JPS58166527A - Magnetoresistance effect head - Google Patents

Magnetoresistance effect head

Info

Publication number
JPS58166527A
JPS58166527A JP57050586A JP5058682A JPS58166527A JP S58166527 A JPS58166527 A JP S58166527A JP 57050586 A JP57050586 A JP 57050586A JP 5058682 A JP5058682 A JP 5058682A JP S58166527 A JPS58166527 A JP S58166527A
Authority
JP
Japan
Prior art keywords
magnetization
grooves
degrees
magnetoresistive head
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57050586A
Other languages
Japanese (ja)
Other versions
JPH0375925B2 (en
Inventor
Nobuyuki Hayama
信幸 羽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57050586A priority Critical patent/JPS58166527A/en
Priority to DE3311242A priority patent/DE3311242C2/en
Publication of JPS58166527A publication Critical patent/JPS58166527A/en
Publication of JPH0375925B2 publication Critical patent/JPH0375925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve reproducibility, by providing a ferromagnetoresistance effect element on an insulating substrate having grooves and specifying the angle between the grooves and a current which flows through the ferromagnetoresistance effect element. CONSTITUTION:In the insulating substrate material 4, the grooves 5 are formed in parallel. Because of numbers of the grooves 5, numbers of slanting surfaces 6 and flat surface 7 are formed inevitably at the same time. The magnetoresistance effect element 8 made of a ferromagnetic material in a thin film shape which has length L and width W is formed by covering the grooves 5, slanting surfaces 6, and flat surfaces 7. In this case, the lengthwise direction of the element 8 and that of the grooves 5 contain an angle theta of 30-60 deg..

Description

【発明の詳細な説明】 本発明は磁気記憶媒体に書き込まれた磁気的情報を、い
わゆる磁気抵抗効果を利用して読み出しを行う強磁性磁
気抵抗効果素子(以下、MR素子と称す)を備えた磁気
抵抗効果ヘッド(以下。
[Detailed Description of the Invention] The present invention includes a ferromagnetic magnetoresistive element (hereinafter referred to as an MR element) that reads magnetic information written on a magnetic storage medium using a so-called magnetoresistive effect. Magnetoresistive head (hereinafter referred to as "magnetoresistive head")

MRヘッドと称す)に関する。(referred to as MR head).

MRヘッドは、磁気記録における記録密度の向上に大き
く貢献するものとして注目されている。
MR heads are attracting attention as a device that greatly contributes to improving recording density in magnetic recording.

しかし、周知の如く、MR素子を高効率の再生用ヘッド
として用いる場合には何等かのバイアス手段が必要であ
る。第1図(a)に示す様に、MR素子1の電気抵抗R
はその中を流れる電流(センス電流)■とMR素子自身
の磁化Mのなす角をθとすると R=R0−ΔRo tdn” e        ”’
 ”’ (1)の形で変化する。ここでRoはセンス電
流Iと磁化Mのなす角θがゼロのときのMR素子lの電
気抵抗で% Ro−ΔR0はθが90度のときの電気抵
抗である。更に、MR素子1の磁化容易軸E、Aが図示
する如くセンス電流Iと平行であれば%(1)式によっ
て外部磁場Heの9屓が、磁化容易軸EAと直交方向に
変化すると、同図ら)に示す様なMR素子1の抵抗変化
Aが得られる。こう言った曲線上で磁気記録゛媒体から
の微小信号磁界HsをMR素子の抵抗変化に変換する際
、再生感度及び出力を高めるため、予めセンス電流Iと
磁化Mのなす角θを略45度に設定する必要がある。こ
れが向従来、MR素子のセンス電流■と磁化Mとのなす
角0を略45度に設定するためのバイアス方法として各
種のものが提案されている。第2図はコンダクタバイア
ス法と称するもので、MR素子1に近接対抗して、或い
は、接触させて電気的良導体(バイアスコンダクタ)2
を配置し、バイアスコンダクタ2に電流を流すことによ
って発生する磁化容易軸E、Aと直交した磁界をバイア
ス磁界Hbとし、このバイアス磁界Hbにより磁化Mを
MR素子lの長手方向に流れるセンス電流Iの方向に対
して45度の角度に設定する手法である。
However, as is well known, when using an MR element as a highly efficient reproducing head, some kind of bias means is required. As shown in FIG. 1(a), the electrical resistance R of the MR element 1
Let θ be the angle between the current flowing through it (sense current) ■ and the magnetization M of the MR element itself, then R=R0−ΔRo tdn” e ”’
"' (1) Here, Ro is the electric resistance of the MR element l when the angle θ between the sense current I and the magnetization M is zero, and Ro-ΔR0 is the electric resistance when θ is 90 degrees. Furthermore, if the easy axes of magnetization E and A of the MR element 1 are parallel to the sense current I as shown in the figure, then according to the formula (1), the 9 degrees of the external magnetic field He will be in the direction orthogonal to the easy axis of magnetization EA. When the resistance changes A of the MR element 1 as shown in FIG. In order to increase the output and output, it is necessary to set the angle θ between the sense current I and the magnetization M to approximately 45 degrees in advance. Various bias methods have been proposed for setting the MR element 1. Fig. 2 shows the so-called conductor bias method, in which an electrically good conductor (bias conductor) is placed close to or in contact with the MR element 1. 2
The bias magnetic field Hb is a magnetic field perpendicular to the easy magnetization axes E and A generated by passing a current through the bias conductor 2, and the bias magnetic field Hb causes the magnetization M to flow in the longitudinal direction of the MR element l. This method sets the angle at 45 degrees with respect to the direction of .

しかし、この手法は、バイアスコンダクタ2に比較的大
電流を流す必要があり、従って、MR素子lの電気抵抗
が熱的ドリフトを起し、かつ熱雑音の原因にもなってい
た。更に、センス電流lと磁化Mのなす角度eを厳密に
45度に設定する必要性からバイアスコンダクタ2の電
流値の調整が煩雑であった。又、バイアスコンダクタ2
に変えてハード膜バイアス法と称する、磁気的にハード
な磁性体をMR素子lに近接対抗(或いは、接触)させ
て、バイアス磁界Hbを得る方法も公知であるが、この
手法も先のコンダクタバイアス−と同様、角度0を厳密
に45度に設定するのが困難であっ起。更に′前述の2
つの公知例ではバイアス磁界Hbが比較的大きな値が要
筆され名ため、磁気記憶媒体上の情報がこ−のバイアス
磁界Hbによって変化する恐れ忘あった二′ 又、他の公知例(図示せず)として、MR素子の長手方
向に流すセンス電流Iに対して、始めからMR素子の磁
化容易軸を45度に設定する手法がある。しかし、この
手法はMR素子お自らの形状異方性のため磁化Mの方向
は厳密に磁化容易軸に一致させることが困難で、再現性
もなかった。
However, this method requires a relatively large current to flow through the bias conductor 2, and therefore the electrical resistance of the MR element 1 causes thermal drift and also causes thermal noise. Furthermore, adjustment of the current value of the bias conductor 2 is complicated because it is necessary to strictly set the angle e formed by the sense current l and the magnetization M to 45 degrees. Also, bias conductor 2
Instead, a method known as the hard film bias method in which a magnetically hard magnetic material is placed in close opposition to (or in contact with) the MR element 1 to obtain the bias magnetic field Hb is also known, but this method is also similar to the above-mentioned conductor. As with bias, it is difficult to set the angle 0 exactly to 45 degrees. Furthermore, the above 2
In the two known examples, the bias magnetic field Hb has a relatively large value, so there is a fear that the information on the magnetic storage medium may be changed by the bias magnetic field Hb. As a first method, there is a method in which the axis of easy magnetization of the MR element is set at 45 degrees from the beginning with respect to the sense current I flowing in the longitudinal direction of the MR element. However, with this method, it is difficult to make the direction of magnetization M exactly coincide with the axis of easy magnetization due to the shape anisotropy of the MR element itself, and there is no reproducibility.

−芳、前2者の公知例で示したMR素子の磁化Mがセン
ス電流Iに対して′WPr45度に偏向される手法とは
対照的に、第3図、第4図は一ンス電流■を磁化Mに対
して略45度に偏向させる公知例である。第3図はMR
素子1に磁化容易軸E、 A方向に対し略45度の角度
を表すスリットを多数形成し、電流の通路を変化させる
方法である。しかし、この手法も、前述のMR素子lの
自らの形状異方性により、磁化M′Fi、磁化容易軸1
.ムと平行にならず、はとんどセンス電流■と平行な方
向をなし、結局、磁化Mとセンス電流Iとを略45度に
保つには困難であった。以上、述べた従来のバイアス法
の鍍点を解決するものとして第4図に示すバーバーポー
ル(Barber Po1e )型MR素子が注目を集
めている!バーバニボール型MR素子は図示する如<1
MR素子1の磁化容易軸E、Aに対して略45度の角度
をなして多数の短冊状電気的良導体3をMR素子1に接
触させ、MR素子lを通るセンス電流Iを磁化Mと略4
゛5度に設定せしめるものである。しかし、かかる構造
では、多数の短冊状電気的良導体3の存在により、 M
R素子lの全体的外電気抵抗の低下を招き、更に信号磁
界の有効的な検出領域が減少し、結局出力が低下すると
いう欠点を免れ得ないものであった。
In contrast to the method shown in the first two known examples in which the magnetization M of the MR element is deflected by 45 degrees 'WPr with respect to the sense current I, FIGS. This is a known example in which the magnetization M is deflected at approximately 45 degrees. Figure 3 is MR
This is a method in which a large number of slits are formed in the element 1 at an angle of approximately 45 degrees with respect to the axis of easy magnetization E and A to change the current path. However, in this method, due to the shape anisotropy of the MR element l described above, the magnetization M′Fi, the easy axis
.. The magnetization M is not parallel to the sense current I, but is mostly parallel to the sense current I, and as a result, it is difficult to maintain the magnetization M and the sense current I at approximately 45 degrees. The Barber Pole type MR element shown in FIG. 4 is attracting attention as a solution to the problems of the conventional bias method described above! The Barbani ball type MR element is as shown in the figure.
A large number of strip-shaped electrically conductive conductors 3 are brought into contact with the MR element 1 at an angle of about 45 degrees with respect to the easy magnetization axes E and A of the MR element 1, and the sense current I passing through the MR element l is abbreviated as magnetization M. 4
It is set to 5 degrees. However, in such a structure, due to the presence of many strip-shaped electrically conductive conductors 3, M
This inevitably leads to a decrease in the overall external electrical resistance of the R element 1, and further reduces the effective detection area of the signal magnetic field, resulting in a decrease in output.

本発明の目的は、前記、従来の欠点を解決した磁気抵抗
効果ヘッドを提供することである。
An object of the present invention is to provide a magnetoresistive head that solves the above-mentioned conventional drawbacks.

本発明は、1個または複数個の相互に平行で直線的な凹
凸を設けた絶縁性基板材上にMR素子を設け、前記MR
素子を流れる電流が前記証線的な凹凸部の境界線に対し
敞小30度から最大60度の範囲の角度を成すことを特
徴とする。
The present invention provides an MR element on an insulating substrate material provided with one or more linear unevenness parallel to each other, and
It is characterized in that the current flowing through the element forms an angle in the range of 30 degrees to 60 degrees with respect to the boundary line of the corrugated portion.

即ち、本発明の原理は、MR素子の形状異方性を利用し
、磁化Mと電流lとの成す角度を凹凸パターンによって
決定するものである。
That is, the principle of the present invention is to utilize the shape anisotropy of the MR element to determine the angle formed by the magnetization M and the current l by the concavo-convex pattern.

以下、本発明の実施例を図面を用いて、詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第5図は本発明のMRヘッドの主要構成要素であるMR
R子部分の実施例である。他の構成部分例えに磁気シー
ルド等は説明を簡単にするため省略した。
FIG. 5 shows the MR head which is the main component of the MR head of the present invention.
This is an example of the R child part. Other components, such as magnetic shields, are omitted to simplify the explanation.

第5図(a)に示す如く、絶縁性基板材4には多数の直
線的な溝5がそれぞれ略平行となるように形晟さfして
いる。基板材4上に盲−数の溝5を形成することにより
“必然的に多数の斜面6及び平坦面7が同時に形成され
る。この115.斜面6.平坦面7を覆って、強磁性体
からなるMR素子(例えば、l・−Ni合金、Ni−0
o合金等)8が薄膜状に長さり1幅Wを有して形成され
ている。MR素千8の長手方向の両端は電気的良導体(
例えば、Au、 Ou、 Ag等)から成る2つの電気
端子9と接続されている。この場合、MR素子の有効的
な信号磁界検知部の長さはL/となる。MRR子8の長
手方向と溝5の長平方向は最小30度から最大60度の
範囲の成る値(望ましくは45度)の角度θを成すよう
に形成される。従って、電気端子9を介してMR素千8
中を流れる電流Iは溝5の長手方向に対して最小30度
から最大60度の範囲の前記角度θを成すことになる。
As shown in FIG. 5(a), a large number of linear grooves 5 are formed in the insulating substrate material 4 so that they are substantially parallel to each other. By forming a blind number of grooves 5 on the substrate material 4, a large number of slopes 6 and flat surfaces 7 are inevitably formed at the same time. MR element (e.g., l·-Ni alloy, Ni-0
(alloy, etc.) 8 is formed in a thin film shape with a length and width W of 1. Both ends of the MR element 8 in the longitudinal direction are good electrical conductors (
For example, it is connected to two electrical terminals 9 made of Au, Ou, Ag, etc.). In this case, the effective length of the signal magnetic field detection portion of the MR element is L/. The longitudinal direction of the MRR element 8 and the longitudinal direction of the groove 5 are formed so as to form an angle θ having a value ranging from a minimum of 30 degrees to a maximum of 60 degrees (preferably 45 degrees). Therefore, the MR element 8 is connected via the electrical terminal 9.
The current I flowing therein forms an angle θ with respect to the longitudinal direction of the groove 5 ranging from a minimum of 30 degrees to a maximum of 60 degrees.

