JPS61239135A - Differential pressure transmitter - Google Patents
Differential pressure transmitterInfo
- Publication number
- JPS61239135A JPS61239135A JP8112385A JP8112385A JPS61239135A JP S61239135 A JPS61239135 A JP S61239135A JP 8112385 A JP8112385 A JP 8112385A JP 8112385 A JP8112385 A JP 8112385A JP S61239135 A JPS61239135 A JP S61239135A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- sensors
- pressure chamber
- differential pressure
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0041—Transmitting or indicating the displacement of flexible diaphragms
- G01L9/0051—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
- G01L9/0052—Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L13/00—Devices or apparatus for measuring differences of two or more fluid pressure values
- G01L13/02—Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
- G01L13/025—Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
- G01L9/0001—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
- G01L9/0002—Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in ohmic resistance
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
【発明の詳細な説明】
イ、「発明の目的」
〔産業上の利用分野〕
本発明は、静水圧により抵抗値が変化する半導体材料を
用いて、過大圧力が加わっても破壊されることのない差
圧伝送器に関するものである。[Detailed Description of the Invention] A. ``Objective of the Invention'' [Industrial Application Field] The present invention uses a semiconductor material whose resistance value changes due to hydrostatic pressure, and which is resistant to destruction even when excessive pressure is applied. It concerns a differential pressure transmitter.
第3図にオリフィスを使用した流量の一般的な計測手段
を示す。同図において、11はオリフィス、12はパイ
プ、13は液体、14は導圧管、15はバルブ、16は
差圧伝送器、11は差圧センサである。オリフィス11
を使用して、液体13の流量を計測する場合・は、オリ
フィス11の上流の圧力PHと下流の圧力PLを第3図
のような構成で差圧伝送器に導き、そこでPHとPLの
差圧を測定する。そして、(1)式の演算により流IQ
を求めることができる。FIG. 3 shows a general means of measuring flow rate using an orifice. In the figure, 11 is an orifice, 12 is a pipe, 13 is a liquid, 14 is a pressure conduit, 15 is a valve, 16 is a differential pressure transmitter, and 11 is a differential pressure sensor. Orifice 11
When measuring the flow rate of liquid 13 using Measure pressure. Then, by calculating the equation (1), the current IQ
can be found.
Q−K JこPs−〒−1)mコ/H(1)Q:流量
に:定数
PH:上流側圧力
PL:下流側圧力
第3図のような従来の差圧伝送器の構成で問題となるの
は、差圧(PHPL)が小さくても、PH,PLが高圧
の場合、バルブ操作によっては、差圧伝送器16の差圧
センサ17に高圧が印加される場合があり得ることであ
る。例えば、PH−101bar rpL−100ba
rの場合、差圧は1 barであっても、バルブ操作
によっては、その100倍の100 barが差圧とし
て差圧伝送器16に印加されてしまい、その結果、破壊
されてしまうことがある。Q-K JkoPs-〒-1) mko/H (1) Q: Flow rate: Constant PH: Upstream pressure PL: Downstream pressure There is a problem with the configuration of the conventional differential pressure transmitter as shown in Figure 3. This is because even if the differential pressure (PHPL) is small, if PH and PL are high pressures, high pressure may be applied to the differential pressure sensor 17 of the differential pressure transmitter 16 depending on the valve operation. be. For example, PH-101bar rpL-100ba
In the case of r, even if the differential pressure is 1 bar, depending on the valve operation, 100 bar, which is 100 times the differential pressure, may be applied to the differential pressure transmitter 16 as a differential pressure, and as a result, it may be destroyed. .
そのようなことを防ぐため、従来では、過大圧保護機構
を設けるようにしている。In order to prevent such a situation, conventionally, an overpressure protection mechanism is provided.
第4図は、過大圧保1!機構を設けた差圧伝送器の構成
例を示した図である。この第4図の構成では、過大差圧
(逆圧も含めて)が印加されると、同図に示すオーバー
ロード保護バルブ20が移動してボディ29に設けられ
た穴を塞ぐため、高圧側と低圧側が均等圧化し、シリコ
ンセンサ22が保護されるようになっている。Figure 4 shows overpressure 1! It is a figure showing an example of composition of a differential pressure transmitter provided with a mechanism. In the configuration shown in FIG. 4, when excessive differential pressure (including reverse pressure) is applied, the overload protection valve 20 shown in the figure moves to close the hole provided in the body 29, so the high pressure side The pressure on the low pressure side is equalized, and the silicon sensor 22 is protected.
