JPS63224016A - Thin film magnetic head and production thereof - Google Patents

Thin film magnetic head and production thereof

Info

Publication number
JPS63224016A
JPS63224016A JP5803887A JP5803887A JPS63224016A JP S63224016 A JPS63224016 A JP S63224016A JP 5803887 A JP5803887 A JP 5803887A JP 5803887 A JP5803887 A JP 5803887A JP S63224016 A JPS63224016 A JP S63224016A
Authority
JP
Japan
Prior art keywords
thin film
yoke
magnetic
film
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5803887A
Other languages
Japanese (ja)
Inventor
Takao Maruyama
丸山 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5803887A priority Critical patent/JPS63224016A/en
Publication of JPS63224016A publication Critical patent/JPS63224016A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3176Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps
    • G11B5/3179Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes
    • G11B5/3183Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes intersecting the gap plane, e.g. "horizontal head structure"

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To attain high track density by regulating track width according to the film thickness of a yoke formed circularly on a plane. CONSTITUTION:Track width is regulated according to the thickness of a soft magnetic thin film acting as a yoke 10 formed circularly on a plane. Since high track density is attained by reducing the thickness of the soft magnetic thin film, it is made unnecessary to narrow a thin film pattern 6 for an upper or lower magnetic layer by etching. Accordingly, the reduction of electromagnetic conversion efficiency, the fluctuation of regeneration wave-form and the production of strain due to the disorder of the magnetic domain structure of the thin film pattern 6 caused by reducing track width are avoided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気ディスク装置、磁気テープ装置等に使用さ
れる、集積化薄膜技術を用いて作製される薄膜磁気ヘッ
ドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film magnetic head manufactured using integrated thin film technology and used in magnetic disk devices, magnetic tape devices, etc.

(従来の技術) 近年磁気記録の分野においては、高記録密度化が増々進
み記録媒体と共に磁気記録を支える磁気ヘッドにおいて
も、前述の高記録密度化に対応することが強く求められ
ており、従来のフェライトヘッドにかわり、集積化薄膜
技術を用いて製造される薄膜磁気ヘッドが実用化されて
きた。
(Prior Art) In recent years, in the field of magnetic recording, recording densities have been increasing rapidly, and there is a strong demand for magnetic heads that support magnetic recording as well as recording media to correspond to the above-mentioned higher recording densities. Thin film magnetic heads manufactured using integrated thin film technology have been put into practical use in place of the ferrite heads.

第2図はこの様な薄膜磁気ヘッドの概略構造を示す斜視
図である。第2図においてAl2O3−TiC等のセラ
ミックスよりなる基板(図示せず)上に軟磁性薄膜、例
えばNiFe合金あるいはCo−金属系非晶質膜よりな
る下部磁性体層1が形成され、ついで所定のギャップ長
(GL)に相当する膜厚の酸化硅素等からなる非磁性層
(図示せず)がスパッタ法等で成膜される。その後、C
u、Au等の導電性材料よりなるコイル2、及、び絶縁
層と段差解消層の機能を合わせ持つ有機物層3が形成さ
れる。更に、前記コイル2と有機物層3を挟み込むよう
に、下部磁性体層1と同様の軟磁性材料を用いて、上部
磁性体層4が形成され、又コイル2と回路系を接続する
端子5が形成されて薄膜磁気ヘッドが構成されている。
FIG. 2 is a perspective view showing the schematic structure of such a thin film magnetic head. In FIG. 2, a lower magnetic layer 1 made of a soft magnetic thin film, for example, a NiFe alloy or a Co-metal amorphous film, is formed on a substrate (not shown) made of ceramics such as Al2O3-TiC, and then a predetermined layer is formed. A nonmagnetic layer (not shown) made of silicon oxide or the like having a thickness corresponding to the gap length (GL) is formed by sputtering or the like. After that, C
A coil 2 made of a conductive material such as U or Au, and an organic layer 3 having both the functions of an insulating layer and a step eliminating layer are formed. Furthermore, an upper magnetic layer 4 is formed using the same soft magnetic material as the lower magnetic layer 1 so as to sandwich the coil 2 and the organic layer 3, and a terminal 5 for connecting the coil 2 and the circuit system is formed. A thin film magnetic head is formed by forming a thin film magnetic head.

以上述べてきた様な薄膜磁気ヘッドは、従来のフェライ
トヘッドに較ベコイルのインダクタンスが小さく、従っ
て、共振周波数が高くなり高記録密度化に適している。
The thin film magnetic head as described above has a smaller coil inductance than a conventional ferrite head, and therefore has a higher resonance frequency, making it suitable for higher recording densities.

