JPS5963019A - Magneto-resistance effect head - Google Patents

Magneto-resistance effect head

Info

Publication number
JPS5963019A
JPS5963019A JP17491182A JP17491182A JPS5963019A JP S5963019 A JPS5963019 A JP S5963019A JP 17491182 A JP17491182 A JP 17491182A JP 17491182 A JP17491182 A JP 17491182A JP S5963019 A JPS5963019 A JP S5963019A
Authority
JP
Japan
Prior art keywords
substrate
uneven parts
magnetic field
mask
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17491182A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoda
養田 広
Noboru Nomura
登 野村
Nobumasa Kaminaka
紙中 伸征
Terumi Yanagi
柳 照美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17491182A priority Critical patent/JPS5963019A/en
Publication of JPS5963019A publication Critical patent/JPS5963019A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To control an anisotropic magnetic field and to make magnetization approach in the same direction as a whole in an MR element by providing uneven parts on a ferromagnetic thin film, and also making depth of these uneven parts different from each other. CONSTITUTION:As for a method for forming uneven parts whose depth is different from each other, on a substrate consisting of a ferromagnetic material such as Mn-Zn, etc., a stripe-like mask 6 of a photoresist is formed on a substrate 5, and the exposed part is etched by a method (etching) such as chemical etching, spatter-etching, ion milling, etc. Subsequently, a part is covered with a photoresist mask 7 and is etched again, and thereafter, when the resist is peeled off, the substrate 5 having uneven parts of optional depth is obtained. Also, when a stripe-like pattern of SiO2 for instance, is formed on the whole surface by a lift- off method by use of the photoresist mask, and thereafter, a part of the mask is covered with the resist and also SiO2 is laminated on the remaining part, the substrate 5 which is formed by a stripe-like SiO2 layer 8 and has uneven parts whose depth is different from each other is manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は信号磁界の変化を強磁性薄膜の抵抗の変化によ
って検出する磁気抵抗効果ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetoresistive head that detects changes in a signal magnetic field by changes in the resistance of a ferromagnetic thin film.

従来例の構成とその問題点 従来、強磁性薄膜の磁気抵抗効果を利用した磁気へ、ラ
ドは第1図に示すようにして用いられていた。すなわち
、強磁性薄膜よりなる磁気抵抗効果素子(以下MR素子
と称す)1を磁気記録媒体2に垂直に当近接して配置し
、その両端に配置した電極3,4間に定電流iを流すと
、磁気記録媒体2からの信号磁界による抵抗値変化が電
極3,4間の電圧変化として検知される。
Conventional Structure and Problems Conventionally, RAD has been used for magnetism utilizing the magnetoresistive effect of a ferromagnetic thin film as shown in FIG. That is, a magnetoresistive element (hereinafter referred to as MR element) 1 made of a ferromagnetic thin film is arranged perpendicularly close to a magnetic recording medium 2, and a constant current i is passed between electrodes 3 and 4 arranged at both ends thereof. The change in resistance value caused by the signal magnetic field from the magnetic recording medium 2 is detected as a change in voltage between the electrodes 3 and 4.

MR素子1の比抵抗ρは、強磁性薄膜の磁化のゑ 方向と電流の方向のなす角θ、無信号時の比抵抗をρ。The specific resistance ρ of the MR element 1 is the magnetization value of the ferromagnetic thin film. The angle between the current direction and the current direction is θ, and the specific resistance when there is no signal is ρ.

として ρ−ρ。+Δρmax cos2θ で表わされる。したがって、比抵抗変化Δρ と最大比
抵抗変化Δρmaxとの比Δρ/Δρmax は印加磁
界Hに対して第2図に示すようにいちじるしい非直線性
を示すので、バイアス磁界HB  を加えて動作点を第
2図のP点に設定する必要がある。バイアス磁界を発生
する方法としてはMR素子に隣接した導電体に電流を流
す方法(コンダクタンスバイアス法: (C) )や永
久磁石薄膜の磁荷による方法(ハード膜バイアス法:(
FI))などがあるが、第3図に示すようにいずれの方
法でも強磁性薄膜全体を均一に最適点にバイアスするこ
とは困難である。
as ρ−ρ. +Δρmax cos2θ. Therefore, the ratio Δρ/Δρmax between the resistivity change Δρ and the maximum resistivity change Δρmax exhibits significant nonlinearity with respect to the applied magnetic field H as shown in FIG. It is necessary to set it at point P in Figure 2. Methods for generating a bias magnetic field include passing a current through a conductor adjacent to the MR element (conductance bias method: (C)) and using magnetic charges on a thin film of a permanent magnet (hard film bias method:
However, as shown in FIG. 3, it is difficult to uniformly bias the entire ferromagnetic thin film to the optimum point using either method.

