JP2807918B2 - Combustion control method for continuous annealing furnace - Google Patents
Combustion control method for continuous annealing furnaceInfo
- Publication number
- JP2807918B2 JP2807918B2 JP2107889A JP10788990A JP2807918B2 JP 2807918 B2 JP2807918 B2 JP 2807918B2 JP 2107889 A JP2107889 A JP 2107889A JP 10788990 A JP10788990 A JP 10788990A JP 2807918 B2 JP2807918 B2 JP 2807918B2
- Authority
- JP
- Japan
- Prior art keywords
- steel strip
- dummy
- temperature
- stainless steel
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Heat Treatment Processes (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続焼鈍炉の燃焼制御方法に係り、特に焼鈍
条件の異なる先行ステンレス鋼帯と後行ステンレス鋼帯
の間に普通鋼からなるダミー鋼帯を介在させ焼鈍する際
の燃焼制御方法に関し、ステンレス冷延鋼帯等の連続焼
鈍に広く利用される。The present invention relates to a combustion control method for a continuous annealing furnace, and more particularly to a dummy made of ordinary steel between a preceding stainless steel strip and a following stainless steel strip having different annealing conditions. The present invention relates to a combustion control method for annealing with a steel strip interposed therebetween, and is widely used for continuous annealing of a cold-rolled stainless steel strip.
ステンレス冷延鋼帯の連続焼鈍ラインでは、通常需要
者の多種多様の要望に応ずるため、鋼種、寸法とも多種
多様の鋼帯を通板して処理しなければならない。一方、
製造コスト低減のためには同一もしくは近似の鋼種、製
品板材の厚さ、幅等の焼鈍条件の差異の少い鋼帯を継続
生産することが望ましい。In a continuous annealing line for a cold rolled stainless steel strip, it is necessary to pass through a wide variety of steel strips of various types and sizes in order to normally meet the various demands of customers. on the other hand,
In order to reduce the manufacturing cost, it is desirable to continuously produce steel strips having the same or similar steel types and the difference in annealing conditions such as the thickness and width of the product sheet material.
従つて連続焼鈍ラインでは通常先行鋼帯の後端に、ヒ
ートパターン、焼鈍温度、板厚、板幅、鋼種、放射率等
の焼鈍条件に大幅な差異を生じないように後行鋼帯を選
択して接続し、連続焼鈍を実施することがコスト低減の
ために最も望ましい。Therefore, in the continuous annealing line, the succeeding steel strip is usually selected at the rear end of the preceding steel strip so that there is no significant difference in the annealing conditions such as heat pattern, annealing temperature, thickness, width, steel type and emissivity. And performing continuous annealing is most desirable for cost reduction.
しかし、納期等の理由から、上記関係の持続が保て
ず、大幅に焼鈍条件が異なる後行鋼帯を組合わせなけれ
ばならないことがしばしば起る。However, due to the delivery date and the like, the above relationship cannot be maintained, and often it is necessary to combine subsequent steel strips having significantly different annealing conditions.
このような場合には第1図に示す如く、先行鋼帯A
と、後行鋼帯Cとの間に、長さ数百メートルの普通鋼か
らなるダミー鋼帯Bを介在させて、該ダミー鋼帯Bを通
板中に連続焼鈍炉の炉温を後行鋼帯Cの焼鈍条件に調整
した後、後行鋼帯Cの焼鈍を行なうことが現状である。In such a case, as shown in FIG.
And a subsequent steel strip C, a dummy steel strip B made of ordinary steel having a length of several hundred meters is interposed, and the furnace temperature of the continuous annealing furnace is postponed during the passing of the dummy steel strip B. At present, after the steel strip C is adjusted to the annealing condition, the subsequent steel strip C is annealed.
一方、通常用いられる連続焼鈍炉1は、第2図に示す
如く加熱帯、均熱帯、冷却帯等ゾーンから構成されてお
り、各ゾーン毎にゾーン温度を熱電対2および温度制御
装置3を介して制御できようになつている。すなわち、
各ゾーン毎に炉の温度を上げる場合には、例えば直火式
であれば燃焼ガス量4を増加する等、熱エネネギーの投
入を増加し、逆に炉温を下げる場合には、エネルギーの
投入量を減じるとか、更に急冷する場合には冷媒を投入
する等の操作によつて炉温を各ゾーン毎に目標とする温
度に調整する。On the other hand, the continuous annealing furnace 1 usually used is composed of zones such as a heating zone, a soaking zone, and a cooling zone as shown in FIG. 2, and the zone temperature of each zone is set via the thermocouple 2 and the temperature control device 3. Control. That is,
When raising the temperature of the furnace for each zone, for example, increasing the amount of combustion gas 4 in the case of a direct fire type, increasing the input of thermal energy, and conversely, when lowering the furnace temperature, inputting energy. If the amount is reduced, or if the cooling is further rapid, the furnace temperature is adjusted to the target temperature for each zone by an operation such as charging a refrigerant.