また、薄膜磁気ヘッドは集積化薄膜技術を用いて製造さ
れるため、下部磁性体層1を始めとする薄膜磁気ヘッド
の各部が高精度に加工され、しかも量産性に優れている
為低価格化に有利であるなど、多くの利点を有している
In addition, since thin-film magnetic heads are manufactured using integrated thin-film technology, each part of the thin-film magnetic head, including the lower magnetic layer 1, is processed with high precision, and it is also excellent in mass production, resulting in lower costs. It has many advantages, such as being advantageous for

更に、上部磁性体層4あるいは下部磁性体層1をなす軟
磁性薄膜は、NiFe合金、センダスト、Co−金属系
非晶質膜等から形成されるのが通常でこれらの材料は、
フェライトに比較して、地利磁化が大きく、且つ又高周
波での透磁率が高い為、材料的にみても高記録密度に適
した磁気ヘッドと言える。
Further, the soft magnetic thin film forming the upper magnetic layer 4 or the lower magnetic layer 1 is usually formed from NiFe alloy, sendust, Co-metallic amorphous film, etc.
Compared to ferrite, it has a larger geomagnetization and a higher magnetic permeability at high frequencies, so it can be said to be a magnetic head suitable for high recording density from a material standpoint.

(発明が解決しようとする問題点) しかしなから第2図に示した如き薄膜磁気ヘッドにおい
ては、以下に述べるように高記録密度化、特に高トラツ
ク密度化を達成する際に大きな問題点があった。
(Problems to be Solved by the Invention) However, in the thin film magnetic head shown in FIG. 2, there are major problems in achieving high recording density, especially high track density, as described below. there were.

すなわち、第2図に示した従来の薄膜磁気ヘッドにおい
ては、トラック幅は下部磁性体層1及び上部磁性体層4
を成す軟磁性体パターンのパターン幅TWで規定される
。この為、高トラツク密度化は、前記下部磁性体層1及
び上部磁性体層4のパターン幅TWを、例えばArガス
雰囲気中のイオンエツチング加工により狭めることによ
って実現される。しかし、パターン幅TWを例えば10
μm以下に加工すると、上部磁性体層4及び下部磁性体
層1をなす軟磁性体薄膜パターンの磁区構造が乱れ、ヘ
ッドの電極変換効率の低下あるいは再生波形の変動・歪
みが生じるという大きな欠点があった。すなわち、パタ
ーン幅TWが大きな場合には、上部磁性体層4あるいは
下部磁性体層1となる軟磁性薄膜パターン6の磁区構造
は、第3図(a)に示したような構造を示し、磁化方向
7は軟磁性薄膜に成膜時に付与された磁気異方性の方向
(第3図(a)では左右方向)とほぼ一致しており、磁
化反転は主として磁化回転モードで行われ、高周波特性
が伸び雑音の少ない良好な電磁変換特性を示す。しかし
一方、高トラツク密度化を実現するため、パターン幅T
Wを狭めた場合(第3図(b))には、軟磁性薄膜パタ
ーン6の磁区構造は乱れ、特にパターンの先端部では磁
化方向7はパターンの形状効果の為、パターン方向と略
平行(第3図(b)では上下方向)となる。この為、磁
化の反転は、磁壁移動モードが主となとり、透磁率、特
に高周波領域での透磁率が激減し、電極変換効率が低下
するという問題点があった。更に、磁化反転に伴う磁壁
8の不規則な動きの為、再生波形の変動・歪みが生じ、
この点についても大きな問題となっていた。
That is, in the conventional thin film magnetic head shown in FIG. 2, the track width is
is defined by the pattern width TW of the soft magnetic material pattern. Therefore, increasing the track density is achieved by narrowing the pattern width TW of the lower magnetic layer 1 and the upper magnetic layer 4 by, for example, ion etching in an Ar gas atmosphere. However, the pattern width TW is, for example, 10
If processed to a size smaller than μm, the magnetic domain structure of the soft magnetic thin film patterns forming the upper magnetic layer 4 and the lower magnetic layer 1 will be disturbed, resulting in a major disadvantage of reducing the electrode conversion efficiency of the head or causing variations and distortions in the reproduced waveform. there were. That is, when the pattern width TW is large, the magnetic domain structure of the soft magnetic thin film pattern 6 that becomes the upper magnetic layer 4 or the lower magnetic layer 1 has a structure as shown in FIG. 3(a), and the magnetization Direction 7 almost coincides with the direction of magnetic anisotropy imparted to the soft magnetic thin film during film formation (left-right direction in Fig. 3(a)), and magnetization reversal is mainly performed in the magnetization rotation mode, resulting in high frequency characteristics. shows good electromagnetic conversion characteristics with low expansion noise. However, on the other hand, in order to achieve high track density, the pattern width T
When W is narrowed (FIG. 3(b)), the magnetic domain structure of the soft magnetic thin film pattern 6 is disturbed, and especially at the tip of the pattern, the magnetization direction 7 is approximately parallel to the pattern direction (due to the shape effect of the pattern). In FIG. 3(b), this is the vertical direction). For this reason, the reversal of magnetization is mainly caused by the domain wall displacement mode, resulting in a sharp decrease in magnetic permeability, particularly in the high frequency region, and a problem in that the electrode conversion efficiency decreases. Furthermore, due to the irregular movement of the domain wall 8 due to magnetization reversal, variations and distortions in the reproduced waveform occur.
This point was also a big problem.

