JPH0615997B2 - Temperature pressure detector - Google Patents

Temperature pressure detector

Info

Publication number
JPH0615997B2
JPH0615997B2 JP57179277A JP17927782A JPH0615997B2 JP H0615997 B2 JPH0615997 B2 JP H0615997B2 JP 57179277 A JP57179277 A JP 57179277A JP 17927782 A JP17927782 A JP 17927782A JP H0615997 B2 JPH0615997 B2 JP H0615997B2
Authority
JP
Japan
Prior art keywords
temperature
pressure
output
piezoelectric vibrator
composite sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57179277A
Other languages
Japanese (ja)
Other versions
JPS5967433A (en
Inventor
正隆 龍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP57179277A priority Critical patent/JPH0615997B2/en
Publication of JPS5967433A publication Critical patent/JPS5967433A/en
Publication of JPH0615997B2 publication Critical patent/JPH0615997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0022Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element

Description

【発明の詳細な説明】 本発明は、例えば半導体製造室の温度及び気圧を自動的
に制御する装置に適用して好適な温度圧力検出装置に関
する。
The present invention relates to a temperature / pressure detection device suitable for application to, for example, a device for automatically controlling the temperature and atmospheric pressure in a semiconductor manufacturing room.

従来において、温度及び圧力を検出するには、夫々のセ
ンサが必要であった。従って、夫々のセンサからの出力
によって温度及び圧力を別々に表示・検知しているのが
実状である。
In the past, each sensor was required to detect temperature and pressure. Therefore, in reality, the temperature and the pressure are separately displayed and detected by the outputs from the respective sensors.

そのため、温度及び圧力を検出するには夫々専用のセン
サを設置箇所に取付けなければならず、場所の選定及び
作業工数に難点がある。また夫々のセンサは互いに影響
を受けて誤差を生ずる。すなわち温度センサは圧力の変
化に対して有害であり、また圧力センサは温度に対して
有害である。従って、夫々の変化値を相互に補償されて
いないため、連続的にかつ自動的に精度良好な温度及び
圧力の検出をすることができない。
Therefore, in order to detect the temperature and the pressure, it is necessary to attach a dedicated sensor to each of the installation locations, which poses a problem in selecting a location and man-hours. Further, the respective sensors are influenced by each other to generate an error. That is, the temperature sensor is detrimental to changes in pressure and the pressure sensor is detrimental to temperature. Therefore, since the respective change values are not mutually compensated, it is impossible to continuously and automatically detect the temperature and pressure with good accuracy.

本発明はかかる点に鑑み、温度を主として検出する圧電
振動子と圧力を主として検出するシリコン圧力センサと
を一体化することにより、相互の悪い影響を相殺すると
共に、温度補償回路を挿入することにより圧力の検出値
の精度の向上を図ったこの種検出装置を提案することを
主たる目的とする。
In view of the above points, the present invention integrates a piezoelectric vibrator that mainly detects temperature and a silicon pressure sensor that mainly detects pressure to cancel out adverse effects of each other and to insert a temperature compensation circuit. The main purpose of the present invention is to propose a detection device of this kind that improves the accuracy of the detected value of pressure.

以下本発明の一実地例について図面を参照しながら詳細
に説明する。
Hereinafter, one practical example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一例を示す回路構成図である。9は発
振器を示し、これからの出力が複合センサ2に印加され
る。
FIG. 1 is a circuit configuration diagram showing an example of the present invention. Reference numeral 9 denotes an oscillator, the output from which is applied to the composite sensor 2.

複合センサ2は、第2図に示す如く、圧電振動子3及び
シリコン素子4とを貼合せた構成となっている。すなわ
ち圧電振動子3の半田付面にペースト状銀を塗布し、シ
リコン素子4にはニッケル等の金属を蒸着又はスパッタ
リングで付着し、双方を電極及び半田付面として加熱処
理して密着一体化したものである。尚、複合センサの使
用環境によっては合成樹脂接着剤を使用し得る。そして
第3図に示す如く、中央に圧力導入箇所5aが設けられ
たケース5に複合センサ2が実装される。図中、A,B
は圧電振動子3のリード線、はシリコン素子4
のリード線を示す。
As shown in FIG. 2, the composite sensor 2 has a structure in which a piezoelectric vibrator 3 and a silicon element 4 are bonded together. That is, paste-like silver was applied to the soldering surface of the piezoelectric vibrator 3, a metal such as nickel was attached to the silicon element 4 by vapor deposition or sputtering, and both were used as electrodes and soldering surfaces to be heat-treated for close integration. It is a thing. A synthetic resin adhesive may be used depending on the environment in which the composite sensor is used. Then, as shown in FIG. 3, the composite sensor 2 is mounted on the case 5 having the pressure introducing portion 5a at the center. A, B in the figure
Is a lead wire of the piezoelectric vibrator 3, is a silicon element 4
Shows the lead wire of.