しかし、第4図のような差圧伝送器は、過大圧保護機構
が複雑となり、特性誤差要因、コストアップ等で問題点
が多い。However, the differential pressure transmitter as shown in FIG. 4 has many problems such as a complicated overpressure protection mechanism, characteristic error factors, and increased cost.
本発明の目的は、同一種類の静水圧センサを2個用いて
、過大圧保護機構を特に設けずとも、過大圧による損傷
を受けない差圧伝送器を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a differential pressure transmitter that uses two hydrostatic pressure sensors of the same type and is not damaged by excessive pressure without the need for an excessive pressure protection mechanism.
口、「発明の構成」
〔問題点を解決するための手段〕
本発明は、上記問題点を解決するために、仕切りにより
、その両側に低圧室と高圧室を形成したボディを備え、
この低圧室と高圧室に測定対象の流体の圧力を導き、こ
の低圧室内と高圧室内にそれぞれに静水圧に対応して抵
抗の変化特性を有する半導体材料からなる静圧センサを
配置する。そして、静圧センサの抵抗の変化を演算して
、低圧室と高圧室との差圧に対応した信号を得るように
したものである。``Structure of the Invention'' [Means for Solving the Problems] In order to solve the above problems, the present invention includes a body with a low pressure chamber and a high pressure chamber formed on both sides by a partition,
The pressure of the fluid to be measured is introduced into the low-pressure chamber and the high-pressure chamber, and static pressure sensors made of a semiconductor material having a resistance change characteristic corresponding to the hydrostatic pressure are placed in the low-pressure chamber and the high-pressure chamber, respectively. The change in resistance of the static pressure sensor is then calculated to obtain a signal corresponding to the differential pressure between the low pressure chamber and the high pressure chamber.
以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.
第1図は、本発明に係る差圧伝送器の要部構成例を示し
た図である。同図において、1,2はシールダイアフラ
ムである。3は低圧室、4は高圧室であり、どちらもそ
の内部にsl油等の非圧縮性流体が封入されている。5
は中央部に仕切りのある円柱状のボディであり、この仕
切りの両側に前記した低圧室3と高圧室4が形成される
。なお“、シールダイアフラム1,2はボディ5の両端
面に例えば溶接されている。6,7は静圧センサであり
、静水圧感度のある半導体材料で構成される。FIG. 1 is a diagram showing an example of the configuration of main parts of a differential pressure transmitter according to the present invention. In the figure, 1 and 2 are seal diaphragms. 3 is a low pressure chamber, and 4 is a high pressure chamber, both of which are filled with an incompressible fluid such as SL oil. 5
is a cylindrical body with a partition in the center, and the above-mentioned low pressure chamber 3 and high pressure chamber 4 are formed on both sides of this partition. The seal diaphragms 1 and 2 are, for example, welded to both end surfaces of the body 5. Static pressure sensors 6 and 7 are made of a semiconductor material sensitive to hydrostatic pressure.
この静圧センサ6.7は、それぞれ低圧室3と高圧室4
に設置される。8,9はハーメチックシール部であり、
静圧センサ6.7へ電気的に接続されたリード線6+
、7+をボディ5の外部に取出すためのものである。1
0は静圧センサ6.7の温度を検出する温度検出素子、
101はこの温度検出素子10における電気信号を取出
すリード線である。This static pressure sensor 6.7 is connected to a low pressure chamber 3 and a high pressure chamber 4, respectively.
will be installed in 8 and 9 are hermetic seal parts,
Lead wire 6+ electrically connected to static pressure sensor 6.7
, 7+ to the outside of the body 5. 1
0 is a temperature detection element that detects the temperature of the static pressure sensor 6.7,
Reference numeral 101 is a lead wire for taking out an electric signal from this temperature detection element 10.
第2図は第1図で示した各リード線6+ + 7++1
01が接続される電気回路であり、この回路の出力端子
から差圧に対応した信号を得ることができる。第2図に
おいて、Eは定電圧源、Uは増幅器である。R+ 、R
2は第1図で示した静圧センサ6.7の抵抗である。即
ち、静圧センサ6は抵抗R1であり、静圧センサ7は抵
抗R2で表わされる。もっとも、上記と逆にして、静圧
センサ6を抵抗R2とし、静圧センサ7は抵抗R1とし
ても本発明は成立する。Cは対数変換器、Dは除算器、
Fは加算器である。Figure 2 shows each lead wire 6+ + 7++1 shown in Figure 1.