上述の多数の$5.斜面6.平坦面7の存在により、M
RR子8は、第5図伽)の平面図に示す如く溝5上のM
R嵩壬子10斜面6上のMRR子11゜平坦面7上のM
RR子12と磁気的に分割されることになる。この結果
jiMR素子10.11及び12の長手方向の長さは」
仁の値となり、それぞれのMR素子の幅方向の長さに比
して十分大きな値を取ることになる。従って、MRR子
10.11及び12の磁化容易軸1.Aの方向、即ち磁
化Mの方向は、それぞれのMR素子の自らの形状異方性
によって、MRR子10.11及び12の長手方向、即
ち溝5の方向と略平行となる。一方1港5の存在はMR
R子8の電気的分割に何等寄与せず、従ってセンス電流
Iの方向はMR*子10゜11及び12に□おいて連続
である一つまり各λfR素子の磁化MとMR素子のセン
ス電流■は#$5によって決定される最小30度から最
大60度の範囲の前記の角度θをなすことになる。
Many of the above mentioned $5. Slope 6. Due to the existence of the flat surface 7, M
The RR element 8 is connected to the M on the groove 5 as shown in the plan view of FIG.
R Dakamiko 10 MRR child 11° on slope 6 M on flat surface 7
It is magnetically divided from the RR element 12. As a result, the length of the jiMR elements 10, 11 and 12 in the longitudinal direction is "
This is a value that is sufficiently large compared to the length of each MR element in the width direction. Therefore, the easy magnetization axes 1. of MRR elements 10.11 and 12. The direction of A, that is, the direction of magnetization M, is approximately parallel to the longitudinal direction of MRR elements 10, 11 and 12, that is, the direction of groove 5, due to the shape anisotropy of each MR element. On the other hand, the existence of 1 port 5 is MR.
It does not contribute to the electrical division of the R element 8, and therefore the direction of the sense current I is continuous in the MR* elements 10, 11 and 12. In other words, the magnetization M of each λfR element and the sense current of the MR element ■ will make the aforementioned angle θ ranging from a minimum of 30 degrees to a maximum of 60 degrees determined by #$5.

以下、上述した本発明の構成、即ち、基板上に形成され
た解によって、MR素子の磁化Mとセンス電流Iのなす
角度を設定せしめたMR累子を[ジ曹ッグ(Jog )
 MR素子」と称することにする。
Hereinafter, the MR resistor that sets the angle between the magnetization M of the MR element and the sense current I using the structure of the present invention described above, that is, the solution formed on the substrate will be described below.
It will be referred to as "MR element".

本発明のジョノグMR素子に外部から微小信号磁界Hs
がセンス電流工と直交する様に印加されると、MR素子
の磁化Mとセンス電流■との成す角度は角度0を中心に
変化することになり、第1図(b)に示した如き、バイ
アス磁界Hbが印加されたものと同様なMR素子の抵抗
変化Cが得られることになる。
A minute signal magnetic field Hs is applied to the Jonog MR element of the present invention from the outside.
When is applied so as to be perpendicular to the sense current, the angle formed by the magnetization M of the MR element and the sense current ■ changes around the angle 0, as shown in Figure 1(b). A resistance change C of the MR element similar to that obtained when the bias magnetic field Hb is applied is obtained.

ジョノグMR素子の連形状は、第5図の様な台形的な形
状に限るものでなく、第6図(a)、(b)。
The continuous shape of the Jonog MR element is not limited to the trapezoidal shape as shown in FIG. 5, but is shown in FIGS. 6(a) and (b).

(C)に示す形状でも良い。ただし第6図の実施例でも
、纒5とMR素子を流れる電流方向のなす角度0は最小
30度から最大6・0度の範囲の或値に選定されること
は言うまでもない。第6図(a)はMR素Pが斜面6及
び平坦面7のみに形成され、同図(b)は斜面6のみに
、同図(c)は溝5と斜面6に形成される様な溝形状を
有する。
The shape shown in (C) may also be used. However, in the embodiment shown in FIG. 6 as well, it goes without saying that the angle 0 between the wire 5 and the direction of the current flowing through the MR element is selected to be a value in the range of 30 degrees at the minimum and 6.0 degrees at the maximum. 6(a), the MR element P is formed only on the slope 6 and the flat surface 7, FIG. 6(b) shows the MR element P formed only on the slope 6, and FIG. It has a groove shape.

更に、ジョッグMR素子の長さL′、膜厚及び輻Wの変
更の際には、MR素子の磁気的分割数を適切な値に変更
すれば良く、これは、溝形状、溝の深さ、及び纏の間1
4%更には溝の微を変更することで容易に達成でき、常
に磁化MO力方向溝と略平行と成る様に設定できる。又
、MR素子は蒸着、スパッタリング及びメッキ等の手法
によって形成されるが、その際、基板材の溝方向に平行
に外部磁界を印加すれば、更に厳密に磁化容易軸即ち磁
化Mの方向を溝方向に一致せしめることができる。
Furthermore, when changing the length L', film thickness, and radius W of the jog MR element, the number of magnetic divisions of the MR element can be changed to an appropriate value, and this can be done by changing the groove shape and groove depth. , and Mato no Ma 1
4% or more can be easily achieved by changing the fineness of the groove, and can be set so that it is always substantially parallel to the groove in the direction of magnetization MO force. In addition, MR elements are formed by methods such as vapor deposition, sputtering, and plating, but at that time, if an external magnetic field is applied parallel to the groove direction of the substrate material, the direction of the easy axis of magnetization, that is, the direction of magnetization M, can be more accurately aligned with the grooves. The directions can be matched.

尚、本発明のジョッグMR素子の磁化Mの方向祉前述の
、溝形状、#Iの深さ及び溝の間隔、更には溝の数によ
っては、隣接する短冊状MR素子中の磁化Mが互いに反
平行になった方が安定な場合も存在する。この場合は明
らかに微小信号磁界Htnによってジ冒ッグMR素子の
電気抵抗は何等変化しないことになる。こう言った事態
を避けるにはジョッグMR素子のそれぞれのMR素子の
磁化Mを同一方向に揃えるため何等かのバイアス手段を
用いるのが望ましい。例えは第7図に示す如く、ジョッ
グMR素子8に近接対抗して(或いは、接[せて)電気
的導体(バイアスコンダクタ)2を配置し、バイアスコ
ンダクタ2にジ目ッグMR素子8のセンス電流Iと平行
にバイアス電流IBを流すことによって発生ず・る磁界
HBを利用してMR素子の磁化Mの方向を揃えれば良い
。又、電気的良導体2に変えて、磁気的にハードな磁性
体を近接対抗(或いは、接触)させて、磁気的にハード
な磁性体からの漏洩磁界によってMR素子の磁化Mの方
向を揃えても良い。これ等の手法は、前述した従来技術
、即ちコンダクタバイアス法及びハード展バイアス法と
同じであるが、ジ目ッグMR素子では基板に形成された
溝によって一意的に磁化容易軸方向が決定されかつ、磁
化Mは磁化容易軸E、Aと平行で、更に磁化Mの方向の
反転は、それぞれのMR素子の抗磁力程度の磁界で行な
われるため、従来技術の難点であるとこ名の厳密なMR
素子のセンス電流Iと磁化Mとの角度0の調整及び大き
なバイアス磁界Hbが不要となる。
Note that depending on the direction of the magnetization M of the jog MR element of the present invention, the magnetization M in adjacent strip-shaped MR elements may be different from each other depending on the groove shape, the depth of #I, the interval between grooves, and the number of grooves. There are cases where it is more stable to be antiparallel. In this case, it is clear that the electrical resistance of the Jiggly MR element does not change at all due to the minute signal magnetic field Htn. To avoid such a situation, it is desirable to use some kind of bias means to align the magnetization M of each MR element of the jog MR element in the same direction. For example, as shown in FIG. 7, an electric conductor (bias conductor) 2 is arranged close to (or in contact with) the jog MR element 8, and the bias conductor 2 is connected to the jog MR element 8. The direction of the magnetization M of the MR element may be aligned using the magnetic field HB generated by flowing the bias current IB in parallel with the sense current I. Alternatively, instead of the electrically good conductor 2, a magnetically hard magnetic material is placed in close opposition (or contact), and the direction of the magnetization M of the MR element is aligned by the leakage magnetic field from the magnetically hard magnetic material. Also good. These methods are the same as the conventional techniques described above, namely the conductor bias method and the hard expansion bias method, but in the dimagnetic MR element, the easy axis direction of magnetization is uniquely determined by the groove formed in the substrate. In addition, the magnetization M is parallel to the easy magnetization axes E and A, and the reversal of the direction of the magnetization M is performed using a magnetic field approximately equal to the coercive force of each MR element. M.R.
Adjustment of the angle 0 between the sense current I and magnetization M of the element and a large bias magnetic field Hb are not required.

以上、本発明のMRヘッドの主要構成要素であるMR素
子について説明したが、一般にMRヘッドはMR素子単
体で構成されるものではなく分解能を向上させ高周波特
性を良好にするための磁気シールドが必要である。本発
明のジョッグMR素子を磁気シールド付MRヘッドに適
用した実施例を第8図に示す。第8図ではMRヘッドの
スライダーとなるべく絶縁性基体13の上に高透磁率磁
性体、例えばパーマロイから成る第一の磁気シールド1
4が形成され、その上に本発明のジョッグMR素子(前
述の如く、凹凸の溝を有する基板材4上のMR素子8が
形成されたもの)が形成されジョッグMR素子の両端か
ら電気端子9が収り出され、前記、ジョッグMR素子を
第一の磁気シールド14とで挟む様に第二の磁気シール
ド16が絶縁層15を介して形成されたMRヘッドの構
成を示すものである。周知の如く、本構成の様に第−及
び第二の磁気シールド14及び16が形成するギャップ
Gのみに、磁気記憶媒体からの微小信号磁界Hsが到達
することになり、他の部分、即ち第−及び第二の磁気シ
ールド14及び16の領域での微小信号磁界Hs Id
前記二つの磁気シールドに吸収されてしまうものである
。従って、ギヤツブG内にあるジョッグMR素子は、ギ
ャップGに到達する微小信号磁界Hsのみを検出するこ
とになり、高周波特性の優れたMRヘッドを提供できる
The MR element, which is the main component of the MR head of the present invention, has been explained above, but in general, an MR head is not composed of a single MR element, but requires a magnetic shield to improve resolution and improve high frequency characteristics. It is. FIG. 8 shows an embodiment in which the jog MR element of the present invention is applied to a magnetically shielded MR head. In FIG. 8, a first magnetic shield 1 made of a high magnetic permeability magnetic material such as permalloy is placed on an insulating base 13 to serve as a slider of an MR head.
4 is formed, on which a jog MR element of the present invention (as described above, an MR element 8 on a substrate material 4 having uneven grooves is formed) is formed, and electrical terminals 9 are connected from both ends of the jog MR element. This figure shows the configuration of an MR head in which a second magnetic shield 16 is formed with an insulating layer 15 interposed between the jog MR element and the first magnetic shield 14. As is well known, in this configuration, the minute signal magnetic field Hs from the magnetic storage medium reaches only the gap G formed by the first and second magnetic shields 14 and 16, and the minute signal magnetic field Hs from the magnetic storage medium reaches only the gap G formed by the first and second magnetic shields 14 and 16. - and the small signal magnetic field Hs Id in the region of the second magnetic shields 14 and 16
It is absorbed by the two magnetic shields. Therefore, the jog MR element in the gear G detects only the minute signal magnetic field Hs that reaches the gap G, making it possible to provide an MR head with excellent high frequency characteristics.

以上、説明した様に本発明のジョッグMR素子を用いた
磁気ヘッドは、従来のバーバーポールMR素子の欠点を
全て解決している。即ちバーバーポールMR素子では短
冊状電気導体の存在により信号磁界の検出領域が狭くな
り、しかも電気抵抗が小さくなるという欠点を持つのに
対し1本発明社実質的な信号磁界の検出領域を何等減少
させるどころか、逆に、従来のMR素子に比し増加させ
ており、また、MR素子の全電気抵抗も増加させ、出力
に寄与する抵抗変化が大きくなる特徴がある。
As described above, the magnetic head using the jog MR element of the present invention solves all the drawbacks of the conventional barber pole MR element. That is, whereas the barber pole MR element has the disadvantage that the detection area of the signal magnetic field is narrowed due to the presence of the strip-shaped electric conductor, and the electrical resistance is also reduced, the present invention has the disadvantage that the detection area of the signal magnetic field is actually reduced in any way. On the contrary, it is increased compared to conventional MR elements, and the total electrical resistance of the MR element is also increased, resulting in a large change in resistance that contributes to the output.