圧電振動子3は、第4図に示す如く、周波数を変えるこ
とによって最大値及び最小値を示すインピーダンス特性
を示す。この最小インピーダンス点をfr、最大インピ
ーダンス点をfaとし、圧電振動子3の静電容量CDと
ほぼfr,faの中間の周波数foで共振するインダク
タンスLを、第5図に示す如く、並列接続することによ
り、第6図に示す如く、中間の周波数foで最大となる
インピーダンス特性を示す構成を得ることができる。こ
のインピーダンス特性は温度及び圧力によって変化す
る。すなわち第7図に示す如く、温度Tが上昇するに従
ってfoが低下する特性を示し、第8図に示す如く、圧
力Pの増加に従ってインピーダンスZの値が低下する特
性を示す。圧電振動子はPZT系の厚み0.5〜1mm程
度のセラミック板状のものが利用し得る。圧電振動子の
特性はバイモルフ振動素子の共振周波数特性と共通す
る。上記の材料を使用すると、温度周波数の関係は、−
20℃〜+60℃の範囲でほぼ直線状に変化する特性を
有する。
As shown in FIG. 4, the piezoelectric vibrator 3 exhibits impedance characteristics that show maximum and minimum values by changing the frequency. Assuming that the minimum impedance point is fr and the maximum impedance point is fa, an inductance L resonating at a frequency fo intermediate between the capacitance CD of the piezoelectric vibrator 3 and substantially fr and fa is connected in parallel as shown in FIG. As a result, as shown in FIG. 6, it is possible to obtain a configuration that exhibits the maximum impedance characteristic at the intermediate frequency fo. This impedance characteristic changes with temperature and pressure. That is, as shown in FIG. 7, it shows the characteristic that fo decreases as the temperature T rises, and as shown in FIG. 8, the value of the impedance Z decreases as the pressure P increases. As the piezoelectric vibrator, a PZT type ceramic plate having a thickness of about 0.5 to 1 mm can be used. The characteristics of the piezoelectric vibrator are the same as the resonance frequency characteristics of the bimorph vibration element. Using the above materials, the relationship between temperature and frequency is −
It has the characteristic of changing in a substantially linear manner in the range of 20 ° C to + 60 ° C.

以上のような圧電振動子3の温度特性を利用すると温度
検出が可能である。圧電振動子3は僅かな温度変化があ
ると第7図に示すように、中間周波数値foが増減す
る。したがって、第5図に示すように、圧電振動子3の
出力端から圧電定数値の変化分を得て、検出することが
できる。
The temperature can be detected by using the temperature characteristics of the piezoelectric vibrator 3 as described above. When the piezoelectric vibrator 3 has a slight temperature change, the intermediate frequency value fo increases or decreases as shown in FIG. Therefore, as shown in FIG. 5, it is possible to obtain and detect the change amount of the piezoelectric constant value from the output end of the piezoelectric vibrator 3.

一方、シリコン素子4はシリコンウエハ上に拡散法によ
って設けられた電気低抗体R〜Rをブリッジ状に接
続して構成されたものである。第9図はシリコン素子4
の構成を示す回路図であるが、この場合、端子は入
力端子、端子は出力端子を夫々示している。入力端
子に所定の電圧を印加することにより、R〜Rの全
抵抗体が平衡しているときは出力が生じないが、シリコ
ン素子4に圧力歪が加わると、R〜Rの抵抗バラン
スがくずれて出力を生ずる。この出力は圧力に比例して
表われ、第10図に示す如き特性曲線を示すことにな
る。
On the other hand, the silicon element 4 is configured by connecting electrical low antibodies R 1 to R 4 provided on a silicon wafer by a diffusion method in a bridge shape. FIG. 9 shows a silicon element 4
FIG. 4 is a circuit diagram showing the configuration of the above. In this case, the terminals are input terminals and the terminals are output terminals. When a predetermined voltage is applied to the input terminal, no output is produced when all the resistors R 1 to R 4 are in equilibrium, but when pressure strain is applied to the silicon element 4, R 1 to R 4 The resistance balance is lost and an output is produced. This output appears in proportion to the pressure and shows a characteristic curve as shown in FIG.

ところが、第2図及び第3図に示す如く、圧電振動子3
及びシリコン素子4が貼合わされているためシリコン素
子4は圧電振動子3と共にバイモルフ振動することにな
り、圧電振動子3に一定の圧力歪が加わっているときは
シリコン素子の出力端子から圧電振動子3が振動し
ている周波数と同じ周波数の交流が検出され、この周波
数は中間周波数foと一致する。またこのときの出力端
子に生ずる出力電圧レベルは、中間周波数foのと
きのインピーダンス値Zに対応することになる。従っ
て、圧電振動子3の中間周波数foの最大値を採用する
ことにより振動振幅は大きくなり、更にシリコン素子4
の出力間電圧も大きくなる。そして第3図におい
て、圧力導入箇所5aから僅かな圧力の変化があると、
圧電振動子3及びシリコン素子4より成る複合センサ2
の振動新幅(第6図中Zo値)が変化し、よって出力端
間電圧も変化することになる。しかし、この電圧は
圧力歪が一定であっても温度が変化するとこれに伴って
変化してしまう(第7図参照)。
However, as shown in FIG. 2 and FIG.
Since the silicon element 4 and the silicon element 4 are bonded together, the silicon element 4 vibrates together with the piezoelectric vibrator 3 when the piezoelectric vibrator 3 is subjected to a certain pressure strain. An alternating current having the same frequency as the frequency at which 3 vibrates is detected, and this frequency matches the intermediate frequency fo. The output voltage level generated at the output terminal at this time corresponds to the impedance value Z 0 at the intermediate frequency fo. Therefore, by adopting the maximum value of the intermediate frequency fo of the piezoelectric vibrator 3, the vibration amplitude becomes large, and further, the silicon element 4
The inter-output voltage of is also increased. Then, in FIG. 3, if there is a slight change in pressure from the pressure introduction point 5a,
Composite sensor 2 including piezoelectric vibrator 3 and silicon element 4
The new vibration width (Zo value in FIG. 6) changes, and the voltage across the output terminals also changes. However, even if the pressure strain is constant, this voltage changes when the temperature changes (see FIG. 7).

そこで、第1図において、複合センサ2の出力端を
検波器5を介して温度補償回路6に供給し、一方、圧電
振動子3からの温度検出出力を比較基準電圧として温度
補償回路6に温度補償信号の供給をするように構成す
る。温度補償回路6は作動増幅器で構成される。シリコ
ン素子4の出力は、圧電振動子3の中間周波数foの成
分と振動振幅Zo成分とが合成されている。そのため圧
電振動子3よりの温度検出出力を比較基準電圧として差
動増幅器に入力することにより、シリコン素子4の出力
のうち温度変化に寄与する中間周波数成分が比較基準電
圧によって打ち消されることになるので、振動振幅成分
のみが取り出されることになり、温度補償回路6の出力
は増幅器7で増幅され、圧力表示部8に出力される。従
って、複合センサ2の出力段階においては、第11図に
示す如く、圧力一定のとき温度の変化によって出力電圧
が変化していても、圧力表示部8における出力電圧は、
第12図に示す如く、温度の変化があっても出力電圧に
変化が表われなくなり、温度補償がなされたことにな
る。
Therefore, in FIG. 1, the output end of the composite sensor 2 is supplied to the temperature compensating circuit 6 via the wave detector 5, while the temperature detection output from the piezoelectric vibrator 3 is used as a comparison reference voltage for the temperature compensating circuit 6. It is configured to supply a compensation signal. The temperature compensation circuit 6 is composed of an operational amplifier. The output of the silicon element 4 is a combination of the intermediate frequency fo component of the piezoelectric vibrator 3 and the vibration amplitude Zo component. Therefore, by inputting the temperature detection output from the piezoelectric vibrator 3 to the differential amplifier as the comparison reference voltage, the intermediate frequency component of the output of the silicon element 4 that contributes to the temperature change is canceled by the comparison reference voltage. , Only the vibration amplitude component is extracted, and the output of the temperature compensation circuit 6 is amplified by the amplifier 7 and output to the pressure display unit 8. Therefore, in the output stage of the composite sensor 2, as shown in FIG. 11, even if the output voltage changes due to temperature change when the pressure is constant, the output voltage at the pressure display unit 8 is
As shown in FIG. 12, even if the temperature changes, the output voltage does not change and temperature compensation is performed.

また上記の複合センサ2の構成とすると、発振器の出力
レベルを上げることにより、圧電振動子3における第6
図に示す、中間周波数値foのピーク値Zoを上げられ
るため、第10図におけるP点を中心になるように圧
電振動子3によってバイアス圧力を適切に加えることが
できる。したがって、第10図に示す特性曲線を急峻に
改良することができ、よって圧力検出の感度を高めるこ
とが可能となる。
In addition, with the above-described configuration of the composite sensor 2, by increasing the output level of the oscillator,
Since the peak value Zo of the intermediate frequency value fo shown in the figure can be increased, the bias pressure can be appropriately applied by the piezoelectric vibrator 3 so that the point P 1 in FIG. 10 is centered. Therefore, the characteristic curve shown in FIG. 10 can be sharply improved, and thus the sensitivity of pressure detection can be increased.

第1図において、複合センサ2は発振器9によって駆動
され、その出力は弁別検波器10を介することによって
直流成分と出力とし、増幅器11によって増幅され、温
度表示部12に出力される。尚、発振器9はその周波数
foの電圧を制御することにより出力一定とし、かつ出
力が最大となるように周波数を制御する構造を採用して
いる。シリコン素子4の駆動は発振器9からの出力を整
流回路13及び安定化回路14で処理して印加される。
第13図は複合センサ2の出力端電圧と圧力との関係を
示す図である。
In FIG. 1, the composite sensor 2 is driven by an oscillator 9, the output of which is passed through a discriminative detector 10 to be a DC component and an output, which is amplified by an amplifier 11 and output to a temperature display unit 12. The oscillator 9 has a structure in which the output is constant by controlling the voltage of the frequency fo and the frequency is controlled so that the output becomes maximum. To drive the silicon element 4, the output from the oscillator 9 is processed by the rectifying circuit 13 and the stabilizing circuit 14 and applied.
FIG. 13 is a diagram showing the relationship between the output end voltage of the composite sensor 2 and the pressure.

第14図は本発明の他の例を示す回路図である。本例に
おいては、第7図及び第11図を参照して明らかな如
く、複合センサ2の出力電圧は温度の関数であるため、
この出力から直接に共振周波数成分を取り出して温度表
示部12に加えられる構成としたものである。尚、第1
図例と同じ要素には同一符号を付して説明する。従っ
て、本例においても第1図例と同様の作用をすることが
できる。
FIG. 14 is a circuit diagram showing another example of the present invention. In this example, as apparent from FIGS. 7 and 11, the output voltage of the composite sensor 2 is a function of temperature,
The resonance frequency component is directly extracted from this output and added to the temperature display unit 12. The first
The same elements as those in the illustrated example will be described with the same reference numerals. Therefore, also in this example, the same operation as that of the example of FIG. 1 can be performed.

以上述べた如く本発明によれば、圧電素子の静電容量と
最大最小インピーダンスのほぼ中間の周波数で共振する
インダクタンスを並列接続すると共に中間周波数での最
大インピーダンス値を得るためのバイアス圧力が加えら
れた圧電振動子と、圧力歪が加わると出力を出すシリコ
ン圧力素子とを密着一体とした複合センサを設け、複合
センサの出力の温度の関数である共振周波数成分を利用
して温度を検出すると共に、圧力の関数である振動振幅
成分及び共振周波数成分を入力とした作動増幅器を介し
て温度補償された出力を利用して圧力を検出するように
構成したので、圧力検出値の感度を向上せしめることが
でき、温度補償された検出値を得ることができる。
As described above, according to the present invention, the inductance that resonates at a frequency substantially intermediate between the capacitance of the piezoelectric element and the maximum and minimum impedance is connected in parallel, and a bias pressure is applied to obtain the maximum impedance value at the intermediate frequency. A piezoelectric sensor and a silicon pressure element that produces an output when pressure strain is applied are integrated into a composite sensor, and the temperature is detected using the resonance frequency component that is a function of the temperature of the output of the composite sensor. Since the pressure is detected by using the temperature-compensated output through the operational amplifier that receives the vibration amplitude component and the resonance frequency component that are functions of pressure, it is possible to improve the sensitivity of the pressure detection value. The temperature-compensated detection value can be obtained.

従って、例えば半導体製造室の温度及び圧力を検出する
ときに採用して実益がある。
Therefore, there is a practical advantage when it is used, for example, when detecting the temperature and pressure of a semiconductor manufacturing room.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一例を示す回路図、第2図は複合セン
サの一例を示す図、第3図は複合センサの実装状態を示
す図、第4図は圧電振動子の特性図、第5図はコイルは
組込んだ圧電振動子の例を示す回路図、第6図は第5図
例の特性図、第7図は圧電振動子の特性たる室温付近の
周波数と温度との関係を示す図、第8図は同じく圧力と
インピーダンスとの関係を示す図、第9図はシリコン素
子の構成を示す図、第10図は第9図例の特性図、第1
1図は複合センサの特性図、第12図は本発明装置の出
力電圧の説明に供する曲線図、第13図は同じく出力電
圧と圧力との関係を表わす曲線図、、第14図は本発明
の他の例を示す回路図である。 2……複合センサ、3……圧電振動子、4……シリコン
素子、6……温度補償回路。
1 is a circuit diagram showing an example of the present invention, FIG. 2 is a diagram showing an example of a composite sensor, FIG. 3 is a diagram showing a mounting state of the composite sensor, FIG. 4 is a characteristic diagram of a piezoelectric vibrator, FIG. FIG. 5 is a circuit diagram showing an example of a piezoelectric vibrator incorporating a coil, FIG. 6 is a characteristic diagram of the example of FIG. 5, and FIG. 7 is a characteristic of the piezoelectric vibrator showing the relationship between frequency and temperature near room temperature. FIG. 8 is a diagram showing the relationship between pressure and impedance, FIG. 9 is a diagram showing the configuration of a silicon element, FIG. 10 is a characteristic diagram of the example of FIG. 9, and FIG.
FIG. 1 is a characteristic diagram of the composite sensor, FIG. 12 is a curve diagram for explaining the output voltage of the device of the present invention, FIG. 13 is a curve diagram showing the relationship between the output voltage and pressure, and FIG. 14 is the present invention. It is a circuit diagram which shows the other example. 2 ... Composite sensor, 3 ... Piezoelectric vibrator, 4 ... Silicon element, 6 ... Temperature compensation circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧電素子の静電容量と最大最小インピーダ
ンスのほぼ中間の周波数で共振するインダクタンスを並
列接続すると共に中間周波数での最大インピーダンス値
を得るためのバイアス圧力が加えられた圧電振動子と、
圧力歪が加わると出力を出すシリコン圧力素子とを密着
一体とした複合センサを設け、 複合センサの出力の温度の関数である共振周波数成分を
利用して温度を検出すると共に、圧力の関数である振動
振幅成分及び共振周波数成分を入力とした作動増幅器を
介して温度補償された出力を利用して圧力を検出するよ
うにしたことを特徴とする温度圧力検出装置。
1. A piezoelectric vibrator in which an electrostatic capacitance of a piezoelectric element and an inductance which resonates at a frequency substantially intermediate between maximum and minimum impedance are connected in parallel, and a bias pressure is applied to obtain a maximum impedance value at the intermediate frequency. ,
A composite sensor is provided that is in close contact with a silicon pressure element that outputs when pressure strain is applied, and the temperature is detected using the resonant frequency component that is a function of the temperature of the output of the composite sensor, and it is a function of pressure. A temperature and pressure detecting device characterized in that a pressure is detected by utilizing a temperature-compensated output via an operational amplifier which receives a vibration amplitude component and a resonance frequency component.
【請求項2】複合センサの出力の温度の関数である共振
周波数成分を圧電振動子より取り出した出力により温度
検出するようにした特許請求の範囲第1項記載の温度圧
力検出装置。
2. The temperature / pressure detection device according to claim 1, wherein the temperature of the resonance frequency component, which is a function of the temperature of the output of the composite sensor, is detected by the output taken out from the piezoelectric vibrator.
【請求項3】複合センサの出力の温度の関数である共振
周波数成分を圧力センサより取り出した出力により温度
検出するようにした特許請求の範囲第1項記載の温度圧
力検出装置。
3. A temperature / pressure detection device according to claim 1, wherein the temperature of the resonance frequency component, which is a function of the temperature of the output of the composite sensor, is detected by the output taken out from the pressure sensor.
JP57179277A 1982-10-12 1982-10-12 Temperature pressure detector Expired - Lifetime JPH0615997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57179277A JPH0615997B2 (en) 1982-10-12 1982-10-12 Temperature pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57179277A JPH0615997B2 (en) 1982-10-12 1982-10-12 Temperature pressure detector