かくの如き各ゾーンの温度制御の目的は、処理材料の
鋼帯を最適のヒートパターンに合致する温度値に制御す
ることであり、通常直接材料温度を測定してヒートパタ
ーンが所望の温度値になるように熱エネルギーの投入量
を制御して焼鈍することが望ましい。しかし、ステンレ
ス鋼帯の焼鈍温度は900℃以上と高温であるほか、鋼帯
表面の熱吸収率は0.3〜0.4程度と、きわめて低いので、
搬送されているステンレス鋼帯の表面温度を工業的に精
度よく測定する測温装置は未だ開発されていない現状で
ある。The purpose of such temperature control of each zone is to control the steel strip of the processing material to a temperature value that matches the optimal heat pattern.In general, the material temperature is measured directly and the heat pattern is adjusted to the desired temperature value. It is desirable to perform annealing by controlling the input amount of thermal energy so as to be as follows. However, the annealing temperature of the stainless steel strip is as high as 900 ° C or higher, and the heat absorption rate of the steel strip surface is extremely low, about 0.3 to 0.4.
At present, a temperature measuring device for industrially accurately measuring the surface temperature of a conveyed stainless steel strip has not yet been developed.
従つて、ステンレス鋼帯の連続焼鈍は、通常炉温と板
温との間のデータを実験的に数多く求めておき、両者間
の相関関係を知り、工業的な熱処理に適用している。す
なわち、処理材を目標とするヒートパターンおよび板温
どおりに焼鈍しようとする場合には、炉温を制御して処
理材の特性に見合つたヒートパターンおよび板温を得る
方法である。この方法によつて焼鈍条件の大幅な差異の
ない先行鋼帯Aと後行鋼帯Cの板換わり点における焼鈍
条件の変更を行つている。すなわち、焼鈍炉の各ゾーン
の温度を後行鋼帯C向けの温度に調整するか、もしくは
通板速度の変更で対処していた。この方法は、板厚、板
幅、ライン速度の変動差により、ガス投入量をその変動
差分だけ変更し、炉温が変化しないように制御する方法
である。Therefore, in continuous annealing of a stainless steel strip, a large number of data between a normal furnace temperature and a sheet temperature are obtained experimentally, and the correlation between the two is known, and the continuous annealing is applied to industrial heat treatment. That is, in the case where annealing is to be performed on the treatment material according to the target heat pattern and sheet temperature, the method is a method of controlling the furnace temperature to obtain a heat pattern and a sheet temperature suitable for the characteristics of the treatment material. According to this method, the annealing conditions at the switching point of the preceding steel strip A and the succeeding steel strip C without a significant difference in the annealing conditions are changed. That is, the temperature of each zone of the annealing furnace is adjusted to the temperature for the succeeding steel strip C or the passing speed is changed. According to this method, the gas input amount is changed by the variation difference of the plate thickness, the plate width, and the line speed, and the furnace temperature is controlled so as not to change.
しかし、上記の如く大幅に焼鈍条件の異なる先行鋼帯
Aと後行鋼帯Cとの間に介在させるダミー鋼帯Bは繰返
し使用され、しかも普通鋼板が使用されるので繰返し使
用中に表面が酸化され、スケールの厚みが次第に厚くな
り表面の色が黒変して熱吸収率が大きくなる傾向があ
る。However, as described above, the dummy steel strip B interposed between the preceding steel strip A and the succeeding steel strip C, which have significantly different annealing conditions, is used repeatedly, and since a normal steel sheet is used, the surface of the dummy steel strip B is repeatedly used. It is oxidized, the thickness of the scale gradually increases, the color of the surface turns black, and the heat absorption rate tends to increase.
一方、鋼帯が吸収する熱量Qと、その温度TSとの間に
は次の(1)式で示すような関係が成立する。On the other hand, the relationship represented by the following equation (1) is established between the heat quantity Q absorbed by the steel strip and the temperature T S.
ここにQ :吸収熱量(Kcal/hr) K :定数 φCG:総括熱伝達係数(熱吸収率に相当) TF :炉内温度(℃) TS :鋼帯温度(℃) QL :炉体放散熱(Kcal/hr) (1)式より明らかなとおり、一定の投入熱量の場合で
も熱吸収率φCGが小さいほど、鋼帯温度TSが小さく温度
が上昇しない。逆にφCGが大きい程鋼帯温度が大となり
温度が上昇する。そこで先行鋼帯Aからダミー鋼帯B
へ、更にダミー鋼帯Bから後行鋼帯Cへの接続部におい
ては、上記吸収熱量差を補正する制御が行われていた
が、従来はダミー材Bの総括熱伝達係数は通板回数に関
係なく、飽和した状態と仮定して、例えば第3図に示す
如くφCG=0.6としていた。すなわち、前記の如く、使
用回数が多く表面のスケール厚みが厚く表面が黒くなつ
たダミー材も、使用回数が少なく製品ステンレス鋼帯に
近い表面光沢を有するダミー材もφCG=0.6として制御
していた。そのためダミー鋼帯Bから後行の製品鋼帯C
に移行する際に、第4図に示す如く、(1)式による後
行製品鋼帯CのTSが上昇し、850℃から950℃に急上昇す
ることがあつた。 Where Q: Absorbed heat (Kcal / hr) K: Constant φ CG : Overall heat transfer coefficient (corresponding to heat absorption rate) T F : Furnace temperature (° C) T S : Steel strip temperature (° C) Q L : Furnace Body heat dissipation (Kcal / hr) As is clear from the equation (1), the steel strip temperature T S becomes smaller and the temperature does not rise as the heat absorption rate φ CG becomes smaller even with a constant heat input. Steel strip temperature as the reverse to φ CG is large becomes large temperature rises. Therefore, from the preceding steel strip A to the dummy steel strip B
In addition, at the connection between the dummy steel strip B and the succeeding steel strip C, control for correcting the above-mentioned difference in absorbed heat has been performed. Regardless, assuming a saturated state, φ CG = 0.6, for example, as shown in FIG. That is, as described above, a dummy material having a large number of times of use and a large scale thickness of the surface and having a black surface, and a dummy material having a small number of times of use and having a surface gloss close to that of a product stainless steel strip are controlled by φCG = 0.6. Was. Therefore, from the dummy steel strip B to the succeeding product steel strip C
As shown in FIG. 4, the T S of the succeeding product steel strip C according to the equation (1) rises and suddenly rises from 850 ° C. to 950 ° C. as shown in FIG.
ステンレス鋼は、例えばSUS430では900℃附近に変態
点があるため930℃近くまで温度が上昇すると製品とし
て使用できるスクラツプとしなければならず、良品率が
減少しコストが上昇する。As for stainless steel, for example, SUS430 has a transformation point near 900 ° C, so when the temperature rises to near 930 ° C, it must be made a scrap that can be used as a product, and the yield rate decreases and the cost increases.
本発明の目的は、焼鈍条件が著しく異なるために、先
行鋼帯と後行鋼帯の間にダミー鋼帯を介在させて連続焼
鈍する際、従来、ダミー鋼帯の新、旧に関らず総括熱伝
達係数を一定として制御し、そのために後行製品鋼帯の
焼鈍温度を過度に高める事故のあることに鑑み、常に安
定して適正な焼鈍温度で焼鈍することができる効果的な
燃焼制御方法を提供することにある。The object of the present invention is that, because annealing conditions are significantly different, when performing continuous annealing with a dummy steel strip interposed between a preceding steel strip and a following steel strip, conventionally, regardless of whether the dummy steel strip is new or old. Effective combustion control that can control the overall heat transfer coefficient to be constant and always stably perform annealing at an appropriate annealing temperature in view of the fact that there is an accident that excessively raises the annealing temperature of the succeeding product steel strip. It is to provide a method.
