JPS596328A - Manufacture of cold-rolled steel strip - Google Patents

Manufacture of cold-rolled steel strip

Info

Publication number
JPS596328A
JPS596328A JP11491282A JP11491282A JPS596328A JP S596328 A JPS596328 A JP S596328A JP 11491282 A JP11491282 A JP 11491282A JP 11491282 A JP11491282 A JP 11491282A JP S596328 A JPS596328 A JP S596328A
Authority
JP
Japan
Prior art keywords
temperature
cold
rolled steel
annealing
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11491282A
Other languages
Japanese (ja)
Inventor
Shingo Fujii
慎吾 藤井
Motohiro Hirata
平田 基博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11491282A priority Critical patent/JPS596328A/en
Publication of JPS596328A publication Critical patent/JPS596328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To fit the quality of cold-rolled steel for a target by controlling it, by determining annealing temperature considering the effecting degreee of steel composition and manufacturing conditions on mechanical properties of steel sheet when coils passed through hot rolling and cold one are heat-treated in a batch-type annealing furnace. CONSTITUTION:Both elongation and tensile strength of cold-rolled steel strip are appreciably intensely correlated with annealing temperature and N content. How other respective factor involving those ones have an influence on mechanical properties of cold-rolled steel collectively correlatively, is analyzed with multiple regression method and multiple regression formula is obtained. To obtain aimed materials from results such as composition of products, temperature history of rolling process, draft, etc. by using this formula as that for estimating materials, the control of reached temperature of the coldest point (CS) within coil is necessitated. The dispersion of material qualities of cold-rolled steel represented as elongation and tensile strength can be reduced by controlling this CS temperature. Therefore, the coil CS should preferably reach a temperature necessary for obtaining required quality and the annealing temperature is obtained from said multiple regression formula.

Description

【発明の詳細な説明】 この発明は、冷延鋼板の製造方法に関し、とくにコイル
の鋼成分、熱延および冷延条件の差異が、冷延鋼板の機
械的性質の変動に及ばず影響度を考慮して焼鈍過程にお
ける焼鈍温度を定めることによって冷延鋼板の材質を適
切に制御し、目標品質に適合させようとするものである
[Detailed Description of the Invention] The present invention relates to a method for manufacturing cold rolled steel sheets, and in particular, the present invention relates to a method for manufacturing cold rolled steel sheets, and in particular, the difference in the steel composition of the coil and the hot rolling and cold rolling conditions does not affect the mechanical properties of the cold rolled steel sheets. By taking this into account and determining the annealing temperature in the annealing process, the material quality of the cold rolled steel sheet can be appropriately controlled to meet the target quality.

従来冷延鋼板の製造に際しては、各製造工程において目
標とする機械的性質を有する製品を得るために、過去の
経験的技術の著積に従って現実の工程における製造条件
が、各個に決定されるを例とする。
Conventionally, when manufacturing cold-rolled steel sheets, in order to obtain products with target mechanical properties in each manufacturing process, the manufacturing conditions for each actual process are determined individually based on the accumulation of past empirical technology. Take as an example.

しかし冷延鋼板のごとく製鋼−熱延−冷延にわたって複
雑な工程を経なければならない場合に、は、上記の各工
程における製造条件の変動の影響について、定量的把握
がなされることがない。またとくに焼鈍中のコイル内部
温度も実測不可能なため、焼鈍炉中保持時間に余裕を見
込むことを余儀なくされた。
However, in cases such as cold-rolled steel sheets, which require complicated processes from steelmaking to hot rolling to cold rolling, the influence of variations in manufacturing conditions in each of the above steps cannot be quantitatively understood. In addition, since it is impossible to actually measure the internal temperature of the coil during annealing, it is necessary to allow a margin for the holding time in the annealing furnace.

従って上記各工程で選択される条件の限界が、かなり広
めにとられていたことに起因して、ときに適合を逸して
最終的に得られる製品の機械的性質は、しばしばかなり
に大きいばらつきを示す。
Therefore, due to the fact that the limits of the conditions selected in each of the above processes were set quite widely, the mechanical properties of the final product often varied considerably due to mismatches. show.

たとえば第1図(a) 、 (b)に、従来工程材(鋼
種5PCD 、供試材寸法0.711111厚、供試材
本数80本)について焼鈍後の伸びEt 、引張り強さ
T、Sの度数分布を示すように、その標準偏差σEt、
 、σT、S。
For example, Figures 1(a) and (b) show the elongation Et, tensile strength T, and S after annealing for conventional process materials (steel type 5PCD, sample size 0.711111 thickness, number of samples 80). As shown by the frequency distribution, its standard deviation σEt,
,σT,S.

がそれぞれ1.58 、1.1と大きなばらつきがあっ
た。
There was a large variation of 1.58 and 1.1, respectively.

冷延鋼板のバッチ式焼鈍に関し、発明者らの一部は、特
開昭157−48984号公報にて炉内に段積みした多
段コイルの焼鈍加熱条件につき、ペースファン能力、全
スペーサ厚ミ、コイル幅、コイル重量ならびにチャージ
重量よりなる動的および静的要因を加味した回帰式を用
いることにより、焼鈍時の最冷点(以下0.8と略す)
到達温度について精度のよい予測式を確立した。
Regarding batch annealing of cold-rolled steel sheets, some of the inventors disclosed in Japanese Unexamined Patent Publication No. 157-48984 that the pace fan capacity, total spacer thickness, By using a regression formula that takes into account dynamic and static factors such as coil width, coil weight, and charge weight, the coldest point during annealing (hereinafter abbreviated as 0.8)
An accurate prediction formula for the temperature reached was established.

発明者らは、さらに実験を進め上記O8温度の予測式の
開発成果を踏まえて、冷延鋼板の製造各工程における製
造条件の変動による影響を、その焼鈍温度の適切な選択
によシ有利に吸収して目標とする冷延鋼板の機械的性質
を、焼鈍温度の制御でもって、確保し得ることを知見し
、こ\に冷延鋼板の材質を、最終的な焼鈍工程で目標に
到達させ得る制御を実現したものである。
The inventors conducted further experiments and based on the results of the development of the O8 temperature prediction formula described above, the inventors determined that the effects of variations in manufacturing conditions in each process of cold-rolled steel sheet manufacturing can be advantageously controlled by appropriate selection of the annealing temperature. We discovered that it is possible to absorb and maintain the target mechanical properties of cold rolled steel sheets by controlling the annealing temperature. This realizes the control that can be obtained.

この発明は、 \ バッチ式焼鈍炉によシ、熱延および冷延を経て巻取
った鋼板を熱処理するに当り、該鋼板の鋼成分と、熱間
圧延のさいの抽出温度、仕上温間および巻取温度の熱履
歴ならびに冷延条件との材質におよぼす影響度を、統計
処理にもとづいて求めた関係式により焼鈍温度を決定す
ることにより、前記課題を解決するものである。
\ In heat-treating a steel plate that has been rolled up through hot rolling and cold rolling in a batch-type annealing furnace, the steel composition of the steel plate, the extraction temperature during hot rolling, the finishing temperature and The above problem is solved by determining the annealing temperature using a relational expression determined based on statistical processing to determine the influence of the coiling temperature on the thermal history and cold rolling conditions on the material quality.

発明者らは、まず前記したばらつきの発生の要因を洗い
出し、各製造履歴要因と材質特性との相関関係を詳しく
調査した。その代表例を第2図(a)。
The inventors first identified the causes of the above-mentioned variations and investigated in detail the correlation between each manufacturing history factor and material properties. A typical example is shown in Figure 2(a).

申)〜第8図(a)、Φ)に示す。両図から明かなとお
り、冷延鋼板の伸び(El、%月1張り強さくT 、 
S榴r/、、2)は、ともに焼鈍温度、9素N成分含有
%と相当強い相関関係を有することを把握した。こ\に
、注目すべき事は、コイル到達温度たる焼鈍温度が常に
大きな影響因子となっている点である。これは材質制御
の観点からみるときわめて好都合なことであり、十分制
御因子として使用できることを示している。
Fig. 8(a), Φ). As is clear from both figures, the elongation (El, % monthly tensile strength T,
It was found that Sr/, 2) both have a fairly strong correlation with the annealing temperature and the 9-element N component content. What should be noted here is that the annealing temperature, which is the temperature reached by the coil, is always a major influencing factor. This is extremely convenient from the viewpoint of material quality control, and indicates that it can be used as a sufficient control factor.

上記の焼鈍温度およびN含有%を含め、それら以外にわ
たる個々の影響因子が総合的に、どの程度冷延鋼板の機
械的性質に影響を及しあっているかを調査し、以下重回
帰分析を行った。
We investigated to what extent the individual influencing factors, including the above-mentioned annealing temperature and N content %, collectively influence the mechanical properties of cold-rolled steel sheets, and performed the following multiple regression analysis. Ta.

その結果の一例を、次の一般式(1) 、 (2)とし
て示す。
An example of the results is shown as the following general formulas (1) and (2).

E7.=Ko+に1o4(J)+に、、−X[K)+に
1.−+[L]  ・(1)T、S、=Ko’十に□’
4[A)+に、’≠(B)+に8’+[O)+に6’+
(F)+に、’各(G]+に□。′舛(J〕+ K□□
′≠〔K〕  ・・・(2)こ\にK。、 Ko’は定
数であり、Ko  〜に18゜K0′〜に18′は表1
のとおシ、〔〕で示した要因は、表2に示すとおシであ
る。
E7. = 1o4(J)+ to Ko+, 1. to -X[K)+. -+[L] ・(1) T, S, = Ko'1□'
4 [A) +, '≠ (B) + 8' + [O) + 6' +
(F)+, 'each (G]+□.'舛(J)+K□□
′≠〔K〕 ...(2)K here\ni. , Ko' is a constant, and Ko is 18°K0' is 18' as shown in Table 1.
The factors shown in [ ] are shown in Table 2.

表1 表2 注:、ここに(M)については、板厚一定(圧下率70
%ニ一定)の条件で試験を行ったのでに、に’は0であ
るが、この圧下率が80018    18 ℃をこえるとそれが高い程、再結晶温度が低く本質的に
有利な傾向が阻害されることになるので無視することが
できなくなる。
Table 1 Table 2 Note: For (M) here, plate thickness is constant (rolling reduction rate is 70
Since the test was conducted under the condition of % (constant), Ni' is 0, but if this reduction rate exceeds 80018 18 °C, the higher it is, the lower the recrystallization temperature will be, and the essentially advantageous tendency will be inhibited. It will become impossible to ignore it.

この重回帰式(1,) 、(2)式ヲ、相貫予測式とし
て用いることにより、製品成分値、圧延工程m度履歴、
圧下率などの実績から、目標とする材質を得るためには
、この発明に従い、材質制御可能な最終工程である焼鈍
温度として、コイル内O8到達温度の制御が必要となり
、コイル内O8到達温度を制御することにより、伸ひ、
引張り強さで代表される冷延鋼板の焼鈍製品の材質のば
らつきを少なくすることができる。
By using these multiple regression equations (1,) and (2) as mutual prediction equations, product component values, rolling process history,
In order to obtain the target material based on the actual results such as the rolling reduction rate, it is necessary to control the O8 temperature in the coil as the annealing temperature, which is the final step in which the material can be controlled, according to this invention. By controlling, stretching,
It is possible to reduce variations in the material quality of annealed products of cold-rolled steel sheets, which is represented by tensile strength.

こ\において前記重回帰式の各要因の中で、従来最も実
測困難であったのが、焼鈍温度[J)である。とくにバ
ッチ式コイル焼鈍炉では、炉内から得られる温度情報は
最下段コイルエツジ部の温度(ベース温度)と廃ガス温
度(ベル温度)のみテアリ、コイルの内部温度を実測す
ることはできないからである。
Among the factors in the multiple regression equation, the one that has been the most difficult to measure in the past is the annealing temperature [J]. In particular, in batch-type coil annealing furnaces, the only temperature information obtained from inside the furnace is the temperature at the bottom coil edge (base temperature) and the exhaust gas temperature (bell temperature), and it is not possible to actually measure the internal temperature of the coil. .

コイルの内部温間を推定する方法としては、すでに触れ
た特開昭57−48984号公報にて、焼鈍炉のシミュ
レーションモデルを利用することによシ、コイルの内部
温度に関する各データは、きわめて信頼性の高い予測が
可能となり、焼鈍温度[J)の機械的性質に及ぼす影#
度合が定量的に把握され得るのは明らかである。
The method for estimating the internal temperature of a coil is to use a simulation model of an annealing furnace, as described in Japanese Patent Application Laid-Open No. 57-48984, which has already been mentioned, and the data regarding the internal temperature of the coil are extremely reliable. The effect of annealing temperature [J) on mechanical properties can be predicted with high accuracy.
It is clear that the degree can be grasped quantitatively.

因みに、バッチ式タイトコイル焼鈍の場合、前記O8温
度は、第4図(a) 、 (b)に、コイル断面内温度
分布と端断面とをそれぞれ示すように、コイルの幅Wの
中心を含む平面内そコイルの巻き厚さRを指す。
Incidentally, in the case of batch type tight coil annealing, the O8 temperature includes the center of the width W of the coil, as shown in FIGS. 4(a) and 4(b), which show the temperature distribution within the coil cross section and the end cross section, respectively. It refers to the winding thickness R of the coil in the plane.

また一般に、焼鈍温度と伸び(Et、)%性は、第5図
に示すように再結晶開始後、粒成長がおこり、良好な伸
び特性をもつようになるが、この場合第6図に示すよう
に焼鈍温度に比し、均熱時間の影響は、非常に小さい。
In general, the annealing temperature and elongation (Et)% are determined by grain growth after the start of recrystallization, as shown in Figure 5, and good elongation properties, but in this case, as shown in Figure 6. Compared to the annealing temperature, the influence of the soaking time is very small.

したがって焼鈍においては、そのコイルのO8が所望の
材質を得るに必要な温度に到達すればよいのである。
Therefore, during annealing, it is only necessary that the O8 of the coil reaches the temperature necessary to obtain the desired material quality.

その焼鈍温度決定方法としては、(1)式に基き次式(
8) により、伸び(目標値)に近似する伸び数値に規制する
焼鈍温装置、を求める。
The method for determining the annealing temperature is based on equation (1) as follows:
8) Find an annealing temperature device that regulates the elongation value to approximate the elongation (target value).

同様に(2)式に基き次式(4) により、引張り強さく目標値)に近似する引張り強さ数
値に規制する焼鈍温度TT、S、”求める。
Similarly, based on equation (2), the annealing temperature TT, S, which regulates the tensile strength value to be close to the target tensile strength value, is determined by the following equation (4).

これら置、 、とTT、S、のうぢ、高い温紋の方を必
要な焼鈍温度として採用する。
For these positions, , TT, and S, the one with a higher temperature pattern is adopted as the necessary annealing temperature.

止揚(3)、(4)式は、El、 、 T、S、を決定
づける焼鈍温度金与えるから、材質予測式ということが
できる。これについて上にのべたのは、1例であり、各
鋼種毎に(1) + (2)式の重回帰式に準拠して個
別に作成することによυ機械的性質のばらつきの少い冷
延鋼板製品が得られる。
Equations (3) and (4) can be said to be material prediction equations because they give the annealing temperature that determines El, T, and S. The above is just one example, and by creating each steel type individually according to the multiple regression equation (1) + (2), it is possible to reduce the variation in υ mechanical properties. A cold-rolled steel product is obtained.

材質予測式による材質制御システムは、冷延オンライン
コンピューターに組込まれ、製鋼、熱延、冷延の各実績
をもとに焼鈍時の目標温度をダイレクトに変更できるよ
うになっている。
A material control system based on a material prediction formula is built into the cold rolling online computer, making it possible to directly change the target temperature during annealing based on the actual results of steelmaking, hot rolling, and cold rolling.

その目標温度は、焼鈍ラインのプロセスコンピューター
に伝送され、制御される。
The target temperature is transmitted to and controlled by the process computer of the annealing line.

この場合、各段積みコイルのO8温度を正確に推定でき
る焼鈍炉制御方法に基づき、目標温度となるようにコン
トロールされている。
In this case, the O8 temperature of each stacked coil is controlled to the target temperature based on an annealing furnace control method that can accurately estimate the O8 temperature.

すなわち、この発明にかかる重回帰分析式で目標とする
焼鈍温度を決定し各段積みコイルのO8温度が、その目
標温度に到達するまでの加熱時間を、次の(5)式に示
す加熱完了予測式により算出する。
That is, the target annealing temperature is determined using the multiple regression analysis formula according to the present invention, and the heating time for the O8 temperature of each stacked coil to reach the target temperature is determined by the heating completion time shown in the following equation (5). Calculated using a prediction formula.

tA−D= fl 〜4 (XA 〜xD  l  ”
A 〜D  I  Sl 〜I! I  BFAN  
IBMax l BT81np lθAO,S、〜θD
o、S、 ) °°(5)XA ”’−Xp :各段積
みコイル幅WA〜WD:同重険 80〜S、:各段スペーサ厚み BFAN  ’ペースファン能力 BMax  :ベル最大投入熱量 ”Temp  ’ベル初期温度 例えば、前記(1) 、 (2)の重回帰式により、焼
鈍温度を決定する場合について実施例を記載すると、0
0.04%、 Mn 0.20%、 p o、oig%
、 S O,015%、 At0.040%、 N O
,0060%、 Ou + Ni 十Or合計0.06
%、 ”/N 6.67を有する連続鋳造で製造したス
ラブを熱間圧延し、抽出温度1240°0゜仕上温変8
60℃1巻取温度it OO”Oによるコイルを、El
、目標値46.0%とすべく、前記(8)式により 598℃、であって、前記TEt、とTT、S、とによ
シ焼鈍温度は614℃と決定される。これらを目標温度
としてバッチ焼鈍したときの伸び、引張り強さの度数分
布(供試片50本〕は第7図(a)t (b>に示すと
おりであり、従来の製造工程にか\る第1図(a)、 
(b)に比し、標準偏差σ 、σ は大幅にに/=  
 T、S 低減されそれぞれ1.05 、0.80を示した。
tA-D=fl~4(XA~xDl''
A~D I Sl~I! IBFAN
IBM Max l BT81np lθAO,S, ~θD
o, S, ) °° (5) ' Bell Initial Temperature For example, if we describe an example in which the annealing temperature is determined using the multiple regression equations (1) and (2) above, 0
0.04%, Mn 0.20%, po, oig%
, S O, 015%, At 0.040%, N O
,0060%, Ou + Ni 10 Or total 0.06
%, ”/N 6.67 A slab manufactured by continuous casting was hot rolled, and the extraction temperature was 1240°0° and the finishing temperature change was 8.
A coil with a winding temperature of 60℃
In order to achieve the target value of 46.0%, the annealing temperature is determined to be 598° C. according to equation (8), and the annealing temperature for TEt, TT, S, and 614° C. The frequency distribution of elongation and tensile strength (50 specimens) when these were batch annealed at the target temperature is as shown in Figure 7(a)t(b>) Figure 1(a),
Compared to (b), the standard deviations σ and σ are significantly /=
T and S were reduced to 1.05 and 0.80, respectively.

従って焼鈍温度の適正化により、標準作業範囲内におけ
る成分元素の変動、熱間圧延温度諸条件の差異変動にも
拘らず、重回帰式により算出した適切な焼鈍温度の採用
により、品質のばらつきが少く、品質の向上、材質の安
定化が有利に達成される。
Therefore, by optimizing the annealing temperature, despite fluctuations in component elements within the standard working range and differences in hot rolling temperature conditions, by adopting an appropriate annealing temperature calculated using a multiple regression equation, variations in quality can be reduced. However, improvement in quality and stabilization of materials can be advantageously achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来工程材の伸びEl、引張強さT、Sの度
数分布を示すグラフ、 第2図(al 、 (b)は、冷延鋼板焼鈍材の伸び、
引張強さへの焼鈍温度の影響を示すグラフ、第3図(a
)、Φ)は、冷延鋼板焼鈍材の伸び、引張強さへの冷延
鋼板N含有量の影響を示すグラフ、第4図(a)は、コ
イル最冷点(O8)温度とコイル断面内温度分布図、 第4図中)は、コイルのO8温度位置を示すコイル断面
図、 第5図は、焼鈍温度と伸びEt、%性の関係を示すグラ
フ、 第6図は、冷延鋼板の伸びEl、に対する焼鈍温度の影
響を均熱時間で比較したグラフであり、第7図は、この
発明工程材の伸びEt、引張強さT、Sの変数分布を示
すグラフである。 第8図 (a)(b) 第4図 (t)) 第5図 冶 燻妊瓢度 第6図 燻妊ぽ度 手続補正書 昭和57年8 月 16日 1、事件の表示 昭和57年 特 許 願第114912  号2、発明
の名称 冷延鋼板の製造方法 3、補正をする者 事件との関係 特許出願人 (125)川崎製鉄株式会社 ■、明細書第2頁第1行の「著檀」を「蓄積」に訂正す
る。 2、同第6a頁第8行〜6行の「この圧下率がm−でき
なくなる。」を次のとおりに訂正する。
Figure 1 is a graph showing the frequency distribution of elongation El, tensile strength T, and S of conventional process materials.
Graph showing the effect of annealing temperature on tensile strength, Figure 3 (a
), Φ) are graphs showing the influence of cold rolled steel N content on the elongation and tensile strength of cold rolled steel annealed materials, and Figure 4 (a) shows the coil coldest point (O8) temperature and coil cross section. Figure 4 is a cross-sectional view of the coil showing the O8 temperature position of the coil. Figure 5 is a graph showing the relationship between annealing temperature, elongation Et, and %. Figure 6 is a cold-rolled steel plate. 7 is a graph comparing the influence of annealing temperature on the elongation El, with respect to the soaking time. FIG. 7 is a graph showing the variable distribution of the elongation Et, tensile strength T, S of the material processed according to the invention. Figure 8 (a) (b) Figure 4 (t)) Figure 5 Pregnancy degree Figure 6 Pregnancy degree procedure amendment August 16, 1981 1. Indication of the case 1988 Special Patent Application No. 114912 2, Title of the invention: Method for manufacturing cold rolled steel sheets 3, Relationship with the amended case Patent applicant (125) Kawasaki Steel Corporation■, "Authorized by Dan" on page 2, line 1 of the specification ” should be corrected to “accumulation.” 2. On page 6a, lines 8 to 6, ``This rolling reduction rate cannot be m-'' is corrected as follows.

Claims (1)

【特許請求の範囲】[Claims] 1 バッチ式焼鈍炉により、熱延および冷延を経て巻取
った鋼板を熱処理するに当り、該鋼板の鋼成分と、熱間
圧延のさいの抽出温度、仕上温度および巻取温度の熱履
歴ならびに冷延条件との材質におよほす影響度を、統計
処理にもとづいて求めた関係式により焼鈍温度を決定す
ることを特徴とする冷延鋼板の製造方法。
1. When heat-treating a steel plate that has been hot-rolled and cold-rolled and coiled in a batch annealing furnace, the steel composition of the steel plate, the thermal history of the extraction temperature, finishing temperature, and coiling temperature during hot rolling, and A method for manufacturing a cold rolled steel sheet, characterized in that an annealing temperature is determined by a relational expression determined based on statistical processing to determine the degree of influence of cold rolling conditions on material quality.
JP11491282A 1982-07-02 1982-07-02 Manufacture of cold-rolled steel strip Pending JPS596328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11491282A JPS596328A (en) 1982-07-02 1982-07-02 Manufacture of cold-rolled steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11491282A JPS596328A (en) 1982-07-02 1982-07-02 Manufacture of cold-rolled steel strip

Publications (1)

Publication Number Publication Date
JPS596328A true JPS596328A (en) 1984-01-13

Family

ID=14649735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11491282A Pending JPS596328A (en) 1982-07-02 1982-07-02 Manufacture of cold-rolled steel strip

Country Status (1)

Country Link
JP (1) JPS596328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211318A (en) * 2006-02-13 2007-08-23 Nisshin Steel Co Ltd Method for stabilizing material quality of steel plate
JP2012167363A (en) * 2011-01-26 2012-09-06 Jfe Steel Corp Method of manufacturing cold rolled steel plate
JP2020200522A (en) * 2019-06-13 2020-12-17 日本製鉄株式会社 Operation method of batch-type heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211318A (en) * 2006-02-13 2007-08-23 Nisshin Steel Co Ltd Method for stabilizing material quality of steel plate
JP2012167363A (en) * 2011-01-26 2012-09-06 Jfe Steel Corp Method of manufacturing cold rolled steel plate
JP2020200522A (en) * 2019-06-13 2020-12-17 日本製鉄株式会社 Operation method of batch-type heating furnace

Similar Documents

Publication Publication Date Title
US4323403A (en) Continuous annealing method for cold reduced steel strip
JP5135534B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JPS596328A (en) Manufacture of cold-rolled steel strip
JP3965886B2 (en) Thin steel plate and method for producing thin steel plate
JP2002069534A (en) Thin steel sheet and method for producing the same
JP6137490B2 (en) Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet
JPH03277721A (en) Method for controlling cooling of hot rolled steel strip
WO2022097642A1 (en) Internal oxide layer thickness estimation device, internal oxide layer thickness estimation method, and program
JP7276502B2 (en) Manufacturing method and equipment for grain oriented electrical steel sheet
JP2807918B2 (en) Combustion control method for continuous annealing furnace
JPS5934214B2 (en) Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace
WO2023190645A1 (en) Method for annealing hot-rolled steel strip
JPS5944367B2 (en) Water quenching continuous annealing method
WO2022004678A1 (en) Grain-oriented electromagnetic steel sheet production method and equipment line
US20230296579A1 (en) Internal oxidation starting temperature estimation device, internal oxide layer thickness estimation device, internal oxidation starting temperature estimation method, and program
JPH11188404A (en) Method of manufacturing cold-rolled steel band
JP2546889B2 (en) Dimension control method of thick steel plate for quenching and tempering
JP4617956B2 (en) Target thickness setting method during hot rolling
JP4105780B2 (en) Decarburization annealing method and apparatus for grain-oriented electrical steel sheet
JPS62136526A (en) Production of cr stainless steel strip
CN114990306A (en) Mechanical property homogenization treatment process for variable-thickness cold-rolled steel plate
JP4158765B2 (en) Manufacturing method of thin hot-rolled steel sheet
JP2021196682A (en) Surface roughness estimating method, steel strip producing method and learnt machine learning model-generating method
JPH09192712A (en) Manufacture of austenitic stainless steel sheet having high hardness
JP3885264B2 (en) Method for producing grain-oriented electrical steel sheet