Publications (2)

Publication Number Publication Date
JPS5967433A JPS5967433A (en) 1984-04-17
JPH0615997B2 true JPH0615997B2 (en) 1994-03-02

Family

ID=16063022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57179277A Expired - Lifetime JPH0615997B2 (en) 1982-10-12 1982-10-12 Temperature pressure detector

Country Status (1)

Country Link
JP (1) JPH0615997B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239135A (en) * 1985-04-16 1986-10-24 Yokogawa Electric Corp Differential pressure transmitter
JPH0640042B2 (en) * 1985-04-16 1994-05-25 横河電機株式会社 Pressure detector
KR100435318B1 (en) * 2001-07-03 2004-06-10 현대자동차주식회사 Apparatus for testing oil pressure and temparature of the power steering system for an automobile
JP5779487B2 (en) * 2011-11-30 2015-09-16 株式会社フジクラ Pressure sensor module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781829A (en) * 1972-06-16 1973-12-25 Ibm Test pattern generator
IT1121122B (en) * 1979-01-08 1986-03-26 Cise Spa ELECTRIC CIRCUIT AND STRUCTURE FOR PRESSURE AND TEMPERATURE PROBES EQUIPPED WITH ADEQUATE ADJUSTMENTS TO CORRECT THE TEMPERATURE ERROR ON THE PRESSURE SIGNAL AND TO ELIMINATE THE INFLUENCE OF THE ELECTRIC RESISTANCE OF THE CABLE CONDUCTORS
JPS5631336U (en) * 1979-08-20 1981-03-26

Also Published As

Publication number Publication date
JPS5967433A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
US5142912A (en) Semiconductor pressure sensor
JP4757026B2 (en) Acceleration sensor characteristic adjustment method
EP0584798B1 (en) Driving circuit for gyroscope
US6282957B1 (en) Angular velocity sensor and diagnosis system for this sensor
US6223597B1 (en) Angular rate sensor and method of improving output characteristic thereof
US7343802B2 (en) Dynamic-quantity sensor
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JP3036145B2 (en) Vibrating gyro
JPH0615997B2 (en) Temperature pressure detector
US5417120A (en) Vibrating beam force transducer with automatic drive control
US5339698A (en) Vibrating beam force transducer with automatic adjustment of its electromagnetic drive
EP0412106A1 (en) Accelerometer
JP2001074767A (en) Accelerometer and its manufacture
JPH02502267A (en) Self-oscillation circuit device for mechanical vibration system for natural resonance vibration
EP0777105B1 (en) Vibration gyroscope and method for adjusting vibration-gyroscope characteristics
WO1989010568A1 (en) Transducer
JP3191404B2 (en) Temperature detection method for piezoelectric vibrator
JP2004045277A (en) Load detecting method for actuator
JPH0554705B2 (en)
JPH01107161A (en) Vibration acceleration sensor
JP3227975B2 (en) Vibration detection circuit
JPH0418608B2 (en)
JPS6080327U (en) pressure gauge
JPH08201067A (en) Angular speed sensor
JPS60227142A (en) Pressure sensor