これは以下の理由による。強磁性膜の磁化の方向θは H8:バイアス磁界  HS:信号磁界HK:異方性磁
界   H9二反磁界 で決まるから、信号磁界のない場合の磁化の方向を最適
バイアス方向、たとえは45°とするためには H2N丁(HK+KD) とする必要がある。ところがH3は磁場中蒸着などによ
り均一に形成可能であるが、HBやH9は素子形状やバ
イアス磁界発生手段で場所により異なるため、第3図に
示すように磁化方向の場所依存性を生じる。ここで、C
はコンダクタンスバイアス法、Hはハード膜バイアス法
の場合である。したがって膜全体を最適バイアス点に置
けないため、歪が増加し、出力が低下する。
This is due to the following reasons. The direction of magnetization θ of the ferromagnetic film is determined by H8: bias magnetic field, HS: signal magnetic field, HK: anisotropic magnetic field, and H9 two demagnetizing fields, so the direction of magnetization in the absence of a signal magnetic field is the optimum bias direction, for example 45°. In order to do this, it is necessary to make H2N (HK+KD). However, although H3 can be formed uniformly by deposition in a magnetic field, HB and H9 differ depending on the location depending on the element shape and bias magnetic field generating means, resulting in location dependence of the magnetization direction as shown in FIG. Here, C
is the case of the conductance bias method, and H is the case of the hard film bias method. Therefore, since the entire film cannot be placed at the optimum bias point, distortion increases and output decreases.

発明の目的 本発明は上記従来の欠点を除去し、無信号バイアス時の
MR素子の磁化方向を一定方向にそろえて良好な再生特
性をもたせた磁気抵抗効果ヘッドを提供することを目的
とするものである。
OBJECTS OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned conventional drawbacks and to provide a magnetoresistive head that has good reproduction characteristics by aligning the magnetization direction of the MR element in a constant direction during no-signal bias. It is.

発明の構成 不発明は、強磁性薄膜に凹凸を付与するとともに、この
凹凸の深さを異ならせることによって、異方性磁界HK
  を制御して、磁化をMR素子内全体で同一方向に近
づけることを可能にしたものである。
Structure of the invention The invention is to provide unevenness to a ferromagnetic thin film and to vary the depth of the unevenness to create an anisotropic magnetic field HK.
This makes it possible to control the magnetization in the same direction throughout the MR element.

異方性磁界の制御方法としては、第4図に示すように表
面に凹凸(凹凸ピッチP、その深さD)を作った基板上
に強磁性薄膜を形成する方法が知られている。この形成
方法によれば、平滑な基板上に磁界中製膜した場合と比
べて大きな異方性磁界を溝の方向にもたせることができ
る。たとえばNi−Fe膜の場合、平滑基板上に磁場中
蒸着した膜の異方性磁界HKoと比べて凹凸基板上での
異方性磁界HK  は第5図に示すように大きく変化す
る。
As a method of controlling an anisotropic magnetic field, a method is known in which a ferromagnetic thin film is formed on a substrate having an uneven surface (an uneven pitch P, the depth D) as shown in FIG. According to this formation method, a larger anisotropic magnetic field can be applied in the direction of the groove than when a film is formed on a smooth substrate in a magnetic field. For example, in the case of a Ni--Fe film, the anisotropic magnetic field HK on an uneven substrate changes significantly as shown in FIG. 5, compared to the anisotropic magnetic field HKo of a film deposited in a magnetic field on a smooth substrate.

したがって基板の場所により凹凸の深さを変えればHK
  を制御することができる。
Therefore, if you change the depth of the unevenness depending on the location of the board, HK
can be controlled.

実施例の説明 以下、本発明のヘッドについて実施例にもとづいて詳細
に説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, the head of the present invention will be described in detail based on embodiments.

Mn−Znなどの強磁性材料よりなる基板上に深さの異
なる凹凸を形成する。この方法としては、第6図(A)
に示すように、基板5上にフォトレジス1−の縞状マス
ク6を形成し、ケミカルエノチングヤスパノタエッチン
グ、イオンミリングなどの方法(以下、エツチングと総
称する)で露出部をエツチングする。そして、同図(B
)に示すように一部をフォトレジストマスク7で覆い、
さらにエツチングをした後、レジストを剥離すると、第
8図に示すような任意の深さの凹凸をもつ基板5が得ら
れる。また、フォトレジストマスクを用いてリフトオフ
法で全面にたとえばSiO2の縞状パターンを形成した
後、前記マスクの一部をレジストで覆って残りの部分に
さらにSiO2を積層すれば、第7図に示すように、縞
状の5i02 層8で形成された深さの異なる凹凸をも
つ基板6が作られる。
Irregularities with different depths are formed on a substrate made of a ferromagnetic material such as Mn-Zn. This method is shown in Figure 6 (A).
As shown in FIG. 2, a striped mask 6 of photoresist 1- is formed on a substrate 5, and exposed portions are etched by a method such as chemical etching, milling, or ion milling (hereinafter collectively referred to as etching). And the same figure (B
), cover a part with a photoresist mask 7,
After further etching, the resist is peeled off to obtain a substrate 5 having irregularities of arbitrary depth as shown in FIG. Furthermore, if a striped pattern of SiO2 is formed on the entire surface using a lift-off method using a photoresist mask, a part of the mask is covered with resist, and SiO2 is further laminated on the remaining part, as shown in FIG. In this way, a substrate 6 having irregularities of different depths formed by a striped 5i02 layer 8 is produced.

次に前記基板を用いたヘッドの装荷方法を示す。Next, a method of loading a head using the above substrate will be described.

第8図に示すように、基板5の表面に深さの異なる凹凸
を形成した後、この凹凸面側にスパッタなどにより5i
02  などの非磁性絶縁膜9を0.5−ソー μmの厚さ形成し、さらにT1  などの非磁性導電膜
10をo、2μm、N1−FCなどの強磁性膜11を0
.05μmの厚さに真空蒸着、あるいはスパッタリング
、電着など(以下、蒸着と総称する)の方法で形成する
。MR素子は、フォトレジストマスクを用いたリフトオ
フあるいはマスクメッキなどの方法で直接形成しても、
基板全面に薄膜を被着した後フォトレジストマスクを用
いてエツチングして形成してもよいものである。さらに
その上にCu 、 AlあるいはAu  など非磁性導
電膜12を、蒸着およびフォトエツチングにより形成す
る。この後、S T02  などの非磁性絶縁膜13を
0.7μmの厚さに蒸着し、さらにNi−Feなどの強
磁性薄膜14を蒸着してシールドとする。次にSiOな
どの非磁性材料を蒸着し、ガラスなどの保護カバーを接
着して(図示せず)ヘッドとする。
As shown in FIG. 8, after forming unevenness with different depths on the surface of the substrate 5, a 5i film is formed on the uneven surface side by sputtering or the like.
A non-magnetic insulating film 9 such as 02 is formed to a thickness of 0.5-so μm, a non-magnetic conductive film 10 such as T1 is formed to a thickness of 2 μm, and a ferromagnetic film 11 such as N1-FC is formed to a thickness of 0.5 μm.
.. It is formed to a thickness of 0.5 μm by vacuum deposition, sputtering, electrodeposition, or the like (hereinafter collectively referred to as vapor deposition). Even if the MR element is directly formed by a method such as lift-off using a photoresist mask or mask plating,
It may also be formed by depositing a thin film over the entire surface of the substrate and then etching it using a photoresist mask. Furthermore, a nonmagnetic conductive film 12 made of Cu, Al, or Au is formed thereon by vapor deposition and photoetching. Thereafter, a nonmagnetic insulating film 13 such as ST02 is deposited to a thickness of 0.7 μm, and a ferromagnetic thin film 14 such as Ni-Fe is further deposited to serve as a shield. Next, a non-magnetic material such as SiO is deposited, and a protective cover such as glass is adhered (not shown) to form a head.