01 is an electrical circuit to which it is connected, and a signal corresponding to the differential pressure can be obtained from the output terminal of this circuit. In FIG. 2, E is a constant voltage source and U is an amplifier. R+, R
2 is the resistance of the static pressure sensor 6.7 shown in FIG. That is, the static pressure sensor 6 is represented by a resistor R1, and the static pressure sensor 7 is represented by a resistor R2. However, the present invention can be achieved even if the static pressure sensor 6 is the resistor R2 and the static pressure sensor 7 is the resistor R1, contrary to the above. C is a logarithmic converter, D is a divider,
F is an adder.
抵抗R1は増幅器Uの反転入力端子に接続され、増幅器
の出力端子と反転入力端子の間には、抵抗R2が接続さ
れる。抵抗R+の他端と増幅器Uの非反転入力端子の間
に定電圧源Eが接続される。Resistor R1 is connected to the inverting input terminal of amplifier U, and resistor R2 is connected between the output terminal and the inverting input terminal of the amplifier. A constant voltage source E is connected between the other end of the resistor R+ and the non-inverting input terminal of the amplifier U.
増幅器Uの出力端子と非反転入力端子は対数変換器Cに
接続される。対数変換器Cの出力電圧e2と加算器Fの
出力電圧は直列に接続されて除算器りに導入される。ま
た、除算器りのもう一つの入力端子には、温度検出素子
10がらの信号が導入される。The output terminal and non-inverting input terminal of amplifier U are connected to logarithmic converter C. The output voltage e2 of the logarithmic converter C and the output voltage of the adder F are connected in series and introduced into a divider. Further, a signal from the temperature detection element 10 is introduced into another input terminal of the divider.
以上のように構成された第1図の差圧伝送器と第2図の
電気回路とが組合された装置の動作を以下に説明する。The operation of the device in which the differential pressure transmitter of FIG. 1 and the electric circuit of FIG. 2 configured as described above are combined will be described below.
第1図、第2図に示した静圧センサを静水圧感度のある
半導体材料で構成するとし、この半導体を真性半導体と
仮定すると静圧センサ6.7〈第2図では抵抗R+ 、
R2>の導電率σ重、σ2は(2)、(3)式で表わさ
れる。Assuming that the static pressure sensor shown in FIGS. 1 and 2 is constructed of a semiconductor material sensitive to hydrostatic pressure, and assuming that this semiconductor is an intrinsic semiconductor, the static pressure sensor 6.7 (in FIG. 2, the resistance R+,
The conductivity σ weight and σ2 of R2> are expressed by equations (2) and (3).
σ+−nL+ ・e ・(ue +tlp )
(2)σz=nLz see (μe+μp)
(3)ここで、eは電子素電荷
ueは電子易動度
μpは正孔易動度
(2)、(3)式中におけるnilとnL2はそれぞれ
半導体材料の真性キャリア濃度であり、次式で表わされ
る。σ+-nL+ ・e ・(ue +tlp)
(2) σz=nLz see (μe+μp)
(3) Here, e is the electron elementary charge ue is the electron mobility μp is the hole mobility (2), nil and nL2 in equation (3) are the intrinsic carrier concentration of the semiconductor material, and the following equation It is expressed as
n t + −n o TT eXり (−」狙−)
(4)kT
」1−
n= 2 − no TT eXp (2に丁
) (S)ここで、nOは温度、バ
ンドエネルギーに関係しない物質定数
E o + * E G 2はバンドギャップエネルギ
ー半導体材料の静水圧力に対し、抵抗値、即ち、nff
1率が変化するのは、主としてバンドギャップエネルギ
ーEoが圧力によって変化するからである。静圧センサ
6.7の抵抗値R+ 、R2は、(6)。nt + -no TT eXri (-" aim-)
(4)kT''1-n=2-no TT eXp (2 to 1) (S) Here, nO is temperature, material constant not related to band energy E o + *E G2 is band gap energy of semiconductor material Resistance to hydrostatic pressure, i.e. nff
The reason why the 1 ratio changes is mainly because the bandgap energy Eo changes with pressure. The resistance values R+ and R2 of the static pressure sensor 6.7 are (6).
(7)式で表わされる。It is expressed by equation (7).
この静圧センサ6.7を第1図のようにシリコン油の中
に浸し、圧力PH,PLを与えると、抵抗値R+ 、R
2が変化する。これを第2図の増幅器Uで増幅すると、
増幅器Uの出力elは(8)式で表わされる。When this static pressure sensor 6.7 is immersed in silicone oil as shown in Fig. 1 and pressures PH and PL are applied, the resistance values R+ and R
2 changes. When this is amplified by amplifier U in Fig. 2,
The output el of the amplifier U is expressed by equation (8).
e I−”’e g (8)
R。e I-"'e g (8)
R.
e、は定電圧源Eの電圧
第1図に示す低圧室3と高圧室4内の温度が一様であれ
ば、(8)式は、(6)及び(7)式を使用して(9)
式とu1換えることができる。e, is the voltage of constant voltage source E. If the temperatures in the low pressure chamber 3 and high pressure chamber 4 shown in FIG. 9)
It can be replaced with the expression u1.
1B+ −61o−eXp(、KT (EG 2−Eo
+ ) )・・・(9)
以上のようにして、抵抗比(R2/R1)をとることで
、第1の温度の影響(T−丁)を消去した信号e、を得
ることができる。1B+ -61o-eXp(, KT (EG 2-Eo
+))...(9) By taking the resistance ratio (R2/R1) as described above, it is possible to obtain the signal e in which the influence of the first temperature (T-T) has been eliminated.
elを対数変換器Cに通すと00式なる信号e2が得ら
れる。When el is passed through a logarithmic converter C, a signal e2 of the formula 00 is obtained.
e2−In I e+ l
−へ+1しくEG2 Eol) OΦなお、
In eo =A
このe2信号に加算器Fから−Aの一定信号を加えると
、除算器りへ転送される信号は、工(Eo 2− Eo
+ )となる。この信号を温度KT
検出素子10からの温度信号(1/T)で除算すると、
(11)式で表わされる信号eouLが得られる。e2-In I e+ l -to +1 EG2 Eol) OΦIn addition,
In eo = A When a constant signal of -A from adder F is added to this e2 signal, the signal transferred to the divider is
+). When this signal is divided by the temperature signal (1/T) from the temperature KT detection element 10,
A signal eouL expressed by equation (11) is obtained.
eouL−01’(Eo2−Eol ) el
)即ち、高圧側と低圧側の静圧センサの出力に比例した
信号電圧を得ることができる。また、以上のように第2
の温度の影響も除算により容易に消去できる。eouL-01'(Eo2-Eol) el
) That is, it is possible to obtain signal voltages proportional to the outputs of the static pressure sensors on the high-pressure side and the low-pressure side. Also, as mentioned above, the second
The influence of temperature can also be easily eliminated by division.
第5図と第6図にバンドギャップエネルギーEGの圧力
Pによる変化の一例を示す。第5図は黒燐の圧力による
抵抗の変化であり、第6図はInSbの圧力による抵抗
の変化である。なお、第5図でa軸、a軸の特性は、a
軸、a軸に平行な電極を形成した場合のものである。FIGS. 5 and 6 show an example of a change in the band gap energy EG depending on the pressure P. FIG. 5 shows the change in resistance due to pressure of black phosphorus, and FIG. 6 shows the change in resistance due to pressure of InSb. In addition, in Fig. 5, the characteristics of the a-axis and the a-axis are a
This is a case where electrodes are formed parallel to the a-axis and the a-axis.
さて、各種の材料における(+) 丁のデータを第7図
に示す。Figure 7 shows the (+) data for various materials.
ここで、圧力差による抵抗値の差異を簡単に説明する。Here, the difference in resistance value due to the pressure difference will be briefly explained.
まず、次式が成立する。First, the following equation holds true.
姐 /R−よケ
−「 −v/σ1v櫂ト
静圧センサとして黒燐を用いると、
”jp” −−24X 10− ’ ev/ barK
T −0,0245ev (at 300°K〉従っ
て、
tR
1[/ n= −0,05%、’bar・ 例えば、P
H−101bar 、 PL −100barの場合は
、抵抗の変化はΔR2/R2−−5,05%ΔR+ /
R+ −−5,00%となり、両者の差は、充分精度良
く検出できる値である。When black phosphorus is used as a static pressure sensor, "jp" --24X 10-' ev/barK
T −0,0245ev (at 300°K) Therefore, tR 1[/n= −0,05%,'bar・For example, P
In the case of H-101 bar and PL -100 bar, the change in resistance is ΔR2/R2--5,05%ΔR+/
R+ -5,00%, and the difference between the two is a value that can be detected with sufficient accuracy.
第8図は、本発明の別の実施例を示す図である。FIG. 8 is a diagram showing another embodiment of the present invention.
第8図が第1図と異なる点は、第1図ではシールダイア
フラムを有し、直接測定対象の流体が静圧センサに触れ
ないような構成としているが、第8図においては、シー
ルダイアフラムを除去し、直接測定対象の流体が静圧セ
ンサに触れるように構成している点である。The difference between Fig. 8 and Fig. 1 is that Fig. 1 has a seal diaphragm so that the fluid to be measured does not directly touch the static pressure sensor, but in Fig. 8, the seal diaphragm is used. The structure is such that the fluid to be measured directly comes into contact with the static pressure sensor.
なお、以上では、温度検出素子10をパイプの仕切り部
に配置したが、静圧センサと一体化した構成にしても良
い。In addition, although the temperature detection element 10 is arranged in the partition part of a pipe in the above, it may be integrated with a static pressure sensor.
また、第1図及び第8図の構成によれば、過大圧力PH
,PLが差圧伝送器に印加されても低圧室や高圧室は堅
固なボディ5の壁に囲まれているため、その内部に配置
された静圧センサ6.7には何等損傷を与えるような外
力は加わらない。従って、第1図、第8図の構成によれ
ば、特に過大圧保護機構を備えなくても良い。Furthermore, according to the configurations shown in FIGS. 1 and 8, the excessive pressure PH
, PL is applied to the differential pressure transmitter, since the low pressure chamber and the high pressure chamber are surrounded by the solid wall of the body 5, there will be no damage to the static pressure sensor 6.7 placed inside. No external force is applied. Therefore, according to the configurations shown in FIGS. 1 and 8, there is no need to particularly provide an overpressure protection mechanism.
ハ、「本発明の効果」
以上述べたように、本発明によれば、次の効果が得られ
る。C. "Effects of the Present Invention" As described above, according to the present invention, the following effects can be obtained.
■ 過大圧保護機構を備えなくても良い差圧伝送器を実
現できる。■ A differential pressure transmitter that does not require an overpressure protection mechanism can be realized.
■ 差圧信号の他に静圧、温度信号が得られる。■ In addition to differential pressure signals, static pressure and temperature signals can be obtained.
更にマイクロプロセッサによる補正を行なえば、高精度
の差圧伝送器を実現できる。If further correction is performed using a microprocessor, a highly accurate differential pressure transmitter can be realized.
第1図は本発明に係る差圧伝送器の要部構成例を示した
図、 第2図は第1図で示した各リード線6 + +
7 + 、10+が接続される電気回路図、第3図はオ
リフィスを使用した流量の一般的な計測手段を示す図、
第4図は過大圧保護機構を設番ノだ差圧伝送器の構成
例を示した図、 第5図と第6図はバンドギャップエネ
ルギーEoの圧力Pによる変化の一例を示す図、 第7
図は各種の材料における(+) 、のデータを示す図、
第8図は本発明の別の実施例を示す図である。
1.2・・・シールダイアフラム、3・・・低圧室、4
・・・高圧室、5・・・ボディ、6,7・・・静圧セン
サ、8゜9・・・ハーメチックシール部、10・・・温
度検出素子、61.7+、1oI・・・リード線、R+
、R2−抵抗、U・・・増幅器、C・・・対数変換器、
D・・・除算器、F・・・加算器。
区 ■
ΔR/R(’/、)FIG. 1 is a diagram showing an example of the main part configuration of a differential pressure transmitter according to the present invention, and FIG. 2 shows each lead wire 6 + + shown in FIG. 1.
7 + and 10 + are connected; Figure 3 is a diagram showing a general means of measuring flow rate using an orifice;
Figure 4 is a diagram showing an example of the configuration of a differential pressure transmitter equipped with an overpressure protection mechanism. Figures 5 and 6 are diagrams showing an example of changes in bandgap energy Eo due to pressure P.
The figure shows data on (+) for various materials.
FIG. 8 is a diagram showing another embodiment of the present invention. 1.2... Seal diaphragm, 3... Low pressure chamber, 4
...High pressure chamber, 5...Body, 6,7...Static pressure sensor, 8゜9...Hermetic seal part, 10...Temperature detection element, 61.7+, 1oI...Lead wire , R+
, R2-resistance, U...amplifier, C...logarithmic converter,
D...divider, F...adder. Ward ■ ΔR/R('/,)
Claims (2)
を有する手段と、 この低圧室内と高圧室内にそれぞれ配置され、静水圧に
対応して抵抗が変化する特性を有する半導体材料からな
る静圧センサと、 前記静圧センサの抵抗の変化を演算し、低圧室と高圧室
との差圧に対応した信号を得る手段とを備えた差圧伝送
器。(1) A means having a low-pressure chamber and a high-pressure chamber through which the pressure of the fluid to be measured is introduced, and a semiconductor material that is placed in the low-pressure chamber and the high-pressure chamber, respectively, and whose resistance changes in response to hydrostatic pressure. A differential pressure transmitter comprising: a static pressure sensor; and means for calculating a change in resistance of the static pressure sensor to obtain a signal corresponding to a differential pressure between a low pressure chamber and a high pressure chamber.
を差圧伝送器に設け、これにより、温度変化による抵抗
の変化を補正するようにした特許請求の範囲第1項記載
の差圧伝送器。(2) The differential pressure according to claim 1, wherein a temperature detection element for detecting the temperature of each static pressure sensor is provided in the differential pressure transmitter, thereby correcting a change in resistance due to a temperature change. transmitter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8112385A JPS61239135A (en) | 1985-04-16 | 1985-04-16 | Differential pressure transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8112385A JPS61239135A (en) | 1985-04-16 | 1985-04-16 | Differential pressure transmitter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61239135A true JPS61239135A (en) | 1986-10-24 |
JPH0556458B2 JPH0556458B2 (en) | 1993-08-19 |
Family
ID=13737610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8112385A Granted JPS61239135A (en) | 1985-04-16 | 1985-04-16 | Differential pressure transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61239135A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5461975A (en) * | 1977-10-26 | 1979-05-18 | Hitachi Ltd | Detector of differential pressure, pressure and load |
JPS54118887U (en) * | 1978-02-09 | 1979-08-20 | ||
JPS55112233U (en) * | 1979-01-31 | 1980-08-07 | ||
JPS5967433A (en) * | 1982-10-12 | 1984-04-17 | Tohoku Metal Ind Ltd | Temperature/pressure detector |
-
1985
- 1985-04-16 JP JP8112385A patent/JPS61239135A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5461975A (en) * | 1977-10-26 | 1979-05-18 | Hitachi Ltd | Detector of differential pressure, pressure and load |
JPS54118887U (en) * | 1978-02-09 | 1979-08-20 | ||
JPS55112233U (en) * | 1979-01-31 | 1980-08-07 | ||
JPS5967433A (en) * | 1982-10-12 | 1984-04-17 | Tohoku Metal Ind Ltd | Temperature/pressure detector |
Also Published As
Publication number | Publication date |
---|---|
JPH0556458B2 (en) | 1993-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6826966B1 (en) | Flow sensor package | |
US20070295095A1 (en) | Apparatus for providing an output proportional to pressure divided by temperature (P/T) | |
AU2001284789A1 (en) | Fluid-tight differential pressure flow sensor | |
CN101755197A (en) | Dual pressure sensor | |
US4411158A (en) | Apparatus for sensing the condition of a fluid | |
JPS61239135A (en) | Differential pressure transmitter | |
JPS6038634A (en) | Differential pressure transmitter functioning as hydrostaticvariation compensation for industrial rpocess fluid in combination | |
JPS61240134A (en) | Semiconductive substrate | |
JPH06229793A (en) | Flowmeter | |
KR100238390B1 (en) | Temperature compensation circuit for pressure sensor | |
JPH0640042B2 (en) | Pressure detector | |
JPH08226862A (en) | Sensor and method for performing temperature compensation for measuring-range fluctuation in sensor thereof | |
CN213336603U (en) | Miniaturized pressure sensor based on silicon piezoresistance | |
RU1786378C (en) | Thermoelectric vacuometer | |
Bryzek | Approaching performance limits in silicon piezoresistive pressure sensors | |
JP2000146642A (en) | Flow sensor | |
RU2037145C1 (en) | Strain gauge for measuring pressure | |
JPH0556815B2 (en) | ||
JPS6076637A (en) | Semiconductor pressure gage | |
JPS6330736A (en) | Temperature compensation circuit for oil sealing type semiconductor pressure sensor | |
RU2024830C1 (en) | Unit for measuring pressure | |
SU1737291A1 (en) | Pressure sensor | |
JPH02262032A (en) | Absolute pressure type semiconductor pressure sensor | |
JPH0326322B2 (en) | ||
RU2024831C1 (en) | Device for measuring pressure |