本発明の要旨とするところは次の如くである。すなわ
ち、 (1)焼鈍条件の異なる先行ステンレス鋼帯と後行のス
テンレス鋼帯の間に普通鋼からなるダミー鋼帯を介在さ
せ該ダミー鋼帯の通板中に連続焼鈍炉の炉温を前記後行
ステンレス鋼帯の焼鈍条件に調整する際、前記ダミー鋼
帯の通板回数に応じて前記後行ステンレス鋼帯焼鈍時の
熱投入量を制御することを特徴とする連続焼鈍炉の燃焼
制御方法。The gist of the present invention is as follows. That is, (1) A dummy steel strip made of ordinary steel is interposed between a preceding stainless steel strip and a subsequent stainless steel strip having different annealing conditions, and the furnace temperature of the continuous annealing furnace is set during the passing of the dummy steel strip. When adjusting to the annealing conditions of the subsequent stainless steel strip, the combustion control of the continuous annealing furnace is characterized by controlling the heat input amount during the subsequent stainless steel strip annealing according to the number of times the dummy steel strip is passed. Method.
(2)連続焼鈍炉における前記ダミー鋼帯の通板から前
記後行ステンレス鋼帯への移行時のガス投入量変化をΔ
Q(Nm3/hr)とすれば ΔQ(Nm3/hr)=K1(N)×(F2−F1)・・・(1) ただしK1(N):ダミー鋼帯の通板回数によって決まる
係数 F2 :後行ステンレス鋼帯の板厚、板幅、ラ
イン速度の積 F1 :ダミー鋼帯の板厚、板幅、ライン速度
の積 (1)式で表される請求項(1)に記載の連続焼鈍炉の
燃焼制御方法。(2) In the continuous annealing furnace, the change in gas input amount at the time of transition from the passing of the dummy steel strip to the succeeding stainless steel strip was Δ
If Q (Nm 3 / hr), ΔQ (Nm 3 / hr) = K 1 (N) × (F 2 −F 1 ) (1) where K 1 (N): Threading of dummy steel strip Factor determined by the number of times F 2 : Product of thickness, width, and line speed of succeeding stainless steel strip F 1 : Product of thickness, width, and line speed of dummy steel strip expressed by formula (1) The method for controlling combustion in a continuous annealing furnace according to (1).
本発明の詳細を添附図面を参照して説明する。焼鈍条
件の著しく異なる先行鋼帯Aと後行鋼帯Cとの間にダミ
ー鋼帯Bを介在させ、該ダミー鋼板Bの通板中に焼鈍条
件をBからCに調整し後行鋼帯Cに最も適した炉温に制
御する方法において、従来介在通板させるダミー鋼帯B
の総括熱伝達係数(Kcal/m2hr)は、第3図に示す如
く、例えばφCG=0.6として一定とみなし、後行鋼帯C
の炉温を制御していたが、本発明者らはダミー鋼帯Bの
総括熱伝達係数は通板回路によつて変化することを見出
した。すなわち新しいダミー鋼帯Bの表面光沢は製品ス
テンレス鋼帯に近い光沢を有し熱吸収率が著しく小であ
ることを見出した。これを数回ないし10数回通板させて
ほぼ飽和して一定となつた時の総括熱伝達係数の例えば
0.6として後行鋼帯Cの通板時の炉温制御していたこと
により、過度の高温焼鈍を実施するという事故発生に鑑
み、本発明は第3図に示す如く、例えば当初は0.3から
始まり、次第に高くなつて通板回数10回にしてほぼ飽和
状態の0.6に達するものであることを見出した。The details of the present invention will be described with reference to the accompanying drawings. A dummy steel strip B is interposed between a preceding steel strip A and a succeeding steel strip C whose annealing conditions are significantly different, and the annealing conditions are adjusted from B to C during the passing of the dummy steel sheet B, and the subsequent steel strip C is adjusted. In the method of controlling the furnace temperature most suitable for the above, a dummy steel strip B which is conventionally passed through
As shown in FIG. 3, the overall heat transfer coefficient (Kcal / m 2 hr) is assumed to be constant, for example, when φ CG = 0.6.
The present inventors have found that the overall heat transfer coefficient of the dummy steel strip B varies depending on the threading circuit. That is, it has been found that the surface gloss of the new dummy steel strip B is close to that of the product stainless steel strip and the heat absorption rate is extremely small. For example, the total heat transfer coefficient when this is passed through several times to several dozen times and almost saturated and becomes constant
In view of the occurrence of an accident in which excessive high-temperature annealing is performed by controlling the furnace temperature during passing of the succeeding steel strip C as 0.6, the present invention starts from, for example, 0.3 at first, as shown in FIG. It was found that the density gradually increased and reached 0.6, which was almost saturated with 10 passes.
従つてダミー鋼帯Bから後行製品鋼帯Cに移行する際
のガス投入量の増大分をΔQ(Nm3/hr)とすれば、下記
の(2)式が成立する。Therefore, if ΔQ (Nm 3 / hr) is defined as the increase in the gas input amount when shifting from the dummy steel strip B to the succeeding product steel strip C, the following equation (2) is established.
ΔQ(Nm3/hr)=K1(N)×(FC−FB)………(2) ここに K1(N):ダミー鋼帯Bの使用回数によつて
決まる係数 FC :後行製品鋼帯Cの板厚、板幅、ラ
イン速度の積 FB :ダミー鋼帯Bの板厚、板幅、ライ
ン速度の積 かくの如く、ダミー鋼帯Bの通板回数に応じてきめ細か
く投入ガス量を制御することにより、新しいダミー鋼板
を使用時も後行製品鋼帯Cの接続する先端部の過度の高
温を防止することができ、鋼行鋼帯Cに適合した焼鈍を
実施することができた。 ΔQ (Nm 3 / hr) = K 1 (N) × (F C -F B) ......... (2) Here K 1 (N): coefficient by the number of uses connexion determined dummy steel strip B F C: The product of the thickness, width, and line speed of the succeeding product steel strip C, F B , as in the product of the thickness, width, and line speed of the dummy steel strip B, according to the number of passes of the dummy steel strip B By controlling the amount of gas input finely, even when using a new dummy steel sheet, it is possible to prevent excessively high temperatures at the connecting end of the succeeding product steel strip C, and perform annealing suitable for the steel strip steel strip C. We were able to.
オーステナイト系ステンレス鋼SUS304の先行鋼帯Aか
らフエライト系ステンレス鋼SUS430の後行鋼帯Cに移行
時に通板回数2回の新しい普通鋼のダミー鋼帯Cを介在
させて連続焼鈍炉で焼鈍した。At the time of transition from the preceding steel strip A of the austenitic stainless steel SUS304 to the succeeding steel strip C of the ferrite stainless steel SUS430, the steel sheet was annealed in a continuous annealing furnace with a new ordinary steel dummy steel strip C having two passes.
この際、従来法によりダミー鋼板Bの総括熱伝達係数
φCG=0.6として後行鋼帯Cに移行した場合と、本発明
によりダミー鋼板BのφCG=0.3として後行鋼帯Cに移
行した実施例について比較説明する。At this time, the dummy steel sheet B was shifted to the succeeding steel strip C with the overall heat transfer coefficient φ CG = 0.6 according to the conventional method, and the dummy steel sheet B was shifted to the following steel strip C with φ CG = 0.3 according to the present invention. Examples will be described in comparison.
(A)従来法によつた場合、 900℃による焼鈍を目標としてダミー鋼板Bから後行
鋼帯Cへの移行時にφCG=0.6としてガス開度すなわ
ち、第4図(B)に示す如く(投入ガス量/最大ガス
量)=95%としてガス熱量を投入した処、ダミー鋼帯B
の温度は第4図(A)に示す如く850℃まで下り、後行
鋼帯Cに移行した当初は950℃まで上昇した後、数秒間
後にようやく目標温度の900℃に戻つたが、950℃で焼鈍
した部分の約50mは、変態点910℃を越す温度であつたの
で、この部分は焼鈍不良品として切断廃棄せざるを得な
かつた。焼鈍不良品として廃棄した長さは、後行鋼帯C
の全長の約3%であつた。(A) According to the conventional method, at the time of transition from the dummy steel sheet B to the succeeding steel strip C for the purpose of annealing at 900 ° C., φ CG = 0.6 and the gas opening degree, that is, as shown in FIG. Dummy steel strip B where the gas calorie was input with the input gas amount / maximum gas amount) = 95%
As shown in FIG. 4 (A), the temperature decreased to 850 ° C., increased to 950 ° C. at the beginning of the transition to the succeeding steel strip C, and finally returned to the target temperature of 900 ° C. after a few seconds. Approximately 50 m of the part annealed in step 2 had a temperature exceeding the transformation point of 910 ° C., and this part had to be cut and discarded as a poorly annealed product. The length discarded as defective annealing is the following steel strip C
Approximately 3% of the total length.
(B)本発明法によつた場合 新しいダミー鋼帯BのφCG=0.3としてダミー鋼帯B
から後行製品鋼帯Cに移行時のガス開度は第5図(B)
に示す如く、40%であつたので、この開度で移行した
処、第5図(A)に示す如くダミー鋼帯Bの温度は895
℃と低下したが、後行製品鋼帯Cへの移行直後の鋼帯C
の温度は、一時905℃を示したものの、数秒後に目標と
する900℃の焼鈍温度となり、焼鈍不良品ロスは全く発
生せず、目標温度の900℃で安定操業が実施できた。(B) a dummy steel strip B as phi CG = 0.3 in the case were cowpea to the present invention method new dummy steel strip B
Fig. 5 (B) shows the gas opening at the time of transfer from
As shown in FIG. 5, since the temperature was 40%, the temperature of the dummy steel strip B was 895 as shown in FIG.
° C, but the steel strip C immediately after the transition to the succeeding product steel strip C
Although the temperature temporarily showed 905 ° C., it reached the target annealing temperature of 900 ° C. after a few seconds, no loss of defective annealing occurred, and stable operation was performed at the target temperature of 900 ° C.
新しいダミー材の総括熱伝達係数φCGは第3図に示す
如く、当初は0.3Mcal/m3hrであり、約10回の通板にて従
来採用していた飽和係数値の0.6Kcal/m2hrに達すること
が判明したので、その後新しいダミー材Bは、その通板
回数によつてφCG値を変えて後行鋼帯Cへの移動時の、
ガス開度(%)を制御して焼鈍を実施した処、従来より
良品歩留を約3%向上させることができた。Overall heat transfer coefficient phi CG new dummy material as shown in Figure 3, initially a 0.3Mcal / m 3 hr, about 10 times through saturation coefficient value which has been conventionally adopted in plate 0.6 kcal / m Since it was found that the time reached 2 hr, the new dummy material B was then changed in φ CG value according to the number of passes, and moved to the succeeding steel strip C.
When annealing was performed while controlling the gas opening (%), the yield of non-defective products could be improved by about 3% as compared with the conventional method.
先行ステンレス鋼帯と後行ステンレス鋼帯の焼鈍条件
が著しく異なる連続焼鈍時に、両者の間に普通鋼からな
るダミー鋼帯を介在させてダミー鋼帯の通板中に後行鋼
帯に適合する炉温に調整する連続焼鈍法において、従来
ダミー材の総括熱伝達係数は、その飽和値に一定として
後行鋼帯Cの通板時のガス開度を制御していたので、後
行製品鋼帯Cへの通板移行直後に不適性焼鈍温度による
不良品の発生していた原因を探求中の処、ダミー材の表
面光沢の差による総括熱伝達係数は、その通板回数によ
り変化し、前記(2)式による関数があることを見出
し、これにより移行時のガス開度を調整し投入熱量を制
御する方法をとつたので、従来、ダミー鋼帯Bから後行
製品鋼帯Cへの移行直後に発生していた過度の炉温上昇
による不良品の発生がほとんど解消され、きめ細い制御
により適正炉温による安定操業が可能となり、良品歩留
を約3%向上させることができた。During continuous annealing where the annealing conditions of the preceding stainless steel strip and the subsequent stainless steel strip are significantly different, a dummy steel strip made of ordinary steel is interposed between the two to fit the following steel strip during the passing of the dummy steel strip. In the continuous annealing method in which the furnace temperature is adjusted, the overall heat transfer coefficient of the conventional dummy material is controlled to be constant at its saturation value and the gas opening during the passing of the succeeding steel strip C is controlled. While searching for the cause of the occurrence of defective products due to the inappropriate annealing temperature immediately after the transfer to the band C, the overall heat transfer coefficient due to the difference in the surface gloss of the dummy material changes according to the number of times of passing, It has been found that there is a function based on the above equation (2), and a method of adjusting the gas opening at the time of transition and controlling the amount of heat input has been adopted. Defective products due to excessive furnace temperature rise that occurred immediately after the shift Tondo is eliminated, it is possible to stabilize operation by proper furnace temperature by narrow control decided, it was possible to improve the good yield of about 3%.
第1図は先行鋼帯Aと後行鋼帯Cの間にダミー鋼帯Bを
介在させて通板する状況を示す模式断面図、第2図は連
続焼鈍炉と通板鋼帯との関係を示す模式断面図、第3図
はダミー鋼帯の総括熱伝達係数(Kcal/m2hr)と通板使
用回数との関係における従来法と本発明法との比較を示
す線図、第4図(A)、(B)は本発明法と従来法との
通板比較試験における従来法の試験結果を示し、(A)
は後行製品鋼帯の連続焼鈍炉中の時間の経過による炉温
変化を示す線図、(B)は(A)の時間の経過に対応す
る焼鈍ガス開度%(投入ガス量/最大ガス量)を示す線
図、第5図(A)、(B)はそれぞれ第4図(A)、
(B)と同様の本発明による試験結果を示し、(A)は
後行製品鋼帯の連続焼鈍炉中の時間の経過による炉温変
化を示す線図、(B)は(A)の時間の経過に対応する
焼鈍ガス開度%(投入ガス量/最大ガス量)を示す線図
である。 A……先行鋼帯、B……ダミー鋼帯 C……先行鋼帯 1……連続焼鈍炉、2……熱電対 3……温度制御装置、4……燃焼ガス(燃料)FIG. 1 is a schematic cross-sectional view showing a situation in which a dummy steel strip B is interposed between a preceding steel strip A and a succeeding steel strip C to pass a steel sheet, and FIG. 2 is a relationship between a continuous annealing furnace and a continuous steel strip. FIG. 3 is a diagram showing a comparison between the conventional method and the method of the present invention in the relationship between the overall heat transfer coefficient (Kcal / m 2 hr) of the dummy steel strip and the number of times of threading, and FIG. Figures (A) and (B) show the test results of the conventional method in the comparison test between the present invention and the conventional method.
Is a diagram showing the furnace temperature change over time in the continuous annealing furnace of the succeeding product steel strip, and (B) is the annealing gas opening percentage (input gas amount / maximum gas) corresponding to the time elapsed in (A). 5 (A) and 5 (B) are respectively diagrams in FIG. 4 (A),
(B) shows a test result according to the present invention similar to (B), (A) is a diagram showing a change in furnace temperature over time in a continuous annealing furnace of a succeeding product steel strip, (B) is a time of (A) FIG. 7 is a diagram showing the annealing gas opening% (input gas amount / maximum gas amount) corresponding to the passage of time. A: Leading steel strip, B: Dummy steel strip C: Leading steel strip 1: Continuous annealing furnace 2, Thermocouple 3: Temperature control device 4, Combustion gas (fuel)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 孝 兵庫県神戸市中央区脇浜海岸通2番88号 川崎製鉄株式会社阪神製造所内 (56)参考文献 特開 昭61−117229(JP,A) 特開 昭60−70128(JP,A) 特開 昭62−89820(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 9/52 - 11/00 105──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takashi Sato 2-88 Wakihama Kaigandori, Chuo-ku, Kobe-shi, Hyogo Kawasaki Steel Corporation Hanshin Works (56) References JP-A-61-117229 (JP, A) JP-A-60-70128 (JP, A) JP-A-62-89820 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21D 9/52-11/00 105
Claims (2)
行ステンレス鋼帯の間に普通鋼からなるダミー鋼帯を介
在させ該ダミー鋼帯の通板中に連続焼鈍炉の炉温を前記
後行ステンレス鋼帯の焼鈍条件に調整する際、前記ダミ
ー鋼帯の通板回数に応じて前記後行ステンレス鋼帯焼鈍
時の熱投入量を制御することを特徴とする連続焼鈍炉の
燃焼制御方法。A dummy steel strip made of ordinary steel is interposed between a preceding stainless steel strip and a succeeding stainless steel strip having different annealing conditions, and the furnace temperature of the continuous annealing furnace is adjusted during the passing of the dummy steel strip. When adjusting the annealing conditions for the continuous stainless steel strip, a method of controlling combustion in a continuous annealing furnace, comprising controlling the heat input during the subsequent stainless steel strip annealing according to the number of times the dummy steel strip is passed. .