基板5上に形成した凹凸は第9図(A)に示すように電
流方向に平行で、同図(B)に示すようにMR素子幅方
向に深さが異なっており、異方性磁界HKは第10図に
示すように幅方向(第9図(A)のW方向)の位置によ
って異なった値をもつ。すなわち凹凸の深さが大になる
ほど、HK  O値が大きくなる。したがって、第8図
に示すヘッドの薄膜10゜11に最適バイアス点になる
ように電流を流した場合、強磁性膜11の凹凸の形成方
向と直角な方向の場所による”+1  、HB、HK+
HD  の値はそれぞれ第11図のようになり、またH
B/(HK+HD)で決する磁化の方向は第12図に示
すようになる。これらから明らかなように、第3図に示
した場合よりMR素子全体にわたって良好にバイアスさ
れることがわかる。
The unevenness formed on the substrate 5 is parallel to the current direction as shown in FIG. 9(A), and has a different depth in the width direction of the MR element as shown in FIG. 9(B). As shown in FIG. 10, has different values depending on the position in the width direction (W direction in FIG. 9(A)). That is, the greater the depth of the unevenness, the greater the HKO value. Therefore, when a current is applied to the thin film 10° 11 of the head shown in FIG.
The values of HD are as shown in Figure 11, and the values of H
The direction of magnetization determined by B/(HK+HD) is as shown in FIG. As is clear from these, it can be seen that the bias is better applied over the entire MR element than in the case shown in FIG.

第9図では3段階に鴇 を変えた例を示したが、さらに
HK  O値を細かく設定すれば、より良好にバイアス
されることは言うまでもない。
Fig. 9 shows an example in which the HKO value is changed in three stages, but it goes without saying that if the HKO value is set even more finely, the bias will be even better.

捷た本実施例では基板に凹凸をつけた場合について述べ
たが、直接強磁性薄膜表面に凹凸を形成してもよい。
In this embodiment, a case has been described in which irregularities are formed on the substrate, but the irregularities may be formed directly on the surface of the ferromagnetic thin film.

発明の効果 以上のように、本発明の磁気抵抗効果ヘッドでは、強磁
性薄膜の少なくとも一面に凹凸を付与し、かつその凹凸
の深さを異ならせているので、その深さを選定すること
により磁化方向を一定方向にそろえることができ、良好
な再生特性を得ることができる。
Effects of the Invention As described above, in the magnetoresistive head of the present invention, at least one surface of the ferromagnetic thin film is provided with unevenness, and the depth of the unevenness is varied. The magnetization direction can be aligned in a certain direction, and good reproduction characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気抵抗効果ヘッドの基本的な構造を示
す斜視図、第2図および第3図はその特性を示す図であ
る。第4図は異方性磁界の制御法を説明する図、第5図
はその寸法による効果を示す図である。第6図および第
7図はそれぞれ本発明にかかる磁気抵抗効果ヘッドの主
要構成要素の製造方法を説明するための断面図、第8図
は本発明の一実施例の磁気抵抗効果ヘッドの断面図、第
9図はその凹凸の形成態様の一例を示す図、第10図は
それによる異方性磁界の値の分布状態を示す図、第11
図および第12図はその特性を示す図である。 5・・・・・・表面に凹凸を有する基板、e、13・・
・・・・非磁性絶縁膜、1o・・・・・・非磁性導電膜
、11・・・・・・強磁性膜、12・・・・・・非磁性
導電膜、14・・・・・・強磁性薄膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 4 第2図 第3図 第5図 凹凸宥、さD(ズ) 第6図 第7図 第10図 Oth 第11図
FIG. 1 is a perspective view showing the basic structure of a conventional magnetoresistive head, and FIGS. 2 and 3 are diagrams showing its characteristics. FIG. 4 is a diagram illustrating a method of controlling the anisotropic magnetic field, and FIG. 5 is a diagram illustrating the effect of its dimensions. 6 and 7 are cross-sectional views for explaining the manufacturing method of the main components of a magnetoresistive head according to the present invention, and FIG. 8 is a cross-sectional view of a magnetoresistive head according to an embodiment of the present invention. , FIG. 9 is a diagram showing an example of how the unevenness is formed, FIG. 10 is a diagram showing the distribution state of the anisotropic magnetic field value due to this, and FIG.
FIG. 12 and FIG. 12 are diagrams showing the characteristics. 5...Substrate with unevenness on the surface, e, 13...
...Nonmagnetic insulating film, 1o...Nonmagnetic conductive film, 11...Ferromagnetic film, 12...Nonmagnetic conductive film, 14...・Ferromagnetic thin film. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Fig. 4 Fig. 2 Fig. 3 Fig. 5 Unevenness, D (Z) Fig. 6 Fig. 7 Fig. 10 Oth Fig. 11

Claims (2)

【特許請求の範囲】[Claims] (1)強磁性薄膜の少なくとも一面に深さの異なる凹凸
が付与されていることを特徴とする磁気抵抗効果ヘッド
(1) A magnetoresistive head characterized in that at least one surface of a ferromagnetic thin film is provided with unevenness having different depths.
(2)凹凸が平行に形成されており、中央部分の凹凸が
その両側に位置する凹凸よりも深いことを特徴とする特
許請求の範囲第1項に記載の磁気抵抗効果ヘッド。
(2) The magnetoresistive head according to claim 1, wherein the unevenness is formed in parallel, and the unevenness at the central portion is deeper than the unevenness located on both sides thereof.
JP17491182A 1982-10-04 1982-10-04 Magneto-resistance effect head Pending JPS5963019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17491182A JPS5963019A (en) 1982-10-04 1982-10-04 Magneto-resistance effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17491182A JPS5963019A (en) 1982-10-04 1982-10-04 Magneto-resistance effect head

Publications (1)

Publication Number Publication Date
JPS5963019A true JPS5963019A (en) 1984-04-10

Family

ID=15986847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17491182A Pending JPS5963019A (en) 1982-10-04 1982-10-04 Magneto-resistance effect head

Country Status (1)

Country Link
JP (1) JPS5963019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680091A (en) * 1994-09-09 1997-10-21 Sanyo Electric Co., Ltd. Magnetoresistive device and method of preparing the same
US5736921A (en) * 1994-03-23 1998-04-07 Sanyo Electric Co., Ltd. Magnetoresistive element
US5738929A (en) * 1993-10-20 1998-04-14 Sanyo Electric Co., Ltd. Magnetoresistance effect element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738929A (en) * 1993-10-20 1998-04-14 Sanyo Electric Co., Ltd. Magnetoresistance effect element
US5736921A (en) * 1994-03-23 1998-04-07 Sanyo Electric Co., Ltd. Magnetoresistive element
US5680091A (en) * 1994-09-09 1997-10-21 Sanyo Electric Co., Ltd. Magnetoresistive device and method of preparing the same

Similar Documents

Publication Publication Date Title
EP0269129B1 (en) Thin film magnetic head
JPH10269524A (en) Thin film magnetic head and its manufacture
JP2002163809A (en) Method for manufacturing magneto-resistive element and magneto-resistive magnetic head
JPS5963019A (en) Magneto-resistance effect head
JPS5911522A (en) Magnetoresistance effect head
JPS5931771B2 (en) thin film magnetoresistive head
JPS6032885B2 (en) thin film magnetic head
JPS6089809A (en) Magneto-resistance effect head and its manufacture
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JPS5987617A (en) Thin film magnetic head
JP2778230B2 (en) Planar type thin film magnetic head
JPS61134913A (en) Magnetoresistance type thin film head
JP2007172669A (en) Magnetoresistive effect head
JPH11232616A (en) Magnetoresistive effect type head and manufacture thereof
JPH0992907A (en) Magnetoresistance effect device
JPH06274832A (en) Magneto-resistance effect type thin-film magnetic head
JPH0426971Y2 (en)
JPH06267035A (en) Manufacture of thin film magnetic head
JPS58218024A (en) Magnetoresistance effect head
JPH07240009A (en) Magneto-resistance effect type thin-film magnetic head and its production
JPS5994225A (en) Thin film magnetic head
JPS6157027A (en) Magnetoresistance effect head and its manufacture
JPS592090B2 (en) Jikihed
JPS6217399B2 (en)
JPH0375928B2 (en)