JP6137490B2 - Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet - Google Patents

Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP6137490B2
JP6137490B2 JP2014069079A JP2014069079A JP6137490B2 JP 6137490 B2 JP6137490 B2 JP 6137490B2 JP 2014069079 A JP2014069079 A JP 2014069079A JP 2014069079 A JP2014069079 A JP 2014069079A JP 6137490 B2 JP6137490 B2 JP 6137490B2
Authority
JP
Japan
Prior art keywords
mass
steel sheet
annealing
primary recrystallization
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014069079A
Other languages
Japanese (ja)
Other versions
JP2015190022A (en
Inventor
渡辺 誠
渡辺  誠
龍一 末廣
龍一 末廣
高宮 俊人
俊人 高宮
正憲 上坂
正憲 上坂
敬 寺島
寺島  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014069079A priority Critical patent/JP6137490B2/en
Publication of JP2015190022A publication Critical patent/JP2015190022A/en
Application granted granted Critical
Publication of JP6137490B2 publication Critical patent/JP6137490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、方向性電磁鋼板の製造技術に関し、具体的には、一次再結晶焼鈍後の鋼板の集合組織の予測方法およびその方法を用いた方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a technology for manufacturing a grain-oriented electrical steel sheet, and specifically relates to a method for predicting a texture of a steel sheet after primary recrystallization annealing and a method for producing a grain-oriented electrical steel sheet using the method.

方向性電磁鋼板は、主にトランスの鉄心材料として用いられており、磁気特性に優れていること、特に鉄損特性に優れていることが求められる。そこで、方向性電磁鋼板は、仕上焼鈍において、二次再結晶を起こさせることで、製品鋼板中の結晶粒の方位を{110}<001>方位、いわゆる「Goss方位」に高度に揃えている。また、磁気特性をより向上するためには、一次再結晶後の鋼板の集合組織(一次再結晶集合組織)の方位を適正な状態に制御する、具体的には、{111}<112>(以降、「M方位」とも呼ぶ)や、{411}<148>(以降、「S方位」とも呼ぶ)の強度を高め、Goss粒がこれらの方位の粒を蚕食し、成長し易くしてやることが重要となる。   The grain-oriented electrical steel sheet is mainly used as a core material of a transformer, and is required to have excellent magnetic characteristics, particularly excellent iron loss characteristics. Therefore, the grain-oriented electrical steel sheet is highly aligned with the {110} <001> orientation, the so-called “Goss orientation”, by causing secondary recrystallization in finish annealing. . In order to further improve the magnetic properties, the orientation of the texture (primary recrystallization texture) of the steel sheet after primary recrystallization is controlled to an appropriate state. Specifically, {111} <112> ( Hereinafter, the strength of {411} <148> (hereinafter also referred to as “S orientation”) is increased, and the Goss grains phagocytose grains in these orientations to facilitate growth. It becomes important.

一次再結晶粒の集合組織を適正な状態に改善する方法としては、冷間圧延の温度を高めたり、冷間圧延前の粒径を大きくしたりする等、種々の方法があるが、前工程の製造条件の変動等によって、コイル全長にわたって高い値を得られないのが実情である。コイル内のM方位やS方位の密度の変動要因としては、例えば熱間圧延時の温度履歴や、冷間圧延速度の変化(コイル両端部における加減速や形状不良や耳割れなどに伴う速度変化)等がある。従って、コイル内で均一な磁気特性を得るためには、これらを一定に抑えなければならないが、熱延におけるコイル内の温度変化をなくしたり、冷間圧延における圧延速度を一定にしたりすることは、現状ではほぼ不可能である。   As a method for improving the texture of primary recrystallized grains to an appropriate state, there are various methods such as increasing the temperature of cold rolling, increasing the grain size before cold rolling, etc. The actual situation is that a high value cannot be obtained over the entire length of the coil due to variations in manufacturing conditions. Factors that cause fluctuations in the density of the M and S orientations in the coil include, for example, temperature history during hot rolling and changes in the cold rolling speed (speed changes due to acceleration / deceleration, shape defects, ear cracks, etc. at both ends of the coil) ) Etc. Therefore, in order to obtain uniform magnetic properties in the coil, these must be kept constant, but it is not possible to eliminate temperature changes in the coil during hot rolling or to keep the rolling speed constant in cold rolling. It is almost impossible at present.

このような事情から、製造途中のいずれかの工程で、鋼板の何らかの特性を測定し、その結果をフィードバックしたりフィードフォワードしたりして製造条件を調整することで、製品品質を一定に維持しようとすることが種々検討されている。例えば、特許文献1には、連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能なセンサーを、鋼板幅方向の2ヶ所以上に備えることで、一次再結晶粒径の幅方向における変動を測定し、その結果を上流工程にフィードバックする方法が、特許文献2には、脱炭焼鈍終了後から最終仕上焼鈍開始までの途中段階で一次再結晶粒径を測定し、その粒径の値を基にして、その後行われる脱炭焼鈍の熱処理条件を決定するフィードバック制御を行う方向性電磁鋼板の製造方法が、特許文献3には、一次再結晶焼鈍後鋼板の抗磁力を測定し、その測定値の目標値からの偏差に応じて、スラブの加熱条件、熱間圧延条件、熱延板焼鈍条件、中間焼鈍条件を含む冷間圧延条件、一次再結晶焼鈍条件、焼鈍分離剤の成分組成および二次再結晶焼鈍条件のうちの1以上を調整し、磁気特性に優れる方向性電磁鋼板の製造方法が、特許文献4には、脱炭焼鈍後の段階で、鋼板表面をフーリエ変換赤外線吸収スペクトル法(FT−IR)により測定し、鋼板表面の少なくとも1つの化合物の赤外線透過率のピークを測定して吸光度を算出し、該算出値から最終製品の被膜密着性を評価する方法が開示されている。   Under these circumstances, measure the characteristics of the steel sheet at any stage during manufacturing, and feed back the results or adjust the manufacturing conditions to maintain the product quality constant. Various studies have been made. For example, in Patent Document 1, on the outlet side of the continuous annealing furnace, sensors capable of measuring the crystal grain size of the steel sheet online are provided at two or more locations in the width direction of the steel sheet. The method of measuring the fluctuation and feeding back the result to the upstream process is described in Patent Document 2, in which the primary recrystallized grain size is measured in the intermediate stage from the end of decarburization annealing to the start of final finish annealing. Based on the value, a method for producing a grain-oriented electrical steel sheet that performs feedback control to determine the heat treatment conditions of decarburization annealing performed thereafter, Patent Document 3 measures the coercive force of the steel sheet after primary recrystallization annealing, Depending on the deviation of the measured value from the target value, slab heating conditions, hot rolling conditions, hot rolled sheet annealing conditions, cold rolling conditions including intermediate annealing conditions, primary recrystallization annealing conditions, components of annealing separator Composition and secondary recrystallization annealing conditions A method for producing a grain-oriented electrical steel sheet that adjusts one or more of them and is excellent in magnetic properties is disclosed in Patent Document 4, in the stage after decarburization annealing, by the Fourier transform infrared absorption spectrum method (FT-IR). A method is disclosed in which the absorbance is calculated by measuring the infrared transmittance peak of at least one compound on the surface of the steel sheet, and the film adhesion of the final product is evaluated from the calculated value.

さらに、特許文献5には、脱炭焼鈍前に脱脂処理を施した後、鋼中成分の鋼板表面における濃度を測定し、予め求めた表面濃度に対する脱炭焼鈍の雰囲気酸化度、焼鈍温度および焼鈍時間と脱炭焼鈍後の酸化量からなる関係式に上記測定値を代入し、所望の酸化量を得るための雰囲気酸化度、焼鈍温度、焼鈍時間を算出し、このうち少なくとも1つを制御し、脱炭焼鈍における酸化量を制御する方向性電磁鋼板の製造方法が、特許文献6には、方向性電磁鋼板の脱炭焼鈍工程において、加熱帯の雰囲気ガスを均熱帯と分離して制御し、焼鈍後の酸化膜を蛍光X線装置により評価しこれらの脱炭焼鈍雰囲気ガスを管理することで、被膜特性と磁気特性を安定して造りこむ方向性電磁鋼板の製造方法が、また、特許文献7には、冷間圧延のパス間もしくは最終パス後に鋼板の鉄損をオンライン計測し、その計測結果に基づいて、フィードバックあるいはフィードフォワードにて圧延条件を調整することで、製品における品質特性のばらつきを改善する方法が開示されている。   Furthermore, in Patent Document 5, after degreasing treatment is performed before decarburization annealing, the concentration of the components in the steel on the surface of the steel sheet is measured, and the degree of atmospheric oxidation, annealing temperature, and annealing of decarburization annealing with respect to the surface concentration determined in advance. By substituting the above measured value into the relational expression consisting of the time and the amount of oxidation after decarburization annealing, the atmosphere oxidation degree, annealing temperature, and annealing time to obtain the desired amount of oxidation are calculated, and at least one of these is controlled. The method for producing a grain-oriented electrical steel sheet for controlling the oxidation amount in decarburization annealing is disclosed in Patent Document 6 in which the atmosphere gas in the heating zone is separated from the soaking zone in the decarburization annealing process of the grain-oriented electrical steel sheet. A method of manufacturing grain-oriented electrical steel sheets that stably builds film properties and magnetic properties by evaluating the oxide film after annealing with a fluorescent X-ray apparatus and managing these decarburized annealing atmosphere gases is also patented Reference 7 includes cold rolling passes In addition, a method is disclosed in which the iron loss of a steel sheet is measured online after the final pass, and the quality characteristics in the product are improved by adjusting the rolling conditions by feedback or feedforward based on the measurement result. .

特開2007−146244号公報JP 2007-146244 A 特開平03−294426号公報Japanese Patent Laid-Open No. 03-294426 特開平08−283855号公報Japanese Patent Laid-Open No. 08-283855 特開2004−191217号公報JP 2004-191217 A 特開平11−106826号公報JP-A-11-106826 特開平10−219359号公報Japanese Patent Laid-Open No. 10-219359 特開平10−195535号公報JP-A-10-195535

しかしながら、特許文献1,2の技術は、主に一次再結晶粒径に基いて製造条件をオンライン制御するもの、特許文献3の技術は、一次再結晶焼鈍後鋼板の抗磁力に基いて一次粒径とインヒビター抑制力等を制御するもの、特許文献4の技術は、表層酸化物の形態に基いて最終製品の被膜密着性を評価するもの、特許文献5,6の技術は、脱炭焼鈍における酸素目付量を制御しようとするものであり、いずれも一次再結晶焼鈍後の鋼板の集合組織について着目したものではない。   However, the techniques of Patent Documents 1 and 2 mainly control the production conditions on the basis of the primary recrystallization grain size, and the technique of Patent Document 3 is based on the coercive force of the steel sheet after the primary recrystallization annealing. The technique for controlling the diameter and inhibitor inhibiting power, the technique of Patent Document 4 is for evaluating the film adhesion of the final product based on the form of the surface oxide, and the techniques of Patent Documents 5 and 6 are for decarburization annealing. This is intended to control the oxygen basis weight, and none of them focuses on the texture of the steel sheet after the primary recrystallization annealing.

また、特許文献7の技術は、集合組織を一定にするために、冷間圧延のパス間もしくは最終パス後に鋼板の鉄損をオンライン計測し、圧延条件を制御するものであるが、実際に一次再結晶集合組織が形成されるのは一次再結晶焼鈍時点であり、冷間圧延工程だけで、前工程の製造条件の変動をすべて吸収することは難しい。そのため、得られる効果も限定的である。   In addition, the technique of Patent Document 7 is to measure the iron loss of the steel sheet between the cold rolling passes or after the final pass in order to make the texture constant, and control the rolling conditions. The recrystallization texture is formed at the time of primary recrystallization annealing, and it is difficult to absorb all fluctuations in the manufacturing conditions of the previous process only by the cold rolling process. Therefore, the effect obtained is also limited.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、一次再結晶焼鈍後の鋼板の集合組織を精度よく予測する方法を確立するとともに、上記方法を用いてコイル内の一次再結晶集合組織を均一化し、磁気特性のバラツキが小さい方向性電磁鋼板を安定して製造する方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to establish a method for accurately predicting the texture of a steel sheet after primary recrystallization annealing, and to use the above method. The object is to propose a method of stably producing a grain-oriented electrical steel sheet in which the primary recrystallization texture in the coil is made uniform and the variation in magnetic properties is small.

発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、一次再結晶焼鈍後の鋼板の集合組織を予測する方法としては、集合組織を表す指標と相関関係がある何らかの磁気特性を測定し、この磁気特性の測定結果から予測する方法が有効であること、また、上記予測した集合組織を所定の範囲内に制御する方法としては、一次再結晶焼鈍における加熱過程の昇温速度を調整することが有効であり、これによって、コイルの全長にわたって一次再結晶集合組織を好ましい均一なものとすることができ、その結果、コイルの全長にわたって二次再結晶後のGoss方位への集積度を高め、良好な磁気特性が得られることを見出し、本発明を開発するに至った。   The inventors have intensively studied to solve the above problems. As a result, as a method of predicting the texture of the steel sheet after primary recrystallization annealing, it is effective to measure some magnetic properties that have a correlation with the index representing the texture and to predict from the measurement results of the magnetic properties. In addition, as a method of controlling the predicted texture within a predetermined range, it is effective to adjust the heating rate of the heating process in the primary recrystallization annealing. It has been found that the recrystallized texture can be made preferable and uniform, and as a result, the degree of integration in the Goss orientation after the secondary recrystallization is increased over the entire length of the coil, and good magnetic properties can be obtained. Led to the development.

すなわち、本発明は、一次再結晶焼鈍後の鋼板の磁気特性を測定し、その測定結果から一次再結晶焼鈍後の鋼板の集合組織のM方位およびS方位のランダム強度比を予測することを特徴とする一次再結晶集合組織の予測方法を提案する。ここで、上記M方位は{111}<112>を、S方位は{411}<148>を示す。 That is, the present invention measures the magnetic properties of the steel sheet after primary recrystallization annealing, and predicts the random strength ratio of the M orientation and S orientation of the texture of the steel sheet after primary recrystallization annealing from the measurement result. We propose a method for predicting the primary recrystallization texture. Here, the M direction indicates {111} <112>, and the S direction indicates {411} <148>.

本発明の一次再結晶集合組織の予測方法における上記磁気特性は、圧延方向に対する磁化方向および磁化力を種々に変えて測定した磁束密度であることを特徴とする。   In the method for predicting a primary recrystallization texture of the present invention, the magnetic property is a magnetic flux density measured by changing the magnetization direction and the magnetization force with respect to the rolling direction.

また、本発明は、C:0.002〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍あるいは脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、上記一次再結晶焼鈍後の鋼板の磁気特性を測定し、その測定結果から一次再結晶焼鈍後の鋼板の集合組織のM方位およびS方位のランダム強度比を予測し、該予測した集合組織のM方位のランダム強度比が5.0〜6.2、S方位のランダム強度比が3.4〜4.1の範囲となるよう、一次再結晶焼鈍の加熱過程における500〜700℃間の昇温速度を制御することを特徴とする方向性電磁鋼板の製造方法を提案する。ここで、上記M方位は{111}<112>を、S方位は{411}<148>を示す。 Further, the present invention contains C: 0.002 to 0.10 mass%, Si: 2.0 to 8.0 mass%, and Mn: 0.005 to 1.0 mass%, with the balance being Fe and inevitable impurities. A hot-rolled sheet is obtained by hot-rolling a steel material having a composition as follows, and after hot-rolled sheet annealing or hot-rolled sheet annealing, it is cold-rolled twice or more with one or intermediate annealing. The directionality consisting of a series of steps in which a cold-rolled sheet with a final thickness is made, and after applying primary recrystallization annealing that also serves as primary recrystallization annealing or decarburization annealing, an annealing separator is applied to the steel sheet surface and finish annealing is performed. In the manufacturing method of the electrical steel sheet, the magnetic properties of the steel sheet after the primary recrystallization annealing are measured, and the random strength ratio of the M and S orientations of the texture of the steel sheet after the primary recrystallization annealing is predicted from the measurement results. M orientation of the texture and the predicted Random intensity ratio 5.0 to 6.2, so that the random intensity ratio of S orientation is in the range of 3.4 to 4.1, the heating rate between 500 to 700 ° C. in the heating process of the primary recrystallization annealing A method of manufacturing a grain-oriented electrical steel sheet characterized by controlling is proposed. Here, the M direction indicates {111} <112>, and the S direction indicates {411} <148>.

また、本発明の方向性電磁鋼板の製造方法における上記磁気特性は、鋼板の圧延方向に対する磁化方向および磁化力を種々に変えて測定した磁束密度であることを特徴とする。   The magnetic property in the method for producing a grain-oriented electrical steel sheet according to the present invention is a magnetic flux density measured by variously changing the magnetization direction and the magnetization force with respect to the rolling direction of the steel sheet.

また、本発明の方向性電磁鋼板の製造方法は、上記昇温速度を、一次再結晶焼鈍後の鋼板の集合組織の予測結果に基き、フィードバック制御することを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that the temperature increase rate is feedback controlled based on a prediction result of a texture of the steel sheet after the primary recrystallization annealing.

また、本発明の方向性電磁鋼板の製造方法は、上記一次再結晶焼鈍で700℃以上の温度に加熱した後、180℃以下まで冷却し、磁気特性を測定した後、均熱温度まで再加熱して一次再結晶焼鈍を完了させることを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet of the present invention is the above-mentioned primary recrystallization annealing, heated to a temperature of 700 ° C. or higher, cooled to 180 ° C. or lower, measured for magnetic properties, and then reheated to a soaking temperature. Then, the primary recrystallization annealing is completed.

また、本発明の方向性電磁鋼板の製造方法は、上記一次再結晶焼鈍の加熱過程における200〜500℃間のいずれかの温度で0.5秒以上5秒以下の時間保持する保定処理を施すことを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention performs a holding treatment for holding for 0.5 to 5 seconds at any temperature between 200 to 500 ° C. in the heating process of the primary recrystallization annealing. It is characterized by that.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Al:0.010〜0.050mass%およびN:0.003〜0.020mass%を含有し、あるいは、Al:0.010〜0.050mass%、N:0.003〜0.020mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有することを特徴とする。   The steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes Al: 0.010-0.050 mass% and N: 0.003-0.020 mass% in addition to the above component composition. Or Al: 0.010-0.050 mass%, N: 0.003-0.020 mass%, Se: 0.003-0.030 mass% and / or S: 0.002-0.03 mass% It is characterized by containing.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、不可避的不純物として、Al,N,SおよびSeをそれぞれAl:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0030mass%未満含有することを特徴とする。   Further, the steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention includes Al, N, S and Se as inevitable impurities, Al: less than 0.01 mass%, N: less than 0.0050 mass%, S : Less than 0.0050 mass% and Se: less than 0.0030 mass%.

また、本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   Moreover, in addition to the said component composition, the said steel raw material used for the manufacturing method of the grain-oriented electrical steel sheet of this invention is further Ni: 0.010-1.50 mass%, Cr: 0.01-0.50 mass%, Cu : 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0 .50 mass%, Mo: 0.005-0.100 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.0100 mass%, Nb: 0.0010-0.0100 mass%, V: 1 type or 2 types or more chosen from 0.001-0.010mass% and Ta: 0.001-0.010mass% are contained, It is characterized by the above-mentioned.