から前記後行ステンレス鋼帯への移行時のガス投入量変
化をΔQ(Nm3/hr)とすれば ΔQ(Nm3/hr)=K1(N)×(F2−F1) ・・・・・・(1) ただしK1(N):ダミー鋼帯の通板回路によって決まる
係数 F2:後行ステンレス鋼帯の板厚、板幅、ライン速度の積 F1:ダミー鋼帯の板厚、板幅、ライン速度の積 (1)式で表される請求項(1)に記載の連続焼鈍炉の
燃焼制御方法。2. If the change in gas input amount at the time of transition from the passing of the dummy steel strip to the subsequent stainless steel strip in the continuous annealing furnace is ΔQ (Nm 3 / hr), ΔQ (Nm 3 / hr) = K 1 (N) × (F 2 −F 1 ) (1) where K 1 (N) is a coefficient determined by the passing circuit of the dummy steel strip. F 2 is a plate of the following stainless steel strip. The product of the thickness, the sheet width, and the line speed F 1 : the product of the sheet thickness, the sheet width, and the line speed of the dummy steel strip The combustion control method for a continuous annealing furnace according to claim 1, which is represented by the formula (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2107889A JP2807918B2 (en) | 1990-04-24 | 1990-04-24 | Combustion control method for continuous annealing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2107889A JP2807918B2 (en) | 1990-04-24 | 1990-04-24 | Combustion control method for continuous annealing furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH046224A JPH046224A (en) | 1992-01-10 |
JP2807918B2 true JP2807918B2 (en) | 1998-10-08 |
Family
ID=14470645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2107889A Expired - Fee Related JP2807918B2 (en) | 1990-04-24 | 1990-04-24 | Combustion control method for continuous annealing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2807918B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100494094B1 (en) * | 2002-11-27 | 2005-06-10 | 주식회사 포스코 | Dummy steel sheet having superior degradation resistance of material for black plate |
JP4586479B2 (en) * | 2004-09-30 | 2010-11-24 | Jfeスチール株式会社 | Manufacturing method of high-tensile cold-rolled steel sheet in continuous annealing process |
CN109321741A (en) * | 2017-07-31 | 2019-02-12 | 湖北华鑫科技股份有限公司 | The automatic annealing machine of precision steel strip |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6070128A (en) * | 1983-09-28 | 1985-04-20 | Nippon Kokan Kk <Nkk> | Method for controlling temperature of strip with continuous annealing furnace |
JPS61117229A (en) * | 1984-11-13 | 1986-06-04 | Mitsubishi Heavy Ind Ltd | Heating method of continuous annealing furnace for metallic strip |
JPS6289820A (en) * | 1985-10-14 | 1987-04-24 | Kawasaki Steel Corp | Method for diagnosing apparatus in continuous annealing furnace |
-
1990
- 1990-04-24 JP JP2107889A patent/JP2807918B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH046224A (en) | 1992-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4836774A (en) | Method and apparatus for heating a strip of metallic material in a continuous annealing furnace | |
US20100101690A1 (en) | Method for continously annealing steel strip having a curie point and continous annealing facility of the same | |
JP2807918B2 (en) | Combustion control method for continuous annealing furnace | |
JP5000116B2 (en) | Soaking furnace operation method in steel strip continuous treatment equipment | |
JPH052728B2 (en) | ||
JP7558476B2 (en) | Annealing method for hot rolled steel strip | |
JP3380330B2 (en) | Sheet temperature control method for continuous annealing furnace | |
JPS5944367B2 (en) | Water quenching continuous annealing method | |
JPH02277723A (en) | Vertical type continuous annealing furnace | |
JPH0636930B2 (en) | Hot rolling equipment | |
JPH0558802B2 (en) | ||
JP3176085B2 (en) | Sheet temperature control device in continuous annealing furnace | |
JPH03177519A (en) | Method for controlling furnace temperature in continuous annealing furnace | |
JPS60181242A (en) | Continuous annealing method of steel strip | |
JP3367366B2 (en) | Method of preventing meandering of metal strip in continuous heat treatment furnace | |
JPS558405A (en) | Manufacture of cold rolled steel sheet excellent in workability | |
JPS62164830A (en) | Temperature controlling method for steel strip in continuous annealing line | |
JPH0273922A (en) | Method for controlling furnace temperature in continuous heat treatment furnace | |
JPS59129717A (en) | Direct hardening device for steel plate | |
JP2715683B2 (en) | Roll cooling method and apparatus for continuous annealing furnace | |
SU1155622A1 (en) | Method of manufacturing high-carbon steel strip | |
JPS5818412B2 (en) | Continuous annealing furnace | |
JPS6057491B2 (en) | Hearth roll in continuous annealing furnace | |
JPS6130632A (en) | Cooling method of steel strip | |
JPS59116325A (en) | Method for continuously annealing dead soft steel strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |