * 2007-05-23 2008-12-04 Seiko Epson Corp Angular velocity sensor

Similar Documents

Publication Publication Date Title
JPH1019577A (en) Angular velocity sensor
JPS62188975A (en) Piezoelectric angular velocity sensor
JP2996137B2 (en) Vibrating gyro
JP3166522B2 (en) Acceleration sensor
JP3218702B2 (en) Vibrating gyro
JP2003114127A (en) Oscillator, oscillation gyro using the same, and electronic apparatus using the same
JP3139205B2 (en) Acceleration sensor
JP3767212B2 (en) Vibration gyro support structure and support method
JPH03120415A (en) Vibration gyro
JPH04142420A (en) Angular velocity sensor
JPH1038578A (en) Angular speed sensor
JP2000283765A (en) Tripod tuning fork oscillator and angular speed sensor
JP3139212B2 (en) Acceleration sensor
JPS6246266A (en) Oscillation sensor
JPS62228111A (en) Piezoelectric body angular velocity sensor
JP3139204B2 (en) Acceleration sensor
JPS6342417A (en) Piezoelectric body angular velocity sensor
JP2575212B2 (en) Vibrating gyro
JP3473241B2 (en) Vibrating gyroscope and method for manufacturing vibrating gyroscope
JP3371609B2 (en) Vibrating gyro
JPH05264282A (en) Angular velosity sensor
JPH0954113A (en) Acceleration sensor
JP3511243B2 (en) Piezoelectric vibration gyro
JPH0748045B2 (en) Vibrating gyro
JP2001194149A (en) Angular velocity sensor