JPS62137713A - Magnet-resistance effect type magnetic head - Google Patents

Magnet-resistance effect type magnetic head

Info

Publication number
JPS62137713A
JPS62137713A JP27743585A JP27743585A JPS62137713A JP S62137713 A JPS62137713 A JP S62137713A JP 27743585 A JP27743585 A JP 27743585A JP 27743585 A JP27743585 A JP 27743585A JP S62137713 A JPS62137713 A JP S62137713A
Authority
JP
Japan
Prior art keywords
thin film
head
magnetic field
magnet
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27743585A
Other languages
Japanese (ja)
Inventor
Norio Shibata
柴田 憲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP27743585A priority Critical patent/JPS62137713A/en
Publication of JPS62137713A publication Critical patent/JPS62137713A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify and miniaturize construction and to reduce cost by disposing plural thin film magnets to an MR element. CONSTITUTION:The MR element 10 consisting of Ni-Fe, Ni-Co, etc., is formed via an insulating layer 15 on a substrate 8 formed with a lower yoke 9. The MR element 10 is formed approximately in parallel with a surface 7a to slide with a tape. The plural thin film magnets 11 are formed via the insulating layer 16 on the MR element 10 so as to have the magnetization direction intersecting orthogonally with the extension direction of the MR element 10. The respective thin film magnets 11 are so formed as to cross, in a rod-like pattern, the MR element 10 and to be approximately equally spaced from each from other. The thin film magnets 11 are so also so constituted that all the magnetization directions thereof are in the equal direction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気抵抗効果型磁気ヘッドに係り、狛に再生効
率を向上し得る磁気抵抗効果型磁気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetoresistive magnetic head, and more particularly to a magnetoresistive magnetic head that can significantly improve reproduction efficiency.

従来の技術 薄膜磁気ヘッドには神々の構造の6のがあり、その一種
として磁気抵抗効果1ψ磁気ヘツド(Lス゛FM、Rヘ
ッドと略称する)がある。M RヘッドはI・aステー
プの走行迷電によらヂ高出力が1「1られろためデジタ
ルオーディオチープレニ1−ダ(D△「)の再1川ヘツ
ドとして用いられる。またMRへ・ンドに形成された磁
気抵抗効宋メる子(以下MIldと略称ηる)は、印加
される信号Vi!1界の二乗に比例した出力を生じ、ま
たバイアス磁界を印加されてJ−記(八8を餞Wに対応
した線形動作を行わせるぜ11成となっている。従来、
MR索子にバイアス磁界を印加する手段としては、(1
)IvlR累f1の外部近傍位置に人なる外部磁石2を
配設し、外部磁石2の磁界をバイアス磁界どしてMR素
f1に印加する手段(第7図に示す)、(2)バイアス
線3をMR木子1の1方又は下方位置に配設し、バイア
ス線3を流れる電流により発生する磁界をバイアス磁S
νとしてMR索子1に印加Mる手段(第8図に承り)、
(3)MRf、子1士に斜めに電導体よりなるシーl−
1〜パターン4を配設し、MR素子1内を流れる゛電流
を斜めに流づ手段(いわゆるバーバーポール)りのMR
ヘッド。第9図に示す)、(4)MRjR子1又は基板
に斜めの細かい満5を設け、これにJ、り斜めに磁区が
発生することを利用する手段(第10図に示す)等が用
いられていた。、<’にお各図において6a、6bはリ
ード線を示し、実線の矢印(,1バイアスmWの印加方
向を示し、また破線の矢印はセンス電流の流れを人々示
している。
There are six types of conventional thin film magnetic heads, one of which is the magnetoresistive 1ψ magnetic head (abbreviated as L-FM, R-head). The MR head is used as a second head of the digital audio chief reader (D△') because the high output is not affected by the stray current of the I/A tape when running. The magnetoresistive effect (hereinafter abbreviated as MIld) produced in the magnetic field produces an output proportional to the square of the applied signal Vi! 8 to perform a linear motion corresponding to the waveform W. Conventionally,
As a means for applying a bias magnetic field to the MR probe, (1
) A means for disposing an external magnet 2 at a position near the outside of the IvlR accumulation f1 and applying the magnetic field of the external magnet 2 as a bias magnetic field to the MR element f1 (shown in FIG. 7); (2) bias line; 3 is placed on one side or below the MR tree 1, and the magnetic field generated by the current flowing through the bias wire 3 is connected to the bias magnet S.
means for applying M to the MR cord 1 as ν (as shown in FIG. 8);
(3) MRf, a shield made of conductor diagonally to each child l-
1 to 4 are arranged, and the MR element 1 is a means (so-called barber pole) that allows the current to flow diagonally through the MR element 1.
head. (4) A method (shown in FIG. 10) that utilizes the fact that a fine diagonal groove is provided on the MRjR element 1 or the substrate and a magnetic domain is generated diagonally on this is used. It was getting worse. In each figure, 6a and 6b indicate lead wires, solid arrows indicate the direction of application of bias mW, and dashed arrows indicate the flow of sense current.

発明が解決しようどする問題点 しかるに上記従来のMRヘッドでは、例えば(1)バイ
アス手段として外部磁石2を用いたもの(第7図に示1
))では、M Rfi子1に外部よりバイアス磁界を印
加することとなり、その磁界はMR索r1以外にら影フ
キを及ぼし記録媒体に記録されている信号を消磁してし
まったり、信号磁界を乱づおそれがあると共にMR素f
1にス・1して均一にバイアス磁界を印加することがで
きないという問題点があった。また■バイアス手段とし
てバイアス線3を用いたもの(第8図に示す)では、バ
イアス線3に電流を流すために別個電流供給源を設りね
ばならず、また磁壁が不安定のためバルクハウゼン・ノ
イズが多発するという問題点があった。更にバイアス手
段としてa轡体よりイするショートパターン4を配設し
たもの(第9図に不71)及び(4)斜めの細かい満5
を形成したもの(第10図に示71)では、記録媒体に
記録されている信号を消磁してしまったり、別個電流供
給源を必要とする等の不都合は解消されるbのの、MR
素子1に対して充分なバイアス効果が得られないという
問題点があった。
Problems to be Solved by the Invention However, in the above-mentioned conventional MR head, for example, (1) an external magnet 2 is used as a biasing means (1 as shown in FIG. 7).
)), a bias magnetic field is applied from the outside to the MR fiducer 1, and the magnetic field affects other than the MR cable r1, demagnetizing the signal recorded on the recording medium, or changing the signal magnetic field. There is a risk of disturbing the MR element f.
There is a problem in that it is not possible to apply a bias magnetic field uniformly by applying a bias magnetic field to the magnetic field. In addition, in the case where the bias line 3 is used as a biasing means (as shown in Fig. 8), a separate current supply source must be provided to supply current to the bias line 3, and since the domain wall is unstable, a Barkhausen・There was a problem that noise occurred frequently. In addition, as a bias means, a short pattern 4 is provided that extends from the a-circle (not shown in Fig. 9), and (4) a fine diagonal pattern 4 is provided.
(71 shown in FIG. 10) eliminates disadvantages such as demagnetizing the signal recorded on the recording medium and requiring a separate current supply source.
There was a problem that a sufficient bias effect could not be obtained for the element 1.

そこで本発明ではMR水素子対し複数の簿膜磁石を適宜
配設することにより上記問題点を解決した磁気抵抗効果
型磁気ヘッドを捉供することを目的とする。
Therefore, an object of the present invention is to provide a magnetoresistive magnetic head that solves the above problems by appropriately disposing a plurality of film magnets for MR hydrogen elements.

問題点を解決するための手段及び作用 上記問題点を解決するため、特許請求の範囲第1項記載
の発明になる磁気抵抗効果型磁気ヘッドでは、磁気抵抗
効果素子トに複数の薄膜磁石を形成した。また特許請求
の範囲第2項記載の発明になる磁気R(抗効宋型磁気ヘ
ッドでは、磁気B(抗効宋素子上に絶縁体を介して複数
の薄膜磁石を磁気抵抗効果素子の延在方向に対して斜め
に形成した。
Means and operation for solving the problem In order to solve the above problem, in the magnetoresistive magnetic head according to the invention as set forth in claim 1, a plurality of thin film magnets are formed on the magnetoresistive element. did. In addition, in the magnetic R (resistance type magnetic head) according to the invention as claimed in claim 2, a plurality of thin film magnets are placed on the magnetic B (resistance effect element) via an insulator. It was formed diagonally to the direction.

さらに特許請求の範囲第1項記載の発明になる磁気抵抗
効果型磁気ヘッドでは、遇気へ抗効宋素子十にこの磁気
抵抗効果素子ど電気的に導通さゼて複数の薄膜磁石を磁
気抵抗効果素子の延在方向に対して斜めに形成した。
Furthermore, in the magnetoresistive magnetic head according to the invention as set forth in claim 1, the magnetoresistive element is electrically connected to a plurality of thin film magnets that are electrically conductive to each other. It was formed obliquely to the extending direction of the effect element.

磁気抵抗効果型磁気ヘッド(MRヘッド)を11記構成
どすることにJ:す、磁気抵抗効果素子(MR水素子七
に複数の簿膜磁石を形成した構成のMRヘッドでは、M
R水素子均一にバイアス磁界を印加でき、またM11索
子tに絶縁体を介して複数の薄膜磁石をMR水素子延在
方向に対し斜めに形成した構成のMRヘッドでは、MR
水素子長手方向にも均一にバイアス磁界を印加すること
ができ、更にMR:A子上にMR水素子電気的に導通さ
せて複数の薄膜磁石をMR水素子延在方向に対して斜め
に形成したMRヘッドでは、MR水素子長手方向にも均
一にバイアス磁界を印加することができると共に、いわ
ゆるバーバーポール型のMRヘッドどしての機能を実現
できる。
In an MR head having a structure in which a plurality of film magnets are formed on a magnetoresistive element (MR hydrogen element),
In an MR head configured to uniformly apply a bias magnetic field to R hydrogen atoms, and in which a plurality of thin film magnets are formed on the M11 probe t obliquely to the extending direction of the MR hydrogen atoms via an insulator,
A bias magnetic field can be uniformly applied to the longitudinal direction of the hydrogen atoms, and the MR hydrogen atoms are electrically connected to each other on the MR:A element to form a plurality of thin film magnets diagonally to the extending direction of the MR hydrogen atoms. This MR head can apply a bias magnetic field uniformly in the longitudinal direction of MR hydrogen atoms, and can also function as a so-called barber pole type MR head.

実施例 第1図及び第2図に本発明になる磁気抵抗効果型磁気ヘ
ッド(MRヘッド)の第1実施例を承り。
Embodiment FIGS. 1 and 2 show a first embodiment of a magnetoresistive magnetic head (MR head) according to the present invention.

なお第2図は第1図におけるΔ−A線に沿う断面を表わ
している。両図に示すMRヘッド7はフォトリソグラフ
ィ技術等の薄膜形成技術を用いて形成されてなり、例え
ば、多トラツクのDAT用の再−Fヘッドとして使用さ
れる。このMRヘッド7は大略基板8と、この基板8上
に形成された下部ヨーク9.磁気戚抗効果木子(M12
木子)10゜薄膜…石11.リード線12a、12b、
上部ヨーク13等に、より構成されている。1t、板8
は例えばしラミック等よりなる非磁性基板であり、その
ト面にはパー70イ、ヒングス1〜(σ録商標)。
Note that FIG. 2 represents a cross section taken along line Δ-A in FIG. 1. The MR head 7 shown in both figures is formed using a thin film forming technique such as photolithography, and is used, for example, as a re-F head for multi-track DAT. The MR head 7 generally includes a substrate 8 and a lower yoke 9 formed on the substrate 8. Magnetic relative effect wood (M12
Kiko) 10° thin film...Stone 11. Lead wires 12a, 12b,
The upper yoke 13 and the like are configured by the upper yoke 13 and the like. 1t, board 8
For example, it is a non-magnetic substrate made of lamic or the like, and its top surface has a par 70 and Hings 1~ (σ trademark).

アモルファス等の軟磁性体よりなり、萌方ヨーク半休9
 a及び後方]−り゛に体9bより構成される下部ヨー
ク9が形成されている。この一対のヨーク゛1′(A9
a、gl)はそのL部に形成されるM R邊:子10を
挾むように形成されており、相η間にセンリー−・4”
11ツブ14を形成している。
Made of soft magnetic material such as amorphous, Moekata yoke 9
a and the rear] - a lower yoke 9 composed of a body 9b is formed. This pair of yokes 1' (A9
a, gl) is formed in the L part so as to sandwich the MR side: 10, and between the phases η
11 tubes 14 are formed.

この下部ヨーク9が形成された基板8上には絶縁層15
を介してN 1−Fe、 N i −Co等よりなるM
R,4子10が形成されており、このMR素子10は7
−プ1′f4動而7aと略平行に形成されている。更に
MR素子10上には絶縁層16を介して複数の薄膜磁石
11がMR素子10の延在方向に対して直交する磁化方
向を有するよう形成されている。この簿膜磁石11はフ
ォトリソグラフィ技術を用いて複数個を一括的に形成さ
れており、各薄膜磁石11は+1秋のパターンでMR素
了10を横架づるよう、また略等間隔となるよう形成さ
れている。更に各簿膜磁石11の磁化方向は第1図に承
りように令ζ等しい方向とイする。よう(1°4成され
ている。このa9膜磁石111には絶縁層17を介して
パーマロイ、センゲス1〜.アtルノフフス等よりなる
上部ヨーク13が形成されている。なJ3上記絶縁層1
5.16はギX・ツブHとして開法し、]−り半休9a
と上部ヨーク13は絶縁層15゜16を挾んで対向配設
され磁気ギャップ′18(以下この磁気ギャップをフロ
ント・ギャップという)を形成づる。
An insulating layer 15 is formed on the substrate 8 on which the lower yoke 9 is formed.
M consisting of N 1-Fe, N i -Co, etc.
R, 4 elements 10 are formed, and this MR element 10 has 7
- 1'f4 is formed substantially parallel to the moving member 7a. Furthermore, a plurality of thin film magnets 11 are formed on the MR element 10 with an insulating layer 16 interposed therebetween so as to have a magnetization direction perpendicular to the direction in which the MR element 10 extends. A plurality of thin film magnets 11 are formed at once using photolithography technology, and each thin film magnet 11 is arranged horizontally across the MR Soryo 10 in a +1 pattern, and at approximately equal intervals. It is formed. Further, the magnetization direction of each film magnet 11 is set to be in the same direction as shown in FIG. The A9 film magnet 111 is formed with an upper yoke 13 made of permalloy, Senges 1-.
5.16 was opened as Gi
and upper yoke 13 are disposed opposite to each other with insulating layers 15 and 16 in between, forming a magnetic gap '18 (hereinafter this magnetic gap will be referred to as a front gap).

上記構成のMRヘッド7においてテープ1fj動面7a
に磁気テープ19(第2図中一点鎖線ぐ示1j)が当接
しF動すると、磁気チー11つに記録されている信号磁
界はヨーク半体9aを介してMRA。
In the MR head 7 having the above configuration, the tape 1fj moving surface 7a
When the magnetic tape 19 (indicated by the dashed line 1j in FIG. 2) comes into contact with the magnetic tape 19 and moves F, the signal magnetic field recorded on the magnetic tape 11 is transferred to the MRA via the yoke half 9a.

子10に導かれる。MR素子10には薄膜磁石11によ
り均一にバイアス磁界が印加されてJVす(これについ
ては後に詳述する)、またMR素f10には予めセンス
電流が印加されているため、上記信号磁界によりMR素
子10は電気的抵抗値を変化さけ、これにより磁気テー
プ19の記録磁界に応じた再生信号を生成する。その復
信@W1’Eはヨーク半体9b、上部ヨーク13を介し
てフ[1ント・ギャップ18にやする閉磁路を形成する
。よってMRヘッド10は磁気チー71つの記録磁界に
対応して変化する再生信号をリード線12a。
Guided by child 10. A bias magnetic field is uniformly applied to the MR element 10 by the thin film magnet 11 to perform JV (this will be explained in detail later), and since a sense current has been applied to the MR element f10 in advance, the signal magnetic field causes MR The element 10 changes its electrical resistance value and thereby generates a reproduction signal according to the recording magnetic field of the magnetic tape 19. The return signal @W1'E forms a closed magnetic path through the yoke half 9b and the upper yoke 13 to the front gap 18. Therefore, the MR head 10 transmits a reproduction signal that changes in accordance with the recording magnetic field of the magnetic chip 71 to the lead wire 12a.

12bJ:り取出寸ことにより再生ヘッドとして機能り
る。
12bJ: Functions as a reproducing head depending on the extraction size.

ここで再びM R素子10上に絶縁層16を介して形成
された複数の薄膜磁石11に注目し、更に以下詳述する
。ト記したように薄膜磁石11は)A1〜リソグラフィ
技術を用いて一括的にMR4子10上に形成されてよタ
リ、その形状は杆状のパターンでM R素子10を横架
するよう、また各薄膜磁石11の間隔が略等間隔となる
よう形成されている。従って薄膜磁石11はMR索子1
0の全体にロリ略均−のバイアス磁界を印加することが
でさ、M RA;子10の再生効率を向PざUることが
できる。すなわ15バイアス磁界がMR累子10に対し
均一に印加されていない場合、バイアス磁界によるMR
索r10内の磁化の747;↑りの向きに部分的にバラ
ツキが生じてしまい、印加される13号磁界に対応した
線形的な磁電変換が行なえなく Qり再生効率の低下が
生ずるが、薄II9磁石11を上記構成とすることによ
り〜IRi子10に均一なバイアス磁界を印加すること
ができ、M R木子10は信悶磁Wの変化に対応して良
好な再生信号を生成することができ、従って再生効率を
向上させることができる。また各薄1漠磁石11【まフ
4]・リソグラフィ技術を用い、一連のMRヘッド10
のM造工程において一括的に形成されるため、特にMR
ヘッド10の製造工程を複雑にりるようなことtよなく
製品コストを低減することができる。、史に各薄膜磁石
11は小なる形状て゛あるためM Rヘッド10の小望
化をb実現りることがでさ゛る。
Here, attention will again be paid to the plurality of thin film magnets 11 formed on the MR element 10 with the insulating layer 16 interposed therebetween, and will be further described in detail below. As mentioned above, the thin film magnet 11 is formed all at once on the MR element 10 using lithography technology, and its shape is a rod-like pattern so as to cross the MR element 10. The thin film magnets 11 are formed at substantially equal intervals. Therefore, the thin film magnet 11 is
By applying a substantially uniform bias magnetic field to the entire MRA element 10, the reproduction efficiency of the MRA element 10 can be improved. In other words, if the 15 bias magnetic field is not uniformly applied to the MR resistor 10, the MR due to the bias magnetic field
Partial variations occur in the 747;↑ direction of the magnetization within the cable r10, making it impossible to perform linear magnetoelectric conversion corresponding to the applied No. 13 magnetic field, resulting in a decrease in Q regeneration efficiency. By configuring the II9 magnet 11 as described above, a uniform bias magnetic field can be applied to the IRi element 10, and the MR element 10 can generate a good reproduction signal in response to changes in the magnetic field W. Therefore, the regeneration efficiency can be improved. In addition, each thin magnet 11 [muff 4] is used to create a series of MR heads 10 using lithography technology.
Since it is formed all at once in the M manufacturing process, especially MR
Product costs can be reduced without complicating the manufacturing process of the head 10. Historically, since each thin film magnet 11 has a small shape, it has been difficult to reduce the diameter of the MR head 10.

第3図及び第4図に本発明になるMRヘッドの第2実施
例を示す。なd3第4図は第3図にJハJるB−B線に
沿う断面を示しており、また第1実施例と同一構成につ
いては同一符号を付してその説明を省略1Jる。両図に
示づMRヘッド20iま各薄膜磁石21を〜I尺累子1
0の延在方向(M R素子10の長手方向)に対して斜
めに配設形成したことを14徴どする。各a9膜磁石2
1を斜めに配設4ることに、」、すM Ri了10はそ
の幅方向にバイアス磁界を印加されるど同時に、その長
子方向に対しでしバイアス1d界を印加されることとな
る。これにより従来のM RX子10の幅方向のみにバ
イアス磁界を印加づる構成のようにMRA子10の磁化
容易軸をCt *に傾ける場合と異(7す、MR素?1
0は長手方向への磁界ら印加されるため、MRメ・j子
10内の磁壁が急激に移動するようなこと【よイヱくイ
fり各磁区の磁壁は安定し函撃竹のバルクハウゼン・ノ
イズの発生を防止することができる。
3 and 4 show a second embodiment of the MR head according to the present invention. Figure 4 shows a cross section taken along the line B--B in Figure 3, and the same components as in the first embodiment are designated by the same reference numerals and their explanations will be omitted. The MR head 20i shown in both figures has each thin film magnet 21
14 that the MR element 10 is arranged and formed obliquely to the extending direction of the MR element 10 (longitudinal direction of the MR element 10). Each a9 film magnet 2
1 is disposed diagonally, a bias magnetic field is applied to the magnetic field 10 in its width direction, and at the same time, a bias magnetic field 1d is applied to its longitudinal direction. This is different from the case where the axis of easy magnetization of the MRA element 10 is tilted toward Ct*, as in the conventional configuration in which a bias magnetic field is applied only in the width direction of the MRX element 10 (7th, MR element 1).
Since a magnetic field is applied in the longitudinal direction, the domain wall in the MR module 10 will suddenly move. - Noise generation can be prevented.

、1だト記バルクハウゼン・ノイズを防1tLl!7る
各簿膜磁石21のMRR子10の延在方向に対する角亀
は略45°が望ましいが、これに限るものではなく30
°〜60°の角度範囲にてバルクハウぜン・ノイズの防
止に効果がある。よってMRヘッド20を上記構成とす
ることにより再生信号にノイズが混入することはなくな
り、良好な百l+ f8号を1!7ることができる。な
おMRヘッド20を上記構成としてす、MRR子10の
全体に均一4iバイアス頑Vl!が印加され、回生効率
を向L L ’lワることは勿論である。
, 1tLl to prevent Barkhausen noise! It is preferable that the angle angle of each film magnet 21 with respect to the extending direction of the MRR element 10 is approximately 45 degrees, but is not limited to this.
It is effective in preventing Barkhausen noise in the angle range of ° to 60 °. Therefore, by configuring the MR head 20 as described above, noise will not be mixed into the reproduced signal, and a good 100l+f8 signal can be obtained by 1!7. If the MR head 20 is configured as described above, the entire MRR element 10 has a uniform 4i bias Vl! It goes without saying that the regeneration efficiency is greatly affected by the application of L L 'l.

第5図に本発明になるMRヘッドの第3実施例を示づ。FIG. 5 shows a third embodiment of the MR head according to the present invention.

なお第2実施例で示したMRヘッド20と同一構成につ
いては同一符号をイN]シてぞの説明を省略する。同図
に示tMRヘッド22はMRR子10上に、このMR累
丁子10電気的に導通さUて複数の薄膜磁石23をMR
累丁子10延合方向に対し斜めに配設形成したことを特
徴どする。
Note that the same components as the MR head 20 shown in the second embodiment are denoted by the same reference numerals, and the explanation thereof will be omitted. The MR head 22 shown in FIG.
It is characterized in that the stacked cloves 10 are arranged and formed obliquely with respect to the extending direction.

この薄膜磁石23は例えばCoを1体とする心電性合金
よりなる硬la竹模であり、MRR子10上に直接形成
され、M R素子10と電気的に接続されている。また
各薄膜磁石23は第6図に拡大して示1如く、MRR子
10の延在方向に対して所定角度(約30°〜60°)
傾むけて形成されている。F記構成のMRヘッド22で
は、薄膜磁石23がMRR子10の延在方向に対して斜
めに形成されているため、第2実施例で説明したように
バイアスIa’/7がM R素子10の幅方向及び長手
方向の両方向に印加されるため、MR1子10内の磁区
及びその磁壁が安定しバルクハウゼン・ノイズの発生を
防止することができる。また導電性を有する薄膜磁石2
3はMRR子10と電気的に接続され、かつMRR子1
0の延在方向に対し斜めに形成されでいるため、MRヘ
ッド22は、いわゆるバーバーポールJ%QのMRヘッ
ドと等しい機能を秦Jる。づなわらリード線12a、1
2bを流れるセンス電流■(第6図矢印で示寸)の流れ
は、導電性を右1JるAり膜磁石23の存(1に」:す
、各隣り合う薄膜磁?Ei23間においては第6図中矢
印1【〕で示り如く、薄膜磁石23の延在方向にス・1
し又直交1する方向に流れる。この7Fi流1oの流れ
方向は、M R素子10の磁化容易軸方向(仮に薄膜磁
石23が磁界を発生しないと仮定した場合には薄膜磁石
23の延在方向)に対し所定角度傾いているため、MR
R子10にバイアス磁界を印加した状態と雪山の状態を
MR系T−10十に実現することができる。よってMR
ヘッド22では簿膜磁石23の右する遇Wによるバイア
ス磁界と、バーバーポール)りとしてのバイアス作用が
併わぜてMRR子10にス・jするバイアス効果として
奇ム)することに<Eる。従って簿膜磁石23の形状を
小とし、かつ磁Wの強さを小とできるためMRヘッド2
2の小型化を図れると共にバイアス磁界の外部への漏れ
を少なくでき、磁気チー71つに記録された信号磁界が
)門人されてしまう等の磁気チー119に対する悪彩り
テを除去することができる。
The thin film magnet 23 is, for example, a hard laminated bamboo pattern made of a cardioelectric alloy containing Co as a constituent, and is formed directly on the MRR element 10 and electrically connected to the MR element 10. Further, each thin film magnet 23 is arranged at a predetermined angle (approximately 30° to 60°) with respect to the extending direction of the MRR element 10, as shown in an enlarged view in FIG.
It is formed at an angle. In the MR head 22 having the configuration F, since the thin film magnet 23 is formed obliquely to the extending direction of the MRR element 10, the bias Ia'/7 is applied to the MR element 10 as described in the second embodiment. Since the voltage is applied in both the width direction and the longitudinal direction, the magnetic domains and their domain walls within the MR element 10 are stabilized, and Barkhausen noise can be prevented from occurring. In addition, a thin film magnet 2 having conductivity
3 is electrically connected to the MRR element 10, and
Since the MR head 22 is formed obliquely to the extending direction of the barber pole, the MR head 22 has the same function as a so-called barber pole MR head. Zunawara lead wire 12a, 1
The sense current (dimensions indicated by arrows in Fig. 6) flowing through 2b is the same as the conductivity of the A film magnets 23 (1 J), and the current between each adjacent thin film magnet Ei 23 is 1 J. 6. As shown by the arrow 1 [ ] in Figure 6, the strip 1 is placed in the direction in which the thin film magnet 23 extends.
It also flows in the perpendicular direction. The flow direction of this 7Fi flow 1o is inclined at a predetermined angle with respect to the easy magnetization axis direction of the MR element 10 (the direction in which the thin film magnet 23 extends if it is assumed that the thin film magnet 23 does not generate a magnetic field). , M.R.
A state in which a bias magnetic field is applied to the R element 10 and a state in a snowy mountain can be realized in the MR system T-10. Therefore, MR
In the head 22, the bias magnetic field due to the force W of the film magnet 23 and the bias action of the barber pole combine to create a bias effect on the MRR element 10. . Therefore, since the shape of the film magnet 23 can be made small and the strength of the magnetic W can be made small, the MR head 2
It is possible to reduce the size of the magnetic chip 2, reduce leakage of the bias magnetic field to the outside, and eliminate negative effects on the magnetic chip 119, such as the signal magnetic field recorded in one magnetic chip 7 being tampered with.

な()3上記各実施例によるMRヘッド7.20゜22
によれば、従来のバイアス線を用いたバイアス印加1段
と譬なり、バイアス線にバイアス電流を印加する構成は
不用となり、M Rヘッド7゜20.22の構成を簡単
に、かつ小型化11ることができ、製品」ス1〜を低減
させることができる。
()3 MR head according to each of the above embodiments 7.20°22
According to 11, the configuration of applying a bias current to the bias line is no longer necessary, and the configuration of the MR head 7°20.22 can be simplified and miniaturized. It is possible to reduce the product cost.