さらに、従来の薄膜磁気ヘッドでは、トラック幅が狭く
なると、信号出力が低下するとともに記録にじみがトラ
ック幅に対して無視できなくなるの゛で、隣接トラック
からのクロストークの影響が大きくなり、信号対雑音比
が劣化するという本質的な問題を有しており、この問題
を解決する手段がなかった。
Furthermore, in conventional thin-film magnetic heads, when the track width becomes narrower, the signal output decreases and the recording blur becomes impossible to ignore with respect to the track width, so the influence of crosstalk from adjacent tracks increases, and the signal This has the essential problem of deterioration of the noise ratio, and there has been no means to solve this problem.

本発明は以上述べてきた従来の薄膜磁気ヘッドの諸欠点
を除去せしめて、高い電磁変換効率ど高トラック密度と
を有する新たな薄膜磁気ヘッドを提供することを目的と
するものである。
It is an object of the present invention to eliminate the various drawbacks of the conventional thin film magnetic heads described above and to provide a new thin film magnetic head having high electromagnetic conversion efficiency and high track density.

(問題点を解決する為の手段) 本発明によれば、所定のトラック幅と等しい膜厚を有し
、平面上で環状の磁気回路を形成する軟磁性薄膜よりな
るヨークと、磁気記録媒体対向面で前記ヨークに形成さ
れたギャップと、少なくと、前記ギャップ領域を含み、
前記ヨークを挟んで上下に積層された導電性金属薄膜よ
りなるシールドを備えた薄膜磁気ヘッド、および、前記
ヨークと前記下シールド、あるいは、前記ヨークと前記
上シールドの少なくとも何れか一方を連続して形成する
薄膜磁気ヘッドの製造方法が得られる。
(Means for Solving the Problems) According to the present invention, a yoke made of a soft magnetic thin film having a film thickness equal to a predetermined track width and forming an annular magnetic circuit on a plane, and a magnetic recording medium facing a gap formed in the yoke at a surface including at least the gap region;
a thin film magnetic head comprising a shield made of conductive metal thin films stacked vertically with the yoke in between; and at least one of the yoke and the lower shield, or the yoke and the upper shield, and A method for manufacturing a thin film magnetic head is obtained.

(作用) 本”発明による薄膜磁気ヘッドは、上述の構成をとるこ
とにより従来の問題点を解決した薄膜磁気ヘッドの提供
を可能とした。すなわち、本発明による薄膜磁気ヘッド
においては、平面上で環状に形成されたヨークとなる軟
磁性薄膜の膜厚でトラック幅が規定される・。つまり、
高トラツク密度化は前記軟磁性薄膜の膜厚を小さくする
ことで実現され、上部あるいは下部磁性体層をなす薄膜
パターンをエツチングにより狭めることが原理的に不要
である。従って、前述したトラック幅を狭めたことによ
る上部あるいは下部磁性体層をなす薄膜パターンの磁区
構造の乱れに基く電磁変換効率の低下や再生波形の変動
・歪みの発生が回避される。
(Function) The thin-film magnetic head according to the present invention has the above-mentioned configuration, thereby making it possible to provide a thin-film magnetic head that solves the conventional problems.In other words, in the thin-film magnetic head according to the present invention, The track width is determined by the thickness of the soft magnetic thin film that forms the annular yoke.In other words,
High track density is achieved by reducing the thickness of the soft magnetic thin film, and it is in principle unnecessary to narrow the thin film pattern forming the upper or lower magnetic layer by etching. Therefore, a decrease in electromagnetic conversion efficiency and fluctuations and distortions in the reproduced waveform due to disturbance of the magnetic domain structure of the thin film pattern forming the upper or lower magnetic layer due to the narrowing of the track width described above can be avoided.

また、本発明による薄膜磁気ヘッドは、ヨークを挟んで
上下に導電性金属薄膜よりなるシールドを備えている。
Further, the thin film magnetic head according to the present invention includes shields made of conductive metal thin films on the upper and lower sides of the yoke.

薄膜磁気ヘッドが発生する磁界成分のうち、隣接トラッ
ク方向成分はシールド面に対して垂直であるので、シー
ルド面内を流れる渦電流により、この方向の磁界変化は
大幅に抑制される:従って、記録再生時に、隣接トラッ
ク相互のクロストークを抑制することができる。
Among the magnetic field components generated by the thin-film magnetic head, the component in the direction of the adjacent track is perpendicular to the shield surