JPH0426971Y2 - - Google Patents

Info

Publication number
JPH0426971Y2
JPH0426971Y2 JP1985095507U JP9550785U JPH0426971Y2 JP H0426971 Y2 JPH0426971 Y2 JP H0426971Y2 JP 1985095507 U JP1985095507 U JP 1985095507U JP 9550785 U JP9550785 U JP 9550785U JP H0426971 Y2 JPH0426971 Y2 JP H0426971Y2
Authority
JP
Japan
Prior art keywords
film
head
current
magnetic field
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985095507U
Other languages
Japanese (ja)
Other versions
JPS623612U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985095507U priority Critical patent/JPH0426971Y2/ja
Publication of JPS623612U publication Critical patent/JPS623612U/ja
Application granted granted Critical
Publication of JPH0426971Y2 publication Critical patent/JPH0426971Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 この考案は、磁束応答型である磁気抵抗効果ヘ
ツド(Magneto Resistance Effect Head,以下
MRヘツドと略記する)の再生効率向上を図る技
術である。 従来の技術 MRヘツドは、記録媒体よりの信号磁界を再生
する磁気ヘツドに好適であり、周知の通り、
DATやコンピユータ等の磁気記録応用電子機器
に使用されている。このMRヘツドは、磁束応答
型であり、原理的には、第4図に示すように、強
磁性体のMR素子1の両端2,3に導電リード
4,5を接続して通電し、流れる電流Iに対して
直交方向に、外部磁界Hexを作用させると、MR
素子1内の磁化Mが、角度θだけ回転し、これに
従つてMR素子の電流方向の電気抵抗が変化する
という磁気抵抗効果に基づくものである。この
MRヘツドにおける外部磁界Hexと比抵抗ρとの
関係は、第5図に示すような特性曲線6で示さ
れ、線形的な関係となり、忠実に再生される範囲
は、おおむね領域7に限られるので、バイアス磁
界HBをMR素子1へ印加し、動作点8を領域7
内に設定している。つまり、外部磁界Hexは、磁
気記録媒体よりの信号磁界HSだけではなく、次
のI式で表される。 Hex=HS+HB ……I このように、バイアス磁界HBを印加する方式
としては、例えば1983年12月20日に発行された刊
行物「高密度磁気記録技術集成」のP134〜P142
に記載された各方式がある。すなわち、これらの
バイアス方式としては、a.永久磁石を用いるも
の、b.電流による磁界を用いるもの、c.構造によ
つて電流と磁化の向きを定めるもの、d.MR磁性
膜自身に形状異方性を導入してバイアスするもの
に大別される。そこでこれらの各方式の特徴を記
すと次の表1の通りである。
Industrial Application Field This idea is a magnetic flux responsive type magnetoresistive head (hereinafter referred to as "Magneto Resistance Effect Head").
This technology aims to improve the regeneration efficiency of MR heads (abbreviated as MR heads). BACKGROUND TECHNOLOGY An MR head is suitable for a magnetic head that reproduces a signal magnetic field from a recording medium, and as is well known,
Used in electronic devices that apply magnetic recording, such as DATs and computers. This MR head is of a magnetic flux response type, and in principle, as shown in Fig. 4, conductive leads 4 and 5 are connected to both ends 2 and 3 of a ferromagnetic MR element 1, and current is applied. When an external magnetic field Hex is applied in the direction perpendicular to the current I, MR
This is based on the magnetoresistive effect in which the magnetization M in the element 1 rotates by an angle θ, and the electrical resistance of the MR element in the current direction changes accordingly. this
The relationship between the external magnetic field Hex and the specific resistance ρ in the MR head is shown by a characteristic curve 6 as shown in Fig. 5, which is a linear relationship, and the faithful reproduction range is generally limited to the region 7. , bias magnetic field HB is applied to MR element 1, operating point 8 is moved to region 7
It is set within. That is, the external magnetic field Hex is expressed not only by the signal magnetic field HS from the magnetic recording medium but also by the following equation I. Hex=HS+HB......I In this way, as a method of applying the bias magnetic field HB, for example, P134 to P142 of the publication "High-density magnetic recording technology collection" published on December 20, 1983
There are various methods described in . In other words, these bias methods include a. those that use permanent magnets, b. those that use a magnetic field generated by current, c. those that determine the direction of current and magnetization by a structure, and d. those that use a different shape in the MR magnetic film itself. It is broadly divided into those that introduce directional bias and bias. Therefore, the characteristics of each of these methods are listed in Table 1 below.