更に、ジョノグMR素子の容易磁化方向、即ち磁化Mの
方向は溝の方向のみによって一意的に決定されるため、
再現性の良いMRヘッドを提供できる。
Furthermore, since the easy magnetization direction of the Jonog MR element, that is, the direction of magnetization M, is uniquely determined only by the direction of the groove,
An MR head with good reproducibility can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMR累子のセンス電流工と磁化Mの関係とその
抵抗変化を示す図、第2図〜第4図は従来のMR素子の
構成を示す概略図、第5図は本発明の実施例で、同図(
a)はMR素子の形状を示す概略斜初図、同図(b)は
MR素子の磁化1(と電流工の関係を示す平面図、第6
図は本発明の他の実施例の溝形状を示す概略斜視図、第
7図は本発明のMB素子の磁化Mの方向を揃えるための
バイアス手段の実施例を示す概略斜視図、第8図は本発
明のMR素子を磁気シールド付MRヘッドに適用した実
施例を示す概略斜視図である。 図において、1,8,10,11,12はMR素子、4
は基板材、5は溝、9は電気端子、14及び15は第−
及び第二の磁気シールドを示す。 (b) 第2図 第6図 第7図
Fig. 1 is a diagram showing the relationship between the sense current and magnetization M of the MR element, and its resistance change. Figs. 2 to 4 are schematic diagrams showing the configuration of a conventional MR element. In the example, the same figure (
(a) is a schematic oblique view showing the shape of the MR element, (b) is a plan view showing the relationship between magnetization 1 (and current flow) of the MR element, and
The figures are a schematic perspective view showing the groove shape of another embodiment of the present invention, FIG. 7 is a schematic perspective view showing an embodiment of bias means for aligning the direction of magnetization M of the MB element of the present invention, and FIG. 1 is a schematic perspective view showing an embodiment in which the MR element of the present invention is applied to a magnetically shielded MR head. In the figure, 1, 8, 10, 11, 12 are MR elements, 4
5 is the substrate material, 5 is the groove, 9 is the electrical terminal, 14 and 15 are the -
and a second magnetic shield. (b) Figure 2 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1.1個又は複数個の相互に平行で直線状の溝(又は凸
部)を有する勢縁性基板上に強磁性磁気抵抗効果素子を
設、け、前記溝(又は凸部)と前記強磁性磁気抵抗効果
素子を流れや電流とのなす角度が30度乃至60.度に
設定されている、ことを特徴とする磁気抵抗効果ヘッド
。 2、強磁性磁気抵抗効果素子、の磁化容易軸が強制的に
前記溝(又は凸部)と略平行に付与さハたことを特徴と
する特許請求の範囲第1項記載の磁気抵抗効果ヘッド。  。 3、強磁性磁気抵抗効果、!、子?轡化方向が前記溝(
又は凸部)と略平行とな、φ、様なバイアス手段を有す
ることを特徴とする特許請求の範囲第1項記載の磁気抵
抗効果ヘッド。 4、強磁性磁気抵抗効果素子が、高透磁率磁性体から成
る二つの磁気シールドに狭まれていることを特徴とする
特許請求の範些第1項記載の磁気抵抗効果ヘッド。 5、バイアス手段がコンダクタバイアス法であることを
特徴とする特許請求の範囲第3項記載の磁気抵抗効果ヘ
ッド。 6、バイアス手段がハード膜バイアス法であることを特
徴とする特許請求の範囲第3項記載の磁気抵抗効果ヘッ
ド。 7、 バイアス手段が磁気抵抗効果ヘッドの外部に設け
られた永久磁石によることを特徴とする特許請求の範囲
第3項記載の磁気抵抗効果ヘッド。
1. A ferromagnetic magnetoresistive element is provided on a magnetic substrate having one or more mutually parallel linear grooves (or convex portions), and the grooves (or convex portions) and the strong The angle between the magnetoresistive element and the flow or current is between 30 degrees and 60 degrees. A magnetoresistive head characterized in that the magnetoresistive head is set at a degree. 2. The magnetoresistive head according to claim 1, wherein the axis of easy magnetization of the ferromagnetic magnetoresistive element is forcibly provided substantially parallel to the groove (or convex portion). . . 3. Ferromagnetic magnetoresistance effect! ,Child? The lining direction is the groove (
2. The magnetoresistive head according to claim 1, further comprising a bias means such as φ, which is substantially parallel to the convex portion or the convex portion. 4. The magnetoresistive head according to claim 1, wherein the ferromagnetic magnetoresistive element is sandwiched between two magnetic shields made of a high permeability magnetic material. 5. The magnetoresistive head according to claim 3, wherein the biasing means is a conductor bias method. 6. The magnetoresistive head according to claim 3, wherein the biasing means is a hard film bias method. 7. The magnetoresistive head according to claim 3, wherein the biasing means is a permanent magnet provided outside the magnetoresistive head.
JP57050586A 1982-03-29 1982-03-29 Magnetoresistance effect head Granted JPS58166527A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57050586A JPS58166527A (en) 1982-03-29 1982-03-29 Magnetoresistance effect head
DE3311242A DE3311242C2 (en) 1982-03-29 1983-03-28 Magnetoresistive arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57050586A JPS58166527A (en) 1982-03-29 1982-03-29 Magnetoresistance effect head

Publications (2)

Publication Number Publication Date
JPS58166527A true JPS58166527A (en) 1983-10-01
JPH0375925B2 JPH0375925B2 (en) 1991-12-03

Family

ID=12863072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57050586A Granted JPS58166527A (en) 1982-03-29 1982-03-29 Magnetoresistance effect head

Country Status (2)

Country Link
JP (1) JPS58166527A (en)
DE (1) DE3311242C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984002028A1 (en) * 1982-11-11 1984-05-24 Matsushita Electric Ind Co Ltd Thin-film magnetic head
JPS60140217U (en) * 1984-02-22 1985-09-17 日本電気株式会社 magnetoresistive head

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555740A (en) * 1983-04-04 1985-11-26 Hewlett-Packard Company Thin film transducer head for inductive recording and magnetoresistive reading
US4649447A (en) * 1985-08-15 1987-03-10 International Business Machines Combed MR sensor
JP3089828B2 (en) * 1992-05-27 2000-09-18 株式会社村田製作所 Ferromagnetic magnetoresistive element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2165206A5 (en) * 1971-12-22 1973-08-03 Cii
US3864751A (en) * 1973-10-04 1975-02-04 Ibm Induced bias magnetoresistive read transducer
NL7804377A (en) * 1978-04-25 1979-10-29 Philips Nv MAGNETO RESISTANCE CUP.
US4477794A (en) * 1981-08-10 1984-10-16 Matsushita Electric Industrial Co., Ltd. Magnetoresistive element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984002028A1 (en) * 1982-11-11 1984-05-24 Matsushita Electric Ind Co Ltd Thin-film magnetic head
JPS60140217U (en) * 1984-02-22 1985-09-17 日本電気株式会社 magnetoresistive head
JPH0227383Y2 (en) * 1984-02-22 1990-07-24

Also Published As

Publication number Publication date
DE3311242A1 (en) 1983-11-17
JPH0375925B2 (en) 1991-12-03
DE3311242C2 (en) 1987-04-23

Similar Documents

Publication Publication Date Title
US4896235A (en) Magnetic transducer head utilizing magnetoresistance effect
US5592082A (en) Magnetic sensor with permanent magnet bias layers
WO1991015012A2 (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
JPH05114119A (en) Magnetoresistance effect type magnetic head
US4065797A (en) Multi-element magnetic head
JPS58166527A (en) Magnetoresistance effect head
JPH07192227A (en) Magneto-resistance effect type magnetic head
KR100280300B1 (en) Combined read / write magnetic head
JPS638531B2 (en)
CA1101120A (en) Magneto-resistive reading head
KR920001129B1 (en) Magnetic resistance effect magnetic head
JPS5931771B2 (en) thin film magnetoresistive head
JPS58100217A (en) Magnetoresistance effect head
US4821012A (en) Magnetoresistive element
JPS62137713A (en) Magnet-resistance effect type magnetic head
JPH0440776B2 (en)
JPS6017054Y2 (en) magnetic head
JPH026490Y2 (en)
JPH0135404B2 (en)
JPH0426971Y2 (en)
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPS6288122A (en) Bias magnetic field impressing method for magneto-resistance effect type magnetic head
JPS638532B2 (en)
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPS5919221A (en) Magneto-resistance effect element