発明の効果 ト述の如く本発明になるMRヘッドによれば、fVIR
i子にバイアス磁界を印加Jるために形状の人なる磁石
やバイアス線及びバイアス線に電流を供給りる手段を設
りる必要【まなくなり、MRヘッドの+j、l j+H
を簡単にでさivl Rヘッドの小型化及びコス1〜の
低減をb <’=い得、また複数の薄膜磁石はフxl〜
リソグラフィ技術四を用いて一括的に形成されるためそ
の形成工程にJ3いて回動を01うちので(よなく、こ
れに加え’Cii? I漠磁石はM1マZ・8了上に複
数配設されろためMR木子全体に百りバイアス磁Wを均
一に印加づることができ再生効率の向]及び安定した再
牛信舅を生成することができ、また薄膜磁石をMRん了
の延イ1方向に対して斜めに形成づることにより、MR
ん子内の磁区及び磁壁のヤ動は安定したしのとなり衝撃
性のバルクハウピン・ノイズの光([を防11−シ青、
更には薄膜磁すをM R素子と電気的に導通させTm’
 M R素子の延在方向に斜めに形成することにより、
上記のようにバルクハウピン・ノイズを防止Cきると共
にfVIRヘッドをいわゆるバーバーポール型のMRヘ
ッドとしても機能させることができ、MR水素子はバー
バーポール型によるセルフバイアスと、薄膜磁石が有り
゛る磁界によるバイアス磁界が償わせて働くことと/、
1つ、薄膜16石の磁界の強さ及び形状を小とげること
がでさ、バイアス磁Wの漏れ磁界(ごよる記録媒体への
:!!i !ご響を軽減゛Cきると1いこM Rヘッド
の小型化をも実現できろ雪の精良をイー1−する。
Effects of the Invention As described above, according to the MR head of the present invention, fVIR
In order to apply a bias magnetic field to the MR head, it is necessary to provide a shaped magnet, a bias line, and a means for supplying current to the bias line.
It is easy to miniaturize the ivl R head and reduce the cost by 1, and multiple thin film magnets can be
Since it is formed all at once using lithography technology 4, there is no rotation during the formation process (in addition to this, multiple magnets are placed on the M1 ma Z 8). Therefore, it is possible to uniformly apply a bias magnet W to the entire MR magnet, which increases the regeneration efficiency and generates stable regeneration. By forming it obliquely to the direction, MR
The magnetic domains and domain walls in the cell are in a stable state, and the impulsive Barkhausin noise light ([11-shi blue,
Furthermore, the thin film magnet is electrically connected to the M R element to obtain Tm'
By forming the M R element obliquely in the extending direction,
As mentioned above, Barkhausin noise can be prevented and the fVIR head can also function as a so-called barber-pole type MR head, and the MR hydrogen element is generated by the self-bias due to the barber-pole type and the magnetic field provided by the thin-film magnet. The bias magnetic field works to compensate and/
First, it is possible to reduce the strength and shape of the magnetic field of the thin film 16 magnets, which reduces the leakage magnetic field of the bias magnet W (the impact on the recording medium). If the head can be made smaller, it will improve the quality of the snow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になるMRヘッドの第一実施例の゛11
而図面第2図は第1図にa3 LJる△−八へに沿う断
面図、第3図は本発明になるM Rヘッドの第2実施例
の平面図、第4図は第3図にお(]る13−B線に沿う
断面図、第5図は本発明になるMRヘッドの第3実施例
の所面図、第6図は第5図に示ずMRヘッドのM R素
子及び薄膜礒石近傍部分をDム大して示y茫部構成図、
第7図〜′;l510図は従来のMRヘッドにおUるバ
イアス磁界の印加手段を人々説明するための要部構成図
である。 7.20.22・・・MRヘッド、8・・・基板、9・
・・下部ヨーク、9a、9b−a−り16体、10−M
R水素子11.21.23・・・薄膜磁石、13・・・
1部ヨーク、14・・・センリー・ギャップ、15゜1
6.17・・・絶縁層、18・・・フロン1〜・ギャッ
プ、19・・・磁気テープ。 特許出願人 日本ビクター株式会社 第6図
FIG. 1 shows the first embodiment of the MR head according to the present invention.
Figure 2 is a sectional view taken along the line a3LJ to △-8 in Figure 1, Figure 3 is a plan view of the second embodiment of the MR head according to the present invention, and Figure 4 is the same as Figure 3. 5 is a top view of the third embodiment of the MR head according to the present invention, and FIG. 6 is a cross-sectional view taken along line 13-B of the MR head, and FIG. A diagram showing the structure of the thin film shoganite in the vicinity of the thin film,
FIGS. 7-'; FIG. 1510 is a diagram showing the main part of a conventional MR head for explaining a means for applying a bias magnetic field. 7.20.22... MR head, 8... Board, 9...
・Lower yoke, 9a, 9b-a-ri 16 pieces, 10-M
R hydrogen element 11.21.23...thin film magnet, 13...
Part 1 Yoke, 14...Senry Gap, 15゜1
6.17... Insulating layer, 18... Freon 1~.Gap, 19... Magnetic tape. Patent applicant: Victor Japan Co., Ltd. Figure 6

Claims (5)

【特許請求の範囲】[Claims] (1)磁気抵抗効果素子上に複数の薄膜磁石を形成して
なることを特徴とする磁気抵抗効果型磁気ヘッド。
(1) A magnetoresistive magnetic head characterized by forming a plurality of thin film magnets on a magnetoresistive element.
(2)磁気抵抗効果素子上に絶縁体を介して複数の薄膜
磁石を該磁気抵抗効果素子の延在方向に対して斜めに形
成してなることを特徴とする磁気抵抗効果型磁気ヘッド
(2) A magnetoresistive magnetic head characterized in that a plurality of thin film magnets are formed on a magnetoresistive element with an insulator interposed therebetween, obliquely to the direction in which the magnetoresistive element extends.
(3)該薄膜磁石の該磁気抵抗効果素子の延在方向に対
する角度は30°〜60°であることを特徴とする特許
請求の範囲第2項記載の磁気抵抗効果型磁気ヘッド。
(3) The magnetoresistive magnetic head according to claim 2, wherein the angle of the thin film magnet with respect to the extending direction of the magnetoresistive element is 30° to 60°.
(4)磁気抵抗効果素子上に該磁気抵抗効果素子と電気
的に導通させて複数の薄膜磁石を該磁気抵抗効果素子の
延在方向に対して斜めに形成してなることを特徴とする
磁気抵抗効果型磁気ヘッド。
(4) Magnetism characterized by forming a plurality of thin film magnets on a magnetoresistive element and electrically connected to the magnetoresistive element and obliquely with respect to the extending direction of the magnetoresistive element. Resistance effect magnetic head.
(5)該薄膜磁石の該磁気抵抗効果素子の延在方向に対
する角度は30°〜60°であることを特徴とする特許
請求の範囲第4項記載の磁気抵抗効果型磁気ヘッド。
(5) The magnetoresistive magnetic head according to claim 4, wherein the angle of the thin film magnet with respect to the extending direction of the magnetoresistive element is 30° to 60°.
JP27743585A 1985-12-10 1985-12-10 Magnet-resistance effect type magnetic head Pending JPS62137713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27743585A JPS62137713A (en) 1985-12-10 1985-12-10 Magnet-resistance effect type magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27743585A JPS62137713A (en) 1985-12-10 1985-12-10 Magnet-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPS62137713A true JPS62137713A (en) 1987-06-20

Family

ID=17583520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27743585A Pending JPS62137713A (en) 1985-12-10 1985-12-10 Magnet-resistance effect type magnetic head

Country Status (1)

Country Link
JP (1) JPS62137713A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972284A (en) * 1989-01-03 1990-11-20 Eastman Kodak Company Deposited permanent magnet for hard and easy axes biasing of a magnetoresistive head
EP0534791A2 (en) * 1991-09-27 1993-03-31 Sharp Kabushiki Kaisha Magnetoresistance effect type thin film magnetic head
EP0582342A1 (en) * 1992-08-06 1994-02-09 Koninklijke Philips Electronics N.V. Magnetic head having a multilayer structure and method of manufacturing the magnetic head
US5736060A (en) * 1992-08-25 1998-04-07 Seagate Technology, Inc. Read sensitivity MR head using permanent magnet longitudinal stabilization
JP2015513672A (en) * 2012-03-14 2015-05-14 アナログ・デバイシズ・インコーポレーテッド Sensor and sensor manufacturing method
EP4036996A4 (en) * 2019-09-26 2023-10-18 TDK Corporation Magnetic sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972284A (en) * 1989-01-03 1990-11-20 Eastman Kodak Company Deposited permanent magnet for hard and easy axes biasing of a magnetoresistive head
EP0534791A2 (en) * 1991-09-27 1993-03-31 Sharp Kabushiki Kaisha Magnetoresistance effect type thin film magnetic head
US5402292A (en) * 1991-09-27 1995-03-28 Sharp Kabushiki Kaisha Magnetoresistance effect type thin film magnetic head using high coercion films
EP0582342A1 (en) * 1992-08-06 1994-02-09 Koninklijke Philips Electronics N.V. Magnetic head having a multilayer structure and method of manufacturing the magnetic head
US5736060A (en) * 1992-08-25 1998-04-07 Seagate Technology, Inc. Read sensitivity MR head using permanent magnet longitudinal stabilization
US5737155A (en) * 1992-08-25 1998-04-07 Seagate Technology, Inc. Read sensitivity MR head using permanent magnet longitudinal stabilization
JP2015513672A (en) * 2012-03-14 2015-05-14 アナログ・デバイシズ・インコーポレーテッド Sensor and sensor manufacturing method
US9817087B2 (en) 2012-03-14 2017-11-14 Analog Devices, Inc. Sensor with magnetroesitive and/or thin film element abutting shorting bars and a method of manufacture thereof
EP4036996A4 (en) * 2019-09-26 2023-10-18 TDK Corporation Magnetic sensor
US11808827B2 (en) 2019-09-26 2023-11-07 Tdk Corporation Magnetic sensor

Similar Documents

Publication Publication Date Title
US6791807B1 (en) Spin-valve magnetic transducing element and magnetic head having free layer with negative magnetostriction
US5084794A (en) Shorted dual element magnetoresistive reproduce head exhibiting high density signal amplification
US5402292A (en) Magnetoresistance effect type thin film magnetic head using high coercion films
JP2563597B2 (en) Composite thin film magnetic head
US5638235A (en) Magnetic storage system with canted hardbias magnetoresistive head
US5491606A (en) Planar magnetoresistive head with an improved gap structure
JPS62137713A (en) Magnet-resistance effect type magnetic head
JPH07192227A (en) Magneto-resistance effect type magnetic head
US5792546A (en) Magneto-resistive head and method of producing the same
US5790351A (en) Magnetoresistive head with conductive underlayer
JPS58166527A (en) Magnetoresistance effect head
JPH0441415B2 (en)
JP2785413B2 (en) Magnetoresistive thin film head
JP2863552B2 (en) Thin-film magnetic head and recording / reproducing apparatus using this thin-film magnetic head
JP2982841B2 (en) Composite type thin film magnetic head
JP3040892B2 (en) Magnetoresistive thin film magnetic head
JPS58220240A (en) Magneto-resistance effect type magnetic head
JP3606988B2 (en) Magnetoresistive head
JPH0554340A (en) Composite magnetic head
JPH0562131A (en) Composite magnetic head
JPS63293714A (en) York type magneto-resistance effect head
JPH0572642B2 (en)
JPH05143937A (en) Magneto-resistance effect type head
JPS59168917A (en) Magneto-resistance effect type magnetic head
JPH0757222A (en) Magneto-resistance effect type magnetic head