【表】 以上の方式及びその特徴から、一般には、方式
c又はdが実用化されつつある。 考案が解決しようとする問題点 ところが、上述した方式cでは、第6図に示す
ように、バーバーポールと称し、MR素子1のス
トライプ長方向と交叉する向きに、並列に並べた
導体9,9,…によつて、MR素子1を流れる電
流Iと、導体より磁束φSとの角度を、約45°に設
定してバイアスしている。したがつて、方式cで
は、MRストライプの摺動面のごく近傍1´,1
´では電界分布が不均一となり、電流と磁束との
成す角が当初予定した所望の角度に均一に設定で
きないという弱点がある。また方式dでは、第7
図a及び第7図bに示す通り、MR素子1の下地
10の表面に凹凸を形成して、凸条1′,1′…を
約45°のヘアライン方向として設定し、この方向
に一軸磁気異方性を誘導している。が、この場合
にも、凹凸状の粗面上に、MR素子1を形成する
ために、MR素子の磁区について、磁壁の移動が
生じてノイズが生じがちである。 この考案は、以上の事情が背景にあり、各方式
の欠点を除去できるMRヘツドを提供することを
目的としている。 問題点を解決するための手段 この考案は、MRヘツドについて、MR素子膜
のストライプ幅寸法を、少なくとも数倍以上の広
げるとともに、MR素子膜のストライプ幅方向に
沿つて、所定ピツチ間隔で平行に導体膜を付設さ
せることを特徴としている。 すなわち、この考案は、従来よりの技術として
紹介した方式cの長所を活し、短所を排除させる
方式である。 作 用 この考案は、MR素子膜のストライプ幅寸法を
広げることにより、MR素子膜の反磁界が、後述
する実施例によつて具体的に表せるように、著し
く低減される。 また、MRストライプの縦横比、すなわちアス
ペクト比が1に近づくため、応力によつて誘起さ
れる誘電磁気異方性が、アスペクト比が大きいも
の、すなわち素子ストライプ幅が素子長に比して
充分小さいものに比して小さくなり、MR素子を
蒸着、スパツタ等によつて成膜する時に同時に任
意の方向に異方性を形成できる。 さらに、この考案では、MR素子の信号電流を
流す部分上に、導体をストライプ幅方向に平行に
することにより、MRストライプの端部であると
否とを問わず電流が流れる部分全域で均一な電界
分布を得られる。 実施例 第1図は、この考案の一実施例を示すMRヘツ
ドの要部平面図である。まず20は、ガラスやサ
フアイア等の基板、21はNi−80,Fe−20の組
成比(weight%)の合金を、所定方向の磁場中
でめつき法或いは蒸着法或いはスパツタ法等によ
つて薄膜矩形状に、形成させたMR素子である。
このMR素子21は、従来よりのMRヘツドを示
した第4図と比べて、電流Iが流れる方向と直交
する方向の長さであるストライプ幅寸法Wが、数
倍に広がつている点に特異性がある。そしてMR
素子21の膜厚寸法tは、A−A線及び、B−B
線にて切断した状態を示す第2図及び第3図から
判るように、従来とほぼ同等である。つぎに、2
2,22,…は、MR素子21上に媒体摺動端面
から、ストライプ幅方向に、所定ピツチ間隔p
で、従来のMRヘツドのストライプ幅長程度の長
さに、リボン条に薄膜付着させたAuやAl或いは
Cu等の導体である。さらに23,24は、MR素
子21の両端部にて、導体22,22,…と対応
する部分で接続し、それ以外の端部ではSiO2
やAl2O3膜25,26にて絶縁させた給電リード
である。 以上の構成としたMRヘツドは、つぎの理由に
よつて、MR素子21の電流Iが流れるストライ
プ長全域に亘つて、反磁界Hdが均一に、かつ抑
制されるので、均一磁化分布となる。 すなわち、一般に矩形薄膜に設定したMR素子
においては、その飽和磁化をMs、膜厚をt、膜
の信号磁界方向長さ(ストライプ幅方向)をWと
すると、反磁界Hdは、次ので表される。 Hd=4πMs・t/W …… しかも、Ni−80,Fe−20の薄膜は、通常4πMs
≒10000Oeであるので、膜厚tが一定であると、
結局反磁界Hdは、寸法wに反比例することにな
る。 よつて、寸法Wを通常のMR素子の数倍程度ま
で広げると、反磁界Hdは、ほぼ無視し得る数Oe
程度となり、信号磁界Hsによる磁界Mは、スト
ライプ長全域に亘つて、正確に形成されるのであ
る。さらに、このMRヘツドでは、導体22,2
2,…を、MR素子21の大部分の電流Iが流れ
る所に、ストライプ幅方向に沿つて平行に、ピツ
チ間隔pで配置しているので、電流Iは、ストラ
イプ長方向に、常に平行して流れ、MR膜自身の
磁化方向は成膜時に任意に角度設定できるため、
磁化Mの角度θを、例えば45°に形成でき、その
結果、動作時のMR素子の比抵抗ρをある程度の
値以上に設定、つまり十分な再生出力を得ること
が可能となる。 考案の効果 この考案によれば、MR素子において、反磁界
の影響を減少せしめ、再生出力を全体として大き
くすることができるとともに、高周波数域におけ
る再生信号は、十分にバイアスすることにより、
波形対称性が良い良好な再生信号を得ることがで
きる。
[Table] From the above methods and their characteristics, methods c or d are generally being put into practical use. Problems to be Solved by the Invention However, in the method c described above, as shown in FIG. , . . . , the angle between the current I flowing through the MR element 1 and the magnetic flux φ S from the conductor is set to approximately 45° for bias. Therefore, in method c, 1′, 1 in the immediate vicinity of the sliding surface of the MR stripe
In this case, the electric field distribution becomes non-uniform, and the angle between the current and the magnetic flux cannot be uniformly set to the desired angle originally planned. In addition, in method d, the seventh
As shown in FIG. It induces anisotropy. However, in this case as well, since the MR element 1 is formed on an uneven surface, the domain walls of the magnetic domain of the MR element tend to move, resulting in noise. This invention is based on the above circumstances and aims to provide an MR head that can eliminate the drawbacks of each method. Means to Solve the Problems This invention aims to widen the stripe width of the MR element film by at least several times for the MR head, and to extend the stripe width dimension of the MR element film in parallel at predetermined pitch intervals along the width direction of the MR element film. It is characterized by the addition of a conductive film. That is, this invention is a method that takes advantage of the advantages of method c introduced as a conventional technique and eliminates its disadvantages. Effects In this invention, by widening the stripe width dimension of the MR element film, the demagnetizing field of the MR element film is significantly reduced, as can be concretely expressed in the examples described later. In addition, since the aspect ratio of the MR stripe approaches 1, the induced electromagnetic anisotropy induced by stress is reduced by the element stripe width, which is sufficiently small compared to the element length. This makes it possible to form an anisotropy in any direction at the same time when forming an MR element by vapor deposition, sputtering, etc. Furthermore, in this invention, by placing the conductor parallel to the stripe width direction on the part of the MR element where the signal current flows, the current is uniform throughout the part where the current flows, regardless of whether it is at the end of the MR stripe or not. Electric field distribution can be obtained. Embodiment FIG. 1 is a plan view of essential parts of an MR head showing an embodiment of this invention. First, 20 is a substrate such as glass or sapphire, and 21 is an alloy with a composition ratio (weight%) of Ni-80 and Fe-20, by plating, vapor deposition, sputtering, etc. in a magnetic field in a predetermined direction. This is an MR element formed into a thin rectangular shape.
This MR element 21 has a stripe width dimension W, which is the length in the direction perpendicular to the direction in which the current I flows, is several times wider than that shown in FIG. 4, which shows a conventional MR head. There is specificity. And M.R.
The film thickness dimension t of the element 21 is the line A-A and the line B-B.
As can be seen from FIGS. 2 and 3, which show the state cut along the line, it is almost the same as the conventional one. Next, 2
2, 22, ... are arranged at a predetermined pitch interval p on the MR element 21 from the medium sliding end surface in the stripe width direction.
Then, a thin film of Au, Al, or
It is a conductor such as Cu. Further, 23 and 24 are connected to the conductors 22 , 22 , . This is the power supply lead. The MR head configured as described above has a uniform magnetization distribution because the demagnetizing field Hd is uniform and suppressed over the entire stripe length through which the current I of the MR element 21 flows for the following reason. That is, in an MR element that is generally configured as a rectangular thin film, if its saturation magnetization is Ms, the film thickness is t, and the length of the film in the signal magnetic field direction (stripe width direction) is W, then the demagnetizing field Hd is expressed as follows. Ru. Hd=4πMs・t/W... Moreover, thin films of Ni-80 and Fe-20 usually have a 4πMs
≒10000Oe, so if the film thickness t is constant,
After all, the demagnetizing field Hd is inversely proportional to the dimension w. Therefore, if the dimension W is expanded to several times that of a normal MR element, the demagnetizing field Hd will decrease to an almost negligible number Oe.
Therefore, the magnetic field M caused by the signal magnetic field Hs is accurately formed over the entire stripe length. Furthermore, in this MR head, the conductors 22, 2
2,... are arranged parallel to the stripe width direction at a pitch interval of p where most of the current I flows in the MR element 21, so the current I is always parallel to the stripe length direction. The magnetization direction of the MR film itself can be set at any angle during film formation, so
The angle θ of the magnetization M can be set to, for example, 45°, and as a result, the specific resistance ρ of the MR element during operation can be set to a certain value or more, that is, it is possible to obtain a sufficient reproduction output. Effects of the invention According to this invention, in the MR element, the influence of the demagnetizing field can be reduced and the reproduction output can be increased as a whole, and the reproduction signal in the high frequency range can be biased sufficiently.
A good reproduced signal with good waveform symmetry can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の一実施例を示す磁気抵抗
効果ヘツドの平面図、第2図及び第3図は、その
A−A線及びB−B線にて切断した断面を示す断
面図である。第4図は、従来の磁気抵抗効果ヘツ
ドの概念図、第5図はそのρ−H特性線図、第6
図は従来の磁気抵抗効果ヘツドの平面図、第7図
a,bは、その他の従来の磁気抵抗効果ヘツドの
平面図、断面図である。 21……磁気抵抗素子膜、22……導体膜、W
……ストライプ幅寸法。
FIG. 1 is a plan view of a magnetoresistive head showing an embodiment of this invention, and FIGS. 2 and 3 are cross-sectional views taken along lines A-A and B-B. be. Fig. 4 is a conceptual diagram of a conventional magnetoresistive head, Fig. 5 is its ρ-H characteristic diagram, and Fig. 6 is a conceptual diagram of a conventional magnetoresistive head.
This figure is a plan view of a conventional magnetoresistive head, and FIGS. 7a and 7b are a plan view and a sectional view of another conventional magnetoresistive head. 21... Magnetoresistive element film, 22... Conductor film, W
... Stripe width dimension.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 磁気抵抗効果素子膜の縦横比が1に近く、該素
子膜の磁気異方性が媒体摺動端線に対して略45°
の角度であり、かつ、該摺動端部より素子表面上
にわたつて所定ピツチ間隔で摺動端に対して垂直
に、かつおのおの平行に導体膜を付設し、該素子
に対する給電リードを素子両端部に該導体膜相当
長さ分にのみ接続したことを特徴とする磁気抵抗
効果ヘツド。
The aspect ratio of the magnetoresistive element film is close to 1, and the magnetic anisotropy of the element film is approximately 45° with respect to the media sliding edge line.
At the same time, a conductor film is attached perpendicularly to the sliding end at a predetermined pitch interval over the element surface from the sliding end, and in parallel to each other, and the power supply lead for the element is connected to both ends of the element. 1. A magnetoresistive head, characterized in that the head is connected only to a length corresponding to the conductor film.
JP1985095507U 1985-06-24 1985-06-24 Expired JPH0426971Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985095507U JPH0426971Y2 (en) 1985-06-24 1985-06-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985095507U JPH0426971Y2 (en) 1985-06-24 1985-06-24