本発明によれば、一次再結晶焼鈍後の鋼板の何らかの磁気特性を測定し、その測定結果から集合組織を予測し、該予測した集合組織が所定の目標範囲に収まるように一次再結晶焼鈍の加熱過程における昇温速度を制御するので、コイル内の長手方向の一次再結晶集合組織をコイル全長に亘って均一化し、ひいては、磁気特性に優れかつバラツキのない方向性電磁鋼板を安定して製造することが可能となる。   According to the present invention, the magnetic properties of the steel sheet after the primary recrystallization annealing are measured, the texture is predicted from the measurement results, and the primary recrystallization annealing is performed so that the predicted texture falls within a predetermined target range. Controls the rate of temperature rise in the heating process, making the primary recrystallized texture in the longitudinal direction in the coil uniform over the entire length of the coil, and thus stable production of grain-oriented electrical steel sheets with excellent magnetic properties and no variation. It becomes possible to do.

鉄損特性に及ぼす冷間圧延速度と一次再結晶焼鈍の昇温速度の影響を示すグラフである。It is a graph which shows the influence of the temperature increase rate of cold rolling speed and primary recrystallization annealing on iron loss characteristics. M方位のランダム強度比およびS方位のランダム強度比に及ぼす冷間圧延速度と一次再結晶焼鈍の昇温速度の影響を示すグラフである。It is a graph which shows the influence of the temperature increase rate of the cold rolling speed | velocity | rate and the primary recrystallization annealing which affects the random intensity ratio of M direction, and the random intensity ratio of S direction. 本発明において磁気特性の測定に用いるセンサーを説明する図である。It is a figure explaining the sensor used for the measurement of a magnetic characteristic in this invention. M方位およびS方位のランダム強度比に及ぼす冷間圧延速度と一次再結晶焼鈍後鋼板の圧延方向から45°方向の磁束密度の影響を示すグラフである。It is a graph which shows the influence of the magnetic flux density of a 45 degree direction from the rolling direction of the cold rolling speed and the rolling direction of a steel plate after primary recrystallization annealing on the random strength ratio of M direction and S direction.

まず、本発明を開発する契機となった実験について説明する。
C:0.065mass%、Si:3.44mass%、Mn:0.08mass%、Al:0.024mass%およびN:0.008mass%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1410℃に再加熱し、熱間圧延して板厚2.4mmの熱延板とした後、1120℃×80秒の中間焼鈍を挟む2回の冷間圧延により、最終板厚0.23mmの冷延板とした。この際、二次冷間圧延における圧延速度を600mpmと20mpmの2条件に振り分けた。
次いで、50vol%H−50vol%N、露点55℃の湿潤雰囲気下、840℃×100秒で脱炭を行う脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。この際、一次再結晶焼鈍の加熱過程における500〜700℃間の昇温速度を20〜350℃/sの範囲で種々に変化させた。
次いで、上記一次再結晶焼鈍後の各鋼板から試験片を採取し、集合組織の測定を行った。ここで、上記集合組織の測定は、板厚中心層のX線極点図を測定し、その測定データから3次元集合組織、具体的には、M方位のランダム強度比、および、S方位のランダム強度比を計算により求めた。
次いで、上記鋼板表面に、MgOを主体とする焼鈍分離剤を塗布・乾燥した後、二次再結晶焼鈍と、1200℃×10hrの純化焼鈍からなる仕上焼鈍を施した。その後、未反応の焼鈍分離剤を除去した後、絶縁被膜処理剤を塗布し、その焼き付けを兼ねて、800℃×60秒の平坦化焼鈍を施した。
上記のようにして得た各鋼板から試験片を採取し、JIS C2550に準じて鉄損W17/50を測定した。
First, an experiment that triggered the development of the present invention will be described.
Steel containing C: 0.065 mass%, Si: 3.44 mass%, Mn: 0.08 mass%, Al: 0.024 mass% and N: 0.008 mass%, and a steel slab by a continuous casting method After that, it was reheated to 1410 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.4 mm, and then the final sheet thickness of 0 mm was obtained by two cold rollings with intermediate annealing at 1120 ° C. × 80 seconds. A 23 mm cold rolled sheet was used. At this time, the rolling speed in the secondary cold rolling was divided into two conditions of 600 mpm and 20 mpm.
Next, primary recrystallization annealing was performed which also served as decarburization annealing in which decarburization was performed at 840 ° C. for 100 seconds in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 55 ° C. Under the present circumstances, the temperature increase rate between 500-700 degreeC in the heating process of primary recrystallization annealing was variously changed in the range of 20-350 degreeC / s.
Next, test pieces were collected from each steel plate after the primary recrystallization annealing, and the texture was measured. Here, the texture is measured by measuring an X-ray pole figure of the thickness center layer, and from the measurement data, a three-dimensional texture, specifically, a random intensity ratio in the M direction and a random value in the S direction. The intensity ratio was calculated.
Next, after applying and drying an annealing separator mainly composed of MgO on the surface of the steel sheet, a final annealing consisting of secondary recrystallization annealing and purification annealing of 1200 ° C. × 10 hr was performed. Then, after removing the unreacted annealing separator, an insulating film treatment agent was applied, and planarization annealing at 800 ° C. for 60 seconds was performed to double the baking.
Test pieces were collected from each steel plate obtained as described above, and the iron loss W 17/50 was measured according to JIS C2550.

図1は、上記鉄損の測定結果を、圧延速度と一次再結晶焼鈍の昇温速度との関係として示したものである。この図から、最終冷間圧延における圧延速度が600mpm、20mpmのいずれの場合も、最も低い鉄損値は約0.80W/kgで同程度であるが、最も低い鉄損を示す昇温速度は、圧延速度が20mpmでは100〜150℃/sの範囲、600mpmでは150〜200℃/sの範囲と異なることがわかる。   FIG. 1 shows the measurement result of the iron loss as a relationship between the rolling speed and the temperature increase rate of the primary recrystallization annealing. From this figure, when the rolling speed in the final cold rolling is 600 mpm or 20 mpm, the lowest iron loss value is about 0.80 W / kg, but the heating rate showing the lowest iron loss is It can be seen that the rolling speed is different from the range of 100 to 150 ° C./s at 20 mpm and 150 to 200 ° C./s at 600 mpm.

また、図2は、X線で測定した板厚中心層の集合組織に及ぼす、一次再結晶焼鈍の昇温速度と、圧延速度の影響を示したものであり、図2(a)は、集合組織の指標としてM方位のランダム強度比を、図2(b)は集合組織の指標としてS方位のランダム強度比を用いた例である。
図2(a)から、M方位のランダム強度比は、圧延速度が600mpmの方が、20mpmよりも高いこと、また、M方位のランダム強度比は、いずれの圧延速度でも、昇温速度が100℃/s以下では殆ど変化しないが、100℃/s以上では連続して低下する傾向があることがわかる。
また、図2(b)から、S方位のランダム強度比は、圧延速度が20mpmの方が、600mpmよりも僅かに高いこと、また、M方位のランダム強度比は、いずれの圧延速度でも、昇温速度が100℃/s以下では、昇温速度の上昇に伴い大きくなるが、100℃/s以上では、上昇傾向が小さくなることがわかる。
FIG. 2 shows the influence of the temperature increase rate of the primary recrystallization annealing and the rolling rate on the texture of the thickness center layer measured by X-ray. FIG. FIG. 2B shows an example in which the random intensity ratio in the S direction is used as the texture index, and the random intensity ratio in the S direction is used as the texture index.
From FIG. 2 (a), the random strength ratio in the M direction is higher at 20 mpm at the rolling speed of 600 mpm, and the random strength ratio in the M direction has a temperature increase rate of 100 at any rolling speed. It can be seen that there is almost no change below 100 ° C./s, but there is a tendency to continuously decrease above 100 ° C./s.
Further, from FIG. 2B, the random strength ratio in the S direction is slightly higher than 600 mpm at the rolling speed of 20 mpm, and the random strength ratio in the M direction is increased at any rolling speed. It can be seen that when the temperature rate is 100 ° C./s or less, the temperature increases as the temperature increase rate increases.

先述したように、熱間圧延において、コイル内の温度履歴や圧延履歴を一定とすることは難しい。また、最終冷間圧延では、圧延速度をコイル長手方法で一定として圧延することが望ましいが、コイル両端部では、加減速に伴う圧延速度の変動は、連続圧延でない限り、避けられない。また、コイル内に存在する形状不良部や耳割れ部等では、圧延速度を下げて圧延せざるを得ず、圧延速度の変動は避けられない。このようなコイル内での製造条件の変動は、集合組織の変化を介して最終製品の磁気特性に微妙に影響を及ぼす。   As described above, in hot rolling, it is difficult to keep the temperature history and rolling history in the coil constant. In the final cold rolling, it is desirable to perform rolling with the rolling speed kept constant by the coil longitudinal method, but fluctuations in the rolling speed accompanying acceleration / deceleration are unavoidable at both ends of the coil unless continuous rolling is performed. In addition, in a defective shape part or an ear crack part existing in the coil, the rolling speed must be reduced and rolling is unavoidable. Such variations in manufacturing conditions within the coil have a subtle effect on the magnetic properties of the final product through changes in texture.

しかし、上記実験の結果から、最終冷間圧延の圧延速度により、M方位およびS方位のランダム強度比、すなわち、一次再結晶集合組織は変化するが、一次再結晶焼鈍の昇温速度によっても変化する。このことは、最終冷間圧延における圧延速度の変動に伴って一次再結晶集合組織が変化しても、一次再結晶焼鈍の昇温速度を調整することによって、集合組織を一定の範囲に制御し得る可能性があることを示している。   However, from the results of the above experiment, the random strength ratio of the M and S orientations, that is, the primary recrystallization texture changes depending on the rolling speed of the final cold rolling, but also changes depending on the temperature increase rate of the primary recrystallization annealing. To do. This means that even if the primary recrystallization texture changes as the rolling speed changes in the final cold rolling, the texture is controlled within a certain range by adjusting the heating rate of the primary recrystallization annealing. It shows that you might get.

次に、上記の実験で得た一次再結晶焼鈍後の鋼板について磁気特性を測定し、上記集合組織(M方位およびS方位のランダム強度比)との関係を調べた。
ここで、上記磁気特性の測定には、特許文献1に開示された、コの字型のヨーク(コア)に励磁用一次コイルと出力用二次コイルを巻装した、図3に示したようなセンサーを用いて、鋼板表面上に5mmの高さに保持し、鋼板表面内での圧延方向に対する磁化方向(コアの長さ方向)の角度および磁化力を種々に変えて、磁束密度Bを測定した。なお、上記コの字形コアの幅(図3(b)のW)は300mm、コの字形コアの長さ(図3(a)のL)は300mmで、このセンサーによる測定領域は、上記W×Lの範囲となる。
Next, the magnetic properties of the steel sheet after the primary recrystallization annealing obtained in the above experiment were measured, and the relationship with the texture (random strength ratio of M orientation and S orientation) was examined.
Here, in the measurement of the magnetic characteristics, a primary coil for excitation and a secondary coil for output are wound around a U-shaped yoke (core) disclosed in Patent Document 1, as shown in FIG. The sensor is held at a height of 5 mm on the surface of the steel sheet, and the magnetic flux density B is changed by changing the angle and magnetization force of the magnetization direction (core length direction) with respect to the rolling direction in the steel sheet surface. It was measured. The width of the U-shaped core (W in FIG. 3B) is 300 mm, and the length of the U-shaped core (L in FIG. 3A) is 300 mm. It becomes the range of xL.

上記種々の方向および磁化力で測定した磁束密度Bの測定結果について、M方位およびS方位のランダム強度比との間の相関関係を調査した。その結果、M方位のランダム強度比は、図4(a)に示したように、磁化方向を圧延方向から45°ずらしたときの磁束密度B(磁化力100A/mのときの磁束密度(T))と良い相関が認められた。そして、図1との対比から、製品板の鉄損が安定して低い値(W17/50≦0.82W/kg)を示している試験片のM方位のランダム強度比は5.0〜6.2の範囲内にあることがわかった。一方、S方位のランダム強度比は、図4(b)に示したように、磁化方向を圧延方向から45°ずらした方向の磁束密度B(磁化力500A/mのときの磁束密度(T))と良い相関が認められた。そして、図1との対比から、製品板の鉄損が安定して低い値(W17/50≦0.82W/kg)を示している試験片のS方位のランダム強度比は3.4〜4.1の範囲内にあることがわかった。 About the measurement result of the magnetic flux density B measured by the above-mentioned various directions and magnetizing forces, the correlation between the random intensity ratio of the M direction and the S direction was investigated. As a result, as shown in FIG. 4A, the random intensity ratio in the M direction is the magnetic flux density B 1 when the magnetization direction is shifted by 45 ° from the rolling direction (the magnetic flux density when the magnetization force is 100 A / m ( T)) and a good correlation were observed. And from the comparison with FIG. 1, the random strength ratio in the M direction of the test piece in which the iron loss of the product plate stably shows a low value (W 17/50 ≦ 0.82 W / kg) is 5.0 to It was found to be within the range of 6.2. On the other hand, as shown in FIG. 4 (b), the random intensity ratio in the S direction is determined by the magnetic flux density B 5 in the direction in which the magnetization direction is shifted by 45 ° from the rolling direction (magnetic flux density when the magnetization force is 500 A / m (T )) And good correlation. And from the comparison with FIG. 1, the random strength ratio of the S orientation of the test piece in which the iron loss of the product plate stably shows a low value (W 17/50 ≦ 0.82 W / kg) is 3.4 to It was found to be within the range of 4.1.

以上の結果から、方向性電磁鋼板の鉄損特性に影響する一次再結晶焼鈍後の鋼板の集合組織の指標として、M方位およびS方位のランダム強度比を測定するとともに、一次再結晶焼鈍後の鋼板の磁気特性として、圧延方向に対する種々の方向、種々の磁化力における磁束密度を測定し、それらの間で最も良い相関がある磁気特性の測定条件を見出して、その条件で一次再結晶後の鋼板の磁気特性を測定すれば、該鋼板の集合組織を予測することが可能であること、さらに、予測した鋼板の集合組織に基いて、上記予測した鋼板の集合組織を鉄損特性が最良となる所定の範囲に収まるよう、一次再結晶焼鈍の昇温速度を調整してやれば、鉄損特性に優れる方向性電磁鋼板を安定して製造し得ることがわかった。
本発明は、上記の新規知見に基づき開発したものである。
From the above results, as an index of the texture of the steel sheet after the primary recrystallization annealing that affects the iron loss characteristics of the grain-oriented electrical steel sheet, the random strength ratio of the M orientation and the S orientation is measured, and after the primary recrystallization annealing. As magnetic properties of the steel sheet, the magnetic flux density in various directions and various magnetizing forces with respect to the rolling direction is measured, and the measurement conditions of the magnetic properties having the best correlation among them are found, and after the primary recrystallization in those conditions By measuring the magnetic properties of the steel sheet, it is possible to predict the texture of the steel sheet, and further, based on the predicted texture of the steel sheet, the iron loss characteristics of the predicted texture of the steel sheet are best. It was found that the grain-oriented electrical steel sheet having excellent iron loss characteristics can be stably produced by adjusting the temperature increase rate of the primary recrystallization annealing so as to be within the predetermined range.
The present invention has been developed based on the above novel findings.

なお、上記実験においては、集合組織の指標として、M方位およびS方位のランダム強度比を用いているが、磁気特性と相関がある集合組織の指標であれば、その他の指標を用いてもよい。
また、上記実験においては、一次再結晶後の鋼板の磁気特性として、圧延方向から45°方向の磁束密度BおよびB磁束密度を測定したが、上記磁束密度に限定されるものではなく、M方位およびS方位のランダム強度比等の集合組織を表す指標と関係ある限り、いずれの磁気特性を用いてもよい。
また、その磁気特性の測定に用いるセンサーも、図3に示した、コの字型のヨーク(コア)に励磁用一次コイルと出力用二次コイルを巻装したセンサーに限定されるものではなく、例えば、ソレノイドコイル式のセンサーを用いてもよく、さらに、他の種類のセンサーを用いてもよいことは勿論である。
In the above experiment, the random intensity ratio of the M direction and the S direction is used as the texture index. However, any other index may be used as long as it is a texture index correlated with the magnetic characteristics. .
In the above experiment, as magnetic properties of the steel sheet after the primary recrystallization, the magnetic flux densities B 1 and B 5 in the direction of 45 ° from the rolling direction were measured. However, the magnetic density is not limited to the above magnetic flux density. Any magnetic characteristic may be used as long as it is related to an index representing a texture such as a random intensity ratio of the M direction and the S direction.
The sensor used for measuring the magnetic characteristics is not limited to the sensor shown in FIG. 3 in which a primary coil for excitation and a secondary coil for output are wound around a U-shaped yoke (core). For example, a solenoid coil type sensor may be used, and other types of sensors may be used.

次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.002〜0.10mass%
Cは、0.002mass%に満たないと、Cの粒界強化効果が失われ、スラブに割れが生じるなど、製造に支障を来たすようになる。一方、0.10mass%を超えると、脱炭焼鈍で、磁気時効の起こらない0.005mass%以下に低減することが困難となる。よって、Cは0.002〜0.10mass%の範囲とするのが好ましい。より好ましくは0.010〜0.080mass%の範囲である。
Next, the component composition of the steel material (slab) used for manufacture of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.002-0.10 mass%
If C is less than 0.002 mass%, the grain boundary strengthening effect of C is lost, and the slab is cracked, resulting in problems in production. On the other hand, when it exceeds 0.10 mass%, it becomes difficult to reduce to 0.005 mass% or less in which demagnetization annealing does not cause magnetic aging. Therefore, C is preferably in the range of 0.002 to 0.10 mass%. More preferably, it is the range of 0.010-0.080 mass%.

Si:2.0〜8.0mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。上記効果は、2.0mass%未満では十分ではなく、一方、8.0mass%を超えると、加工性が低下し、圧延して製造することが困難となる。よって、Siは2.0〜8.0mass%の範囲とするのが好ましい。より好ましくは2.5〜4.5mass%の範囲である。
Si: 2.0 to 8.0 mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. If the effect is less than 2.0 mass%, it is not sufficient. On the other hand, if it exceeds 8.0 mass%, the workability deteriorates and it is difficult to roll and manufacture. Therefore, Si is preferably in the range of 2.0 to 8.0 mass%. More preferably, it is the range of 2.5-4.5 mass%.

Mn:0.005〜1.0mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.005mass%未満では十分ではなく、一方、1.0mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とするのが好ましい。より好ましくは0.02〜0.20mass%の範囲である。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.005 mass%, it is not sufficient. On the other hand, if it exceeds 1.0 mass%, the magnetic flux density of the product plate is lowered. Therefore, Mn is preferably in the range of 0.005 to 1.0 mass%. More preferably, it is the range of 0.02-0.20 mass%.

上記C,SiおよびMn以外の成分は、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とで異なる。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、それぞれAl:0.010〜0.050mass%、N:0.003〜0.020mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用する場合には、S:0.002〜0.030mass%および/またはSe:0.003〜0.030mass%を含有させることが好ましい。それぞれの添加量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上限値を超えると、インヒビター成分がスラブ加熱時に未固溶にまま残存し、磁気特性の低下をもたらす。なお、AlN系とMnS・MnSe系のインヒビターは併用して用いてもよい。
Components other than C, Si and Mn are different depending on whether or not an inhibitor is used in order to cause secondary recrystallization.
First, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are changed to Al: 0.010 to 0.050 mass%, N: 0.003, respectively. It is preferable to make it contain in the range of -0.020 mass%. Moreover, when using a MnS * MnSe type | system | group inhibitor, it is preferable to contain S: 0.002-0.030mass% and / or Se: 0.003-0.030mass%. When the amount of each additive is less than the above lower limit value, the inhibitor effect cannot be sufficiently obtained. On the other hand, when the amount exceeds the upper limit value, the inhibitor component remains undissolved during slab heating, resulting in a decrease in magnetic properties. . AlN and MnS / MnSe inhibitors may be used in combination.

一方、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター生成成分であるAl,N,SおよびSeの含有量は極力低減し、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0030mass%未満に低減した鋼素材を用いるのが好ましい。   On the other hand, when an inhibitor is not used to cause secondary recrystallization, the content of Al, N, S and Se, which are the above-described inhibitor generating components, is reduced as much as possible, Al: less than 0.01 mass%, N : It is preferable to use a steel material reduced to less than 0.0050 mass%, S: less than 0.0050 mass%, and Se: less than 0.0030 mass%.

なお、本発明の方向性電磁鋼板に用いる鋼素材は、上記成分以外の残部はFeおよび不可避的不純物であるが、磁気特性の改善を目的として、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.010mass%、Nb:0.0010〜0.010mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有していてもよい。   The steel material used for the grain-oriented electrical steel sheet of the present invention is the balance of Fe and inevitable impurities other than the above components. For the purpose of improving magnetic properties, Ni: 0.010 to 1.50 mass%, Cr : 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0 .50 mass%, Bi: 0.005-0.50 mass%, Mo: 0.005-0.100 mass%, B: 0.0002-0.0025 mass%, Te: 0.0005-0.010 mass%, Nb: One or two selected from 0.0010 to 0.010 mass%, V: 0.001 to 0.010 mass%, and Ta: 0.001 to 0.010 mass% The above may be contained.

次に、本発明の方向性電磁鋼板の製造方法について説明する。
本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)は、前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、従来公知の造塊−分塊圧延法または連続鋳造法で製造してもよいし、直接鋳造法で100mm以下の厚さの薄鋳片として製造してもよい。上記スラブは、常法に従い加熱炉等に装入して、インヒビター成分を含有する場合には1400℃程度の温度に再加熱し、一方、インヒビター成分を含有しない場合には1300℃以下の温度に再加熱した後、熱間圧延に供するのが好ましい。なお、インヒビター成分を含有しない場合には、連続鋳造後、再加熱することなく直ちに熱間圧延に供してもよい。また、薄鋳片の場合には、上記熱間圧延を省略し、そのまま以後の工程に進めてもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
The steel material (slab) used for the production of the grain-oriented electrical steel sheet of the present invention is prepared by melting the steel having the above-described component composition by a conventional refining process, and then performing a conventionally known ingot-bundling rolling method or continuous casting. You may manufacture by a method, and you may manufacture as a thin cast piece of thickness of 100 mm or less by a direct casting method. The slab is charged into a heating furnace or the like according to a conventional method, and reheated to a temperature of about 1400 ° C. when it contains an inhibitor component, while it is 1300 ° C. or less when it does not contain an inhibitor component. After reheating, it is preferably subjected to hot rolling. In addition, when not containing an inhibitor component, you may use for a hot rolling immediately after continuous casting, without reheating. In the case of a thin slab, the hot rolling may be omitted and the process may proceed as it is.

次いで、熱間圧延した熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の温度は、良好な磁気特性を得るためには、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶粒の発達が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり、整粒の一次再結晶組織を得ることが難しくなるからである。   Next, the hot-rolled hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary. The temperature of this hot rolled sheet annealing is preferably in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If it is less than 800 degreeC, the band structure formed by hot rolling will remain, it will become difficult to obtain the primary recrystallized structure of a sized grain, and development of a secondary recrystallized grain will be inhibited. On the other hand, when the temperature exceeds 1150 ° C., the grain size after the hot-rolled sheet annealing is excessively coarsened, so that it becomes difficult to obtain a primary recrystallized structure of sized particles.

熱延後あるいは熱延板焼鈍後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では、中間焼鈍後の再結晶粒が細かくなり、さらに、一次再結晶組織におけるGoss核が減少して製品板の磁気特性が低下する。一方、1200℃を超えると、熱延板焼鈍と同様、結晶粒が粗大化し過ぎて、整粒の一次再結晶組織を得ることが難しくなるからである。   The hot-rolled sheet after hot-rolling or after hot-rolled sheet annealing is made into a cold-rolled sheet having a final thickness by one or more cold rollings or two or more cold rollings sandwiching intermediate annealing. The annealing temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. When the temperature is lower than 900 ° C., the recrystallized grains after the intermediate annealing become finer, and the Goss nuclei in the primary recrystallized structure are reduced to deteriorate the magnetic properties of the product plate. On the other hand, when the temperature exceeds 1200 ° C., the crystal grains become too coarse as in the hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of the sized grains.

また、最終板厚とする冷間圧延(最終冷間圧延)は、一次再結晶集合組織を改善し、磁気特性を向上するためには、冷間圧延時の鋼板温度を100〜300℃に上昇させて行う、いわゆる温間圧延としたり、冷間圧延の途中で100〜300℃の温度で時効処理を1回または複数回施したりすることが有効である。   In addition, cold rolling (final cold rolling) with a final thickness increases the steel sheet temperature during cold rolling to 100 to 300 ° C. in order to improve the primary recrystallization texture and improve the magnetic properties. It is effective to perform so-called warm rolling, or to perform aging treatment once or a plurality of times at a temperature of 100 to 300 ° C. during the cold rolling.

最終板厚とした冷延板は、その後、一次再結晶焼鈍あるいは脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。この工程は、本発明において最も重要な工程であり、一次再結晶集合組織を所定の範囲内に制御するため、加熱過程における500〜700℃間の昇温速度を40〜300℃/sの範囲内において、一次再結晶焼鈍後の鋼板の集合組織の測定結果に基いて適正な速度で急速加熱する必要がある。昇温速度が40℃/sよりも低いと、Goss方位粒の強度が低くなり過ぎ、一方、300℃/sを超えると、M方位のランダム強度比が低下し過ぎ、いずれの場合も良好な磁気特性が得られないからである。なお、上記一次再結晶焼鈍の焼鈍温度は750〜900℃の範囲が望ましく、また、脱炭焼鈍を兼ねる場合は、脱炭性を確保する観点からも750〜900℃の範囲とするのが望ましい。   The cold-rolled sheet having the final thickness is then subjected to primary recrystallization annealing that also serves as primary recrystallization annealing or decarburization annealing. This step is the most important step in the present invention. In order to control the primary recrystallization texture within a predetermined range, the heating rate between 500 and 700 ° C. in the heating process is in the range of 40 to 300 ° C./s. In particular, it is necessary to rapidly heat at an appropriate rate based on the measurement result of the texture of the steel sheet after the primary recrystallization annealing. When the rate of temperature rise is lower than 40 ° C./s, the strength of Goss orientation grains becomes too low. On the other hand, when it exceeds 300 ° C./s, the random strength ratio of M orientation decreases too much, which is good in both cases. This is because magnetic characteristics cannot be obtained. In addition, the annealing temperature of the primary recrystallization annealing is desirably in the range of 750 to 900 ° C. In addition, when serving also as decarburization annealing, the range of 750 to 900 ° C. is desirable from the viewpoint of ensuring decarburization. .

上記一次再結晶焼鈍における急速加熱手段は、特に制限はないが、通電加熱方式または誘導加熱方式であれば、昇温速度を容易かつ迅速に変更することができるので好ましい。   The rapid heating means in the primary recrystallization annealing is not particularly limited, but an electric heating method or an induction heating method is preferable because the temperature raising rate can be easily and quickly changed.

ここで、本発明において重要なことは、上記一次再結晶焼鈍における焼鈍速度は、一次再結晶焼鈍後の鋼板の集合組織におけるM方位およびS方位のランダム強度比を測定し、その値に応じて、予め実験等で求めておいた、昇温速度と鉄損との関係式、昇温速度とM方位およびS方位のランダム強度比との関係、および、一次再結晶焼鈍後の磁気特性とM方位およびS方位のランダム強度比との関係とから、M方位のランダム強度比が5.0〜6.2の範囲、S方位のランダム強度比が3.4〜4.1の範囲に収まるよう調整することが重要である。上記範囲に制御することにより、一次再結晶集合組織が向上し、製品板において良好な磁気特性が得られるからである。好ましくは、M方位のランダム強度比は5.0〜6.0の範囲、S方位のランダム強度比は3.7〜4.0の範囲である。   Here, what is important in the present invention is that the annealing speed in the primary recrystallization annealing is determined by measuring the random strength ratio of the M and S orientations in the texture of the steel sheet after the primary recrystallization annealing, and depending on the value. The relationship between the rate of temperature rise and iron loss, the relationship between the rate of temperature rise and the random strength ratio of the M and S orientations, and the magnetic properties after the primary recrystallization annealing and M From the relationship between the azimuth and S orientation random intensity ratios, the M orientation random intensity ratio is in the range of 5.0 to 6.2, and the S orientation random intensity ratio is in the range of 3.4 to 4.1. It is important to adjust. This is because by controlling to the above range, the primary recrystallization texture is improved and good magnetic properties can be obtained in the product plate. Preferably, the random intensity ratio in the M direction is in the range of 5.0 to 6.0, and the random intensity ratio in the S direction is in the range of 3.7 to 4.0.

なお、上記一次再結晶焼鈍における焼鈍速度は、一次再結晶焼鈍後の鋼板の磁気特性の測定結果に基き予測した集合組織が所定の範囲に収まるよう、フィードバック制御するのが好ましい。ここで、上記所定の範囲とは、二次再結晶後の製品板の磁気特性が良好となる、一次再結晶焼鈍後の鋼板の集合組織を表す指標の適正範囲のことをいう。   The annealing rate in the primary recrystallization annealing is preferably feedback controlled so that the texture predicted based on the measurement result of the magnetic properties of the steel sheet after the primary recrystallization annealing falls within a predetermined range. Here, the predetermined range refers to an appropriate range of an index representing the texture of the steel sheet after primary recrystallization annealing, in which the magnetic properties of the product plate after secondary recrystallization are good.