Publications (2)

Publication Number Publication Date
JPS623612U JPS623612U (en) 1987-01-10
JPH0426971Y2 true JPH0426971Y2 (en) 1992-06-29

Family

ID=30654681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985095507U Expired JPH0426971Y2 (en) 1985-06-24 1985-06-24

Country Status (1)

Country Link
JP (1) JPH0426971Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914118A (en) * 1982-07-13 1984-01-25 Fujitsu Ltd Magneto-resistance effect type magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914118A (en) * 1982-07-13 1984-01-25 Fujitsu Ltd Magneto-resistance effect type magnetic head

Also Published As

Publication number Publication date
JPS623612U (en) 1987-01-10

Similar Documents

Publication Publication Date Title
EP0064786A2 (en) Magnetic sensor and magnetically permeable component for a magnetic sensor
JPS5845619A (en) Magneto-resistance effect type thin film magnetic head
JPH0473201B2 (en)
JPH0426971Y2 (en)
JPS6227449B2 (en)
JPS6032885B2 (en) thin film magnetic head
JPS58166527A (en) Magnetoresistance effect head
JPS5911522A (en) Magnetoresistance effect head
JPS63224016A (en) Thin film magnetic head and production thereof
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPS61237218A (en) Method for biassing in magneto-resistance effect type magnetic head
JPS5971124A (en) Magneto-resistance effect magnetic head
JPS62114113A (en) Thin film magnetic head
JPH048852B2 (en)
JPS6288122A (en) Bias magnetic field impressing method for magneto-resistance effect type magnetic head
JPH0944817A (en) Thin film megnetic head
JP2863552B2 (en) Thin-film magnetic head and recording / reproducing apparatus using this thin-film magnetic head
JP2932755B2 (en) Thin film magnetic head
JP3210139B2 (en) Magnetoresistive magnetic head
JPS581748B2 (en) Jikikenshiyutsuki
JP2776824B2 (en) Terminal pull-out method for multitrack thin film magnetic head
JPS61255525A (en) Multi-track magneto-resistance type magnetic head
JPH0346109A (en) Thin-film magnetic head