また、本発明の方向性電磁鋼板の製造方法では、上記一次再結晶焼鈍において、鋼板を700℃以上の温度に一旦加熱して一次再結晶させた後、180℃以下まで冷却し、磁気特性を測定し、その後、均熱温度まで再加熱して保定焼鈍し、一次再結晶焼鈍を完了させる方法を採用してもよい。これにより、後続する部位に短時間でフィードバック制御が掛けられるので、表面欠陥等による冷間圧延での一時的な減速等、前工程の短周期の変動に対しても応答性よく対応することができるようになる。   In the method for producing a grain-oriented electrical steel sheet according to the present invention, in the primary recrystallization annealing, the steel sheet is once heated to a temperature of 700 ° C. or higher to be primary recrystallized, and then cooled to 180 ° C. or lower to obtain a magnetic property. A method of measuring and then reheating to a soaking temperature and performing holding annealing to complete primary recrystallization annealing may be employed. This allows feedback control to be applied in a short time to the subsequent part, so that it is possible to respond with high responsiveness to short cycle fluctuations in the previous process, such as temporary deceleration in cold rolling due to surface defects, etc. become able to.

また、本発明の方向性電磁鋼板の製造方法では、上記一次再結晶焼鈍の加熱過程における200〜500℃の間のいずれかの温度で、0.5秒以上5秒以下の短時間保持する保定処理を施すことが好ましい。保定処理中の回復では、歪エネルギーが高い<111>//ND方位が優先的に回復を起こすため、<111>//ND方位の再結晶駆動力が選択的に低下し、それ以外の方位の再結晶が促されることになる。その結果、Goss方位の強度を高めることができる。上記保定時間が0.5秒未満では、保定処理の効果が得られない。一方、5秒を超えると、回復が進み過ぎ、M方位およびS方位が低下してしまうからである。なお、上記保定温度は、一定の温度に保持する必要はなく、上記保定温度に対して±10℃以内の変化であれば、一定と見做すことができる。   Moreover, in the manufacturing method of the grain-oriented electrical steel sheet according to the present invention, the holding is performed for a short time of 0.5 seconds to 5 seconds at any temperature between 200 to 500 ° C. in the heating process of the primary recrystallization annealing. It is preferable to perform the treatment. In the recovery during the holding process, the <111> // ND orientation having a high strain energy is preferentially restored, so that the recrystallization driving force of the <111> // ND orientation is selectively reduced, and other orientations are obtained. Will be recrystallized. As a result, the Goss orientation strength can be increased. If the holding time is less than 0.5 seconds, the effect of the holding process cannot be obtained. On the other hand, if it exceeds 5 seconds, the recovery proceeds too much, and the M direction and the S direction decrease. Note that the holding temperature does not need to be maintained at a constant temperature, and can be considered constant as long as the change is within ± 10 ° C. with respect to the holding temperature.

また、上記加熱過程を、常温から上記保定処理温度までの回復処理と、上記保定処理温度から700℃までの再結晶処理の2段階に分け、別々に加熱してもよい。この場合、保定温度を変更することで、500℃から700℃までの昇温速度を、ライン速度を一定に維持したまま、40〜300℃/sの範囲に変更することができる。   Further, the heating process may be divided into two stages, ie, a recovery process from normal temperature to the holding treatment temperature and a recrystallization process from the holding treatment temperature to 700 ° C., and may be heated separately. In this case, by changing the holding temperature, the rate of temperature increase from 500 ° C. to 700 ° C. can be changed to a range of 40 to 300 ° C./s while keeping the line speed constant.

なお、上記一次再結晶焼鈍において脱炭焼鈍を行う場合には、以下の技術を組み合わせることも可能である。
(1)脱炭焼鈍を複数段に分け、最終段を還元雰囲気として表層の酸化物を還元し、被膜の保護性を高めて磁気特性や被膜を改善する。
(2)脱炭焼鈍の途中もしくは脱炭焼鈍後に窒化処理を施して、インヒビターの抑制力を補強し、磁気特性を改善する。
In addition, when performing decarburization annealing in the said primary recrystallization annealing, it is also possible to combine the following techniques.
(1) The decarburization annealing is divided into a plurality of stages, and the oxides on the surface layer are reduced using the final stage as a reducing atmosphere to improve the protective properties of the coating and improve the magnetic properties and coating.
(2) A nitriding treatment is performed during decarburization annealing or after decarburization annealing to reinforce inhibitor inhibitory force and improve magnetic properties.

上記一次再結晶焼鈍した鋼板は、その後、鋼板表面にMgOを主体とする焼鈍分離剤を塗布し、コイルに巻き取った後、仕上焼鈍を施し、Goss方位に高度に集積した二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させる。
なお、上記仕上焼鈍では、二次再結晶を発現のためには800℃以上の温度に、また、二次再結晶を完了させるためには、1100℃程度の温度まで加熱することが好ましい。さらに、その後、フォルステライト被膜を形成し、純化処理を施すためには、引き続き1200℃程度の温度まで加熱するのが好ましい。
The primary recrystallized annealed steel sheet is then coated with an annealing separator mainly composed of MgO on the steel sheet surface, wound on a coil, then subjected to finish annealing, and a secondary recrystallized structure highly accumulated in the Goss orientation. The forsterite film is formed.
In the finish annealing, it is preferable to heat to a temperature of 800 ° C. or higher for secondary recrystallization and to a temperature of about 1100 ° C. to complete the secondary recrystallization. Further, after that, in order to form a forsterite film and perform a purification treatment, it is preferable to continue heating to a temperature of about 1200 ° C.

上記仕上焼鈍後の鋼板は、その後、鋼板表面に付着した未反応の焼鈍分離剤を除去する水洗やブラッシング、酸洗等を行った後、形状矯正のための平坦化焼鈍を施すことが有効である。これは仕上焼鈍におけるコイルの巻き癖やバックリングなどの形状不良が原因で、鉄損特性が劣化している場合があるためである。   After the finish annealing, it is effective to perform flattening annealing for shape correction after performing water washing, brushing, pickling, etc. to remove the unreacted annealing separator adhering to the steel sheet surface. is there. This is because iron loss characteristics may be deteriorated due to shape defects such as coil curl and buckling in the finish annealing.

なお、本発明の方向性電磁鋼板を積層して使用する場合には、上記平坦化焼鈍と同時に、あるいは、その前もしくはその後の工程で、鋼板表面に絶縁被膜を被成するのが有効である。特に、鉄損の低減を図るためには、鋼板表面に張力を付与する張力付与型の絶縁被膜を適用するのが好ましい。なお、張力付与被膜の形成には、通常のフォルステライト質の下地被膜を形成させた後、珪リン酸塩系の張力絶縁被膜を塗布・焼付する方法の他に、物理蒸着法や化学蒸着法で無機物の被膜を鋼板表層に形成する方法を採用してもよい。   When the grain-oriented electrical steel sheets of the present invention are laminated and used, it is effective to form an insulating film on the steel sheet surface at the same time as the flattening annealing or before or after that. . In particular, in order to reduce iron loss, it is preferable to apply a tension-imparting type insulating coating that applies tension to the surface of the steel sheet. In addition to the method of forming a normal forsterite base film and then applying and baking a silicic acid-based tension insulating film, the tension imparting film can be formed by physical vapor deposition or chemical vapor deposition. A method of forming an inorganic film on the surface of the steel sheet may be employed.

また、本発明の方向性電磁鋼板は、鉄損をより低減するため、磁区細分化処理を施すことが好ましい。磁区細分化の方法としては、一般的に実施されている方法、例えば、最終製品板の表面に電子ビームやレーザー、プラズマ等を照射し線状または点状にの熱歪領域や衝撃歪領域を形成する方法、最終製品板の表面にローラー等を用いて歪領域を形成する方法、最終板厚に冷間圧延した鋼板表面に、その後の中間工程においてエッチング加工を施して溝を形成する方法等を用いることができる。   In addition, the grain-oriented electrical steel sheet of the present invention is preferably subjected to a magnetic domain refinement treatment in order to further reduce iron loss. As a method of subdividing the magnetic domain, a generally practiced method, for example, irradiating the surface of the final product plate with an electron beam, laser, plasma, etc., to form a linear or dotted thermal strain region or impact strain region. A method of forming, a method of forming a strain region on the surface of the final product plate using a roller or the like, a method of forming a groove by etching in a subsequent intermediate process on a steel plate surface cold-rolled to the final plate thickness, etc. Can be used.

C:0.070mass%、Si:3.43mass%、Mn:0.08mass%、Al:0.025mass%、Se:0.025mass%およびN:0.01mass%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1420℃の温度に再加熱した後、熱間圧延して、板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、一次冷間圧延により1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚0.23mmの冷延板とした。   C: 0.070 mass%, Si: 3.43 mass%, Mn: 0.08 mass%, Al: 0.025 mass%, Se: 0.025 mass%, and N: 0.01 mass%, with the remainder being Fe and inevitable A steel slab made of mechanical impurities is manufactured by a continuous casting method, reheated to a temperature of 1420 ° C., and then hot-rolled to form a hot-rolled sheet having a thickness of 2.4 mm, which is 1000 ° C. × 50 seconds. After annealing, the intermediate sheet thickness is set to 1.8 mm by primary cold rolling, and after intermediate annealing at 1100 ° C. × 20 seconds, secondary cold rolling is performed to obtain a cold rolled sheet having a final sheet thickness of 0.23 mm. It was.

その後、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。この際、一次再結晶焼鈍の加熱条件は、下記に4条件とした。
・条件1:加熱過程の500〜700℃間の昇温速度を100℃/s(一定)として加熱後、60vol%H−40vol%N、露点60℃の湿潤雰囲気下、800℃×100秒で脱炭を行う脱炭焼鈍を兼ねた一次再結晶焼鈍を施す。
・条件2:上記条件1で一次再結晶焼鈍終了後の磁気特性(磁束密度)を測定し、該測定結果から一次再結晶集合組織(M方位およびS方位のランダム強度比)を予測し、その予測結果と、予め求めておいた一次再結晶焼鈍の昇温速度とM方位およびS方位のランダム強度比との関係から、M方位のランダム強度比が5.0〜6.2、S方位のランダム強度比が3.4〜4.1の範囲内に収まるように、500〜700℃間の昇温速度を40〜300℃/sの範囲内でフィードバック制御する。
・条件3:上記条件2の加熱過程の途中の400℃の温度で1秒間保持する保定処理を施す。
・条件4:上記条件1で、常温から700℃まで加熱した後、一旦、100℃まで降温し、再度、昇温速度30℃/sで再加熱して800℃×100秒で脱炭を行う脱炭焼鈍を兼ねた一次再結晶焼鈍を施す際、上記100℃まで降温したときに鋼板の磁気特性(磁束密度)を測定し、該測定結果から一次再結晶集合組織(M方位およびS方位のランダム強度比)を予測し、その予測結果と、予め求めておいた一次再結晶焼鈍の昇温速度とM方位およびS方位のランダム強度比との関係から、M方位のランダム強度比が5.0〜6.2、S方位のランダム強度比が3.4〜4.1の範囲内に収まるように、常温から700℃まで加熱する際の500〜700℃間の昇温速度を40〜300℃/sの範囲内でフィードバック制御する。
Then, the primary recrystallization annealing which served as the decarburization annealing was performed. At this time, the heating conditions for the primary recrystallization annealing were the following four conditions.
Condition 1: After heating at a heating rate of 500 to 700 ° C. in the heating process at 100 ° C./s (constant), 800 ° C. × 100 in a wet atmosphere of 60 vol% H 2 -40 vol% N 2 and a dew point of 60 ° C. A primary recrystallization annealing is performed, which also serves as a decarburization annealing that decarburizes in seconds.
Condition 2: The magnetic properties (magnetic flux density) after the completion of primary recrystallization annealing are measured under the above condition 1, and the primary recrystallization texture (random intensity ratio of M and S orientations) is predicted from the measurement results. From the relationship between the prediction result and the temperature increase rate of the primary recrystallization annealing obtained in advance and the random intensity ratio of the M orientation and the S orientation, the random intensity ratio of the M orientation is 5.0 to 6.2, and the S orientation is In order to keep the random intensity ratio within the range of 3.4 to 4.1, the temperature rising rate between 500 to 700 ° C. is feedback controlled within the range of 40 to 300 ° C./s.
Condition 3: A retention treatment is performed for 1 second at a temperature of 400 ° C. during the heating process of Condition 2 above.
Condition 4: After heating from room temperature to 700 ° C. under the above condition 1, the temperature is once lowered to 100 ° C., reheated again at a heating rate of 30 ° C./s, and decarburized at 800 ° C. × 100 seconds. When performing primary recrystallization annealing also serving as decarburization annealing, the magnetic properties (magnetic flux density) of the steel sheet are measured when the temperature is lowered to 100 ° C., and the primary recrystallization texture (of M and S orientations) is determined from the measurement result. Random intensity ratio), and the relationship between the prediction result and the temperature increase rate of primary recrystallization annealing obtained in advance and the random intensity ratio of the M and S orientations is 5. The heating rate between 500 and 700 ° C. when heating from room temperature to 700 ° C. is set to 40 to 300 so that the random intensity ratio of 0 to 6.2 and S orientation falls within the range of 3.4 to 4.1. Feedback control is performed within the range of ° C / s.

その後、スラリー状にしたMgO主体の焼鈍分離剤を鋼板表面に塗布・乾燥し、コイルに巻き取った後、二次再結晶焼鈍と1200℃×10hrの純化焼鈍からなる仕上焼鈍を施した。なお、上記仕上焼鈍の雰囲気は、1200℃保定時はHガス、昇温時(二次再結晶焼鈍を含む)および降温時はNガスとした。その後、未反応の焼鈍分離剤を除去した後、絶縁被膜液を塗布し、形状矯正を行う平坦化焼鈍ラインに通板し、800℃×1minの条件で焼き付けし、製品コイルとした。次いで、上記製品コイルを長さ方向に6等分割して、コイル先後端部および分割点の計7箇所から試験片を採取し、JIS C2550に準じた方法で鉄損W17/50を測定し、最大値(最悪値)および最小値(最良値)を求めた。
この結果を表1に示す。同表から、一次再結晶焼鈍後の集合組織を測定し、その結果に基いて一次再結晶焼鈍の昇温速度を調整し、一次再結晶焼鈍後の集合組織を所定の範囲内に収めることで、低鉄損でかつコイル内での鉄損のばらつきが小さい方向性電磁鋼板を安定して得ることができる。特に、上記条件の加熱途中において保定処理を施した場合には、より鉄損特性が改善されることがわかる。
Thereafter, a slurry-like MgO-based annealing separator was applied to the surface of the steel sheet, dried, wound on a coil, and then subjected to finish annealing comprising secondary recrystallization annealing and purification annealing at 1200 ° C. × 10 hr. The atmosphere for the above finish annealing was H 2 gas at 1200 ° C., N 2 gas at the time of temperature rise (including secondary recrystallization annealing) and at the time of temperature fall. Then, after removing the unreacted annealing separator, an insulating coating solution was applied, passed through a flattening annealing line for shape correction, and baked under conditions of 800 ° C. × 1 min to obtain a product coil. Next, the product coil is divided into 6 equal parts in the length direction, and test pieces are collected from a total of 7 points including the coil rear end and the dividing point, and the iron loss W 17/50 is measured by a method according to JIS C2550. The maximum value (worst value) and the minimum value (best value) were determined.
The results are shown in Table 1. From the same table, by measuring the texture after primary recrystallization annealing, adjusting the temperature increase rate of primary recrystallization annealing based on the results, and keeping the texture after primary recrystallization annealing within a predetermined range It is possible to stably obtain a grain-oriented electrical steel sheet having low iron loss and small variations in iron loss within the coil. In particular, it can be seen that the iron loss characteristics are further improved when the retaining treatment is performed during the heating under the above conditions.

Figure 0006137490
Figure 0006137490

表2に記載の成分組成を有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1380℃の温度に再加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×10秒の熱延板焼鈍を施した後、冷間圧延して最終板厚が0.23mmの冷延板に仕上げた。
その後、加熱過程の500〜700℃間の昇温速度を100℃/s(一定)として加熱後、60vol%H−40vol%N、露点60℃の湿潤雰囲気下、840℃×100秒で脱炭を行う脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。この際、一次再結晶焼鈍後の鋼板の磁気特性(磁束密度)を測定し、該測定結果から一次再結晶集合組織(M方位およびS方位のランダム強度比)を予測し、その予測結果と、予め求めておいた一次再結晶焼鈍の昇温速度とM方位およびS方位のランダム強度比との関係から、M方位のランダム強度比が5.0〜6.2、S方位のランダム強度比が3.4〜4.1の範囲内に収まるように、500〜700℃間の昇温速度を調整した。
その後、スラリー状にしたMgO主体の焼鈍分離剤を鋼板表面に塗布、乾燥し、コイルに巻き取った後、二次再結晶焼鈍と1220℃×4hrの純化焼鈍からなる仕上焼鈍を施した。なお、仕上焼鈍の雰囲気は、1200℃保定時はHガス、昇温時(二次再結晶焼鈍を含む)および降温時はArガスとした。その後、未反応の焼鈍分離剤を除去した後、絶縁被膜液を塗布・乾燥し、形状矯正を行う平坦化焼鈍ラインに通板し、800℃×1minの条件で焼き付けし、製品板のコイルとした。次いで、上記製品コイルを長さ方向で6等分割して、コイル先後端部および分割点の計7箇所から試験片を採取し、JIS C2550に準拠して鉄損W17/50を測定し、最大値(最悪値)および最小値(最良値)を求めた。
A steel slab having the composition shown in Table 2 with the balance being Fe and inevitable impurities is manufactured by a continuous casting method, reheated to a temperature of 1380 ° C., and then hot-rolled to a thickness of 2.0 mm. The hot rolled sheet was subjected to hot rolled sheet annealing at 1030 ° C. for 10 seconds, and then cold rolled to finish a cold rolled sheet having a final sheet thickness of 0.23 mm.
Then, after heating at a heating rate of 500 to 700 ° C. in a heating process at 100 ° C./s (constant), in a humid atmosphere of 60 vol% H 2 -40 vol% N 2 and a dew point of 60 ° C., 840 ° C. × 100 sec. Primary recrystallization annealing was also performed, which also served as decarburization annealing for decarburization. At this time, the magnetic properties (magnetic flux density) of the steel sheet after the primary recrystallization annealing are measured, and the primary recrystallization texture (random strength ratio of M orientation and S orientation) is predicted from the measurement result, and the prediction result, From the relationship between the temperature increase rate of the primary recrystallization annealing obtained in advance and the random intensity ratio of the M and S orientations, the random intensity ratio of the M orientation is 5.0 to 6.2, and the random intensity ratio of the S orientation is The temperature increase rate between 500-700 degreeC was adjusted so that it might be settled in the range of 3.4-4.1.
Thereafter, a slurry-like MgO-based annealing separator was applied to the surface of the steel sheet, dried, wound on a coil, and then subjected to finish annealing consisting of secondary recrystallization annealing and purification annealing at 1220 ° C. × 4 hr. The atmosphere for finish annealing was H 2 gas at 1200 ° C., Ar gas at the time of temperature rise (including secondary recrystallization annealing) and at the time of temperature fall. Then, after removing the unreacted annealing separator, the insulating coating solution is applied and dried, and passed through a flattening annealing line for shape correction, and baked under conditions of 800 ° C. × 1 min. did. Next, the product coil is divided into 6 equal parts in the length direction, test pieces are collected from a total of 7 points of the coil rear end and the dividing point, and the iron loss W 17/50 is measured according to JIS C2550, The maximum value (worst value) and the minimum value (best value) were determined.

上記測定の結果を表2に示した。これから、本発明に適合する成分組成を有する冷延板の一次再結晶焼鈍の加熱過程における昇温速度を、一次再結晶集合組織の予測結果に基いて、該集合組織が適正範囲に収まるよう調整することによって、低鉄損でかつコイル長手方向で均一な鉄損特性を有する方法性電磁鋼板が得られることがわかる。   The measurement results are shown in Table 2. From this, the temperature increase rate in the heating process of the primary recrystallization annealing of the cold rolled sheet having the component composition suitable for the present invention is adjusted based on the prediction result of the primary recrystallization texture so that the texture falls within the appropriate range. By doing so, it is understood that a method electrical steel sheet having low iron loss and uniform iron loss characteristics in the coil longitudinal direction can be obtained.

Figure 0006137490
Figure 0006137490

本発明の技術によれば、一次再結晶焼鈍後の鋼板集合組織の制御が可能となるので、例えば、自動車用鋼板や缶用鋼板等の集合組織制御にも適用することができる。   According to the technique of the present invention, it is possible to control the texture of the steel sheet after the primary recrystallization annealing. Therefore, it can be applied to the texture control of, for example, a steel sheet for automobiles and a steel sheet for cans.

Claims (10)

一次再結晶焼鈍後の鋼板の磁気特性を測定し、その測定結果から一次再結晶焼鈍後の鋼板の集合組織のM方位およびS方位のランダム強度比を予測することを特徴とする一次再結晶集合組織の予測方法。ここで、上記M方位は{111}<112>を、S方位は{411}<148>を示す。 Measuring the magnetic properties of the steel sheet after primary recrystallization annealing, and predicting the random strength ratio of M orientation and S orientation of the texture of the steel sheet after primary recrystallization annealing from the measurement results How to predict the organization. Here, the M direction indicates {111} <112>, and the S direction indicates {411} <148>. 上記磁気特性は、圧延方向に対する磁化方向および磁化力を種々に変えて測定した磁束密度であることを特徴とする請求項1に記載の一次再結晶集合組織の予測方法。 The method for predicting a primary recrystallization texture according to claim 1, wherein the magnetic property is a magnetic flux density measured by variously changing a magnetization direction and a magnetization force with respect to a rolling direction. C:0.002〜0.10mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなくあるいは熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、一次再結晶焼鈍あるいは脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
上記一次再結晶焼鈍後の鋼板の磁気特性を測定し、その測定結果から一次再結晶焼鈍後の鋼板の集合組織のM方位およびS方位のランダム強度比を予測し、該予測した集合組織のM方位のランダム強度比が5.0〜6.2、S方位のランダム強度比が3.4〜4.1の範囲となるよう、一次再結晶焼鈍の加熱過程における500〜700℃間の昇温速度を制御することを特徴とする方向性電磁鋼板の製造方法。ここで、上記M方位は{111}<112>を、S方位は{411}<148>を示す。
C: Steel containing 0.002 to 0.10 mass%, Si: 2.0 to 8.0 mass% and Mn: 0.005 to 1.0 mass% , the balance being composed of Fe and unavoidable impurities The material is hot-rolled to form a hot-rolled sheet, and after the hot-rolled sheet annealing is performed or after the hot-rolled sheet annealing, the final sheet thickness is cooled by one or more cold rollings sandwiching the intermediate annealing. In the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps of applying annealing separator to the steel sheet surface and finishing annealing after applying primary recrystallization annealing that also serves as primary recrystallization annealing or decarburization annealing ,
The magnetic properties of the steel sheet after the primary recrystallization annealing are measured, and the random strength ratio of the M orientation and S orientation of the texture of the steel sheet after the primary recrystallization annealing is predicted from the measurement result, and the predicted M of the texture Temperature rise between 500-700 ° C. in the heating process of primary recrystallization annealing so that the random strength ratio of the orientation is in the range of 5.0 to 6.2 and the random strength ratio of the S orientation is in the range of 3.4 to 4.1. A method for producing a grain-oriented electrical steel sheet, characterized by controlling speed. Here, the M direction indicates {111} <112>, and the S direction indicates {411} <148>.
上記磁気特性は、鋼板の圧延方向に対する磁化方向および磁化力を種々に変えて測定した磁束密度であることを特徴とする請求項に記載の方向性電磁鋼板の製造方法。 4. The method for producing a grain-oriented electrical steel sheet according to claim 3 , wherein the magnetic property is a magnetic flux density measured by variously changing the magnetization direction and the magnetizing force with respect to the rolling direction of the steel sheet. 上記昇温速度を、一次再結晶焼鈍後の鋼板の集合組織の予測結果に基き、フィードバック制御することを特徴とする請求項またはに記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 3 or 4 , wherein the temperature rise rate is feedback controlled based on a prediction result of a texture of the steel sheet after primary recrystallization annealing. 上記一次再結晶焼鈍で700℃以上の温度に加熱した後、180℃以下まで冷却し、磁気特性を測定した後、均熱温度まで再加熱して一次再結晶焼鈍を完了させることを特徴とする請求項のいずれか1項に記載の方向性電磁鋼板の製造方法。 After heating to a temperature of 700 ° C. or higher by the primary recrystallization annealing, cooling to 180 ° C. or lower, measuring magnetic properties, and then reheating to a soaking temperature to complete the primary recrystallization annealing. The manufacturing method of the grain-oriented electrical steel sheet according to any one of claims 3 to 5 . 上記一次再結晶焼鈍の加熱過程における200〜500℃間のいずれかの温度で0.5秒以上5秒以下の時間保持する保定処理を施すことを特徴とする請求項のいずれか1項に記載の方向性電磁鋼板の製造方法。 Any one of claims 3 to 6, characterized by applying retention process to hold either 0.5 seconds 5 seconds or less at a temperature between 200 to 500 ° C. in the heating process of the primary recrystallization annealing 1 The manufacturing method of the grain-oriented electrical steel sheet as described in a term. 上記鋼素材は、上記成分組成に加えてさらに、Al:0.010〜0.050mass%およびN:0.003〜0.020mass%を含有し、あるいは、Al:0.010〜0.050mass%、N:0.003〜0.020mass%、Se:0.003〜0.030mass%および/またはS:0.002〜0.03mass%を含有することを特徴とする請求項のいずれか1項に記載の方向性電磁鋼板の製造方法。 The steel material further contains Al: 0.010 to 0.050 mass% and N: 0.003 to 0.020 mass% in addition to the above component composition, or Al: 0.010 to 0.050 mass%. , N: 0.003~0.020mass%, Se: 0.003~0.030mass% and / or S: any of claims 3-7, characterized in that it contains 0.002~0.03Mass% A method for producing the grain-oriented electrical steel sheet according to claim 1. 上記鋼素材は、不可避的不純物として、Al,N,SおよびSeをそれぞれAl:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0030mass%未満含有することを特徴とする請求項のいずれか1項に記載の方向性電磁鋼板の製造方法。 In the steel material, as inevitable impurities, Al, N, S, and Se are respectively Al: less than 0.01 mass%, N: less than 0.0050 mass%, S: less than 0.0050 mass%, and Se: less than 0.0030 mass%. method for producing a grain-oriented electrical steel sheet according to any one of claims 3-7, characterized in that it contains. 上記鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.005〜0.50mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項またはに記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the steel material further includes Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P: 0.00. 005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.005 to 0.50 mass%, Mo: 0.005 to 0.100 mass% , B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.0100 mass%, Nb: 0.0010 to 0.0100 mass%, V: 0.001 to 0.010 mass%, and Ta: 0.001. The method for producing a grain-oriented electrical steel sheet according to claim 8 or 9 , comprising one or more selected from ˜0.010 mass%.
JP2014069079A 2014-03-28 2014-03-28 Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet Active JP6137490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069079A JP6137490B2 (en) 2014-03-28 2014-03-28 Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069079A JP6137490B2 (en) 2014-03-28 2014-03-28 Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2015190022A JP2015190022A (en) 2015-11-02
JP6137490B2 true JP6137490B2 (en) 2017-05-31

Family

ID=54424788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069079A Active JP6137490B2 (en) 2014-03-28 2014-03-28 Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6137490B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2736566C2 (en) * 2016-07-29 2020-11-18 ДжФЕ СТИЛ КОРПОРЕЙШН Hot-rolled steel sheet for textured electrical steel sheet and method of manufacturing thereof and method for manufacturing of textured electrical steel sheet
US20230243009A1 (en) * 2020-06-30 2023-08-03 Jfe Steel Corporation Production method for grain-oriented electrical steel sheet, and production line

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950119A (en) * 1982-09-16 1984-03-23 Kawasaki Steel Corp Production of unidirectional silicon steel plate having excellent magnetic characteristic
JPS61170514A (en) * 1985-01-22 1986-08-01 Kawasaki Steel Corp Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPH08283855A (en) * 1995-02-13 1996-10-29 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet extremely in magnetic property
JP4016433B2 (en) * 1996-02-15 2007-12-05 Jfeスチール株式会社 Method for producing grain-oriented silicon steel sheets with excellent magnetic properties
JP5526609B2 (en) * 2009-06-05 2014-06-18 新日鐵住金株式会社 Method for producing grain-oriented electrical steel sheet with good magnetic flux density
EP2584054B1 (en) * 2010-06-18 2019-12-25 JFE Steel Corporation Oriented electromagnetic steel plate production method
JP5672273B2 (en) * 2012-07-26 2015-02-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2015190022A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
US9738949B2 (en) Method for producing grain-oriented electrical steel sheet
JP5854233B2 (en) Method for producing grain-oriented electrical steel sheet
JP5737483B2 (en) Method for producing grain-oriented electrical steel sheet
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10294543B2 (en) Method for producing grain-oriented electrical steel sheet
US10294544B2 (en) Method for producing grain-oriented electrical steel sheet
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
JP2015200002A (en) Method for producing grain oriented magnetic steel sheet
EP3960887B1 (en) Method for producing grain-oriented electrical steel sheet
JP6721135B1 (en) Method for producing grain-oriented electrical steel sheet and cold rolling equipment
JP6137490B2 (en) Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet
US20220195555A1 (en) Method for producing grain-oriented electrical steel sheet
US11459633B2 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP6143010B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP5854236B2 (en) Method for producing grain-oriented electrical steel sheet
JP2014019901A (en) Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet
JP6041110B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP7414145B2 (en) Method for producing grain-oriented electrical steel sheets and hot-rolled steel sheets for grain-oriented electrical steel sheets
KR20190107072A (en) Method of manufacturing oriented electrical steel sheet
JP6544344B2 (en) Method of manufacturing directional magnetic steel sheet
JP2016084540A (en) Method of producing grain oriented magnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170418

R150 Certificate of patent or registration of utility model

Ref document number: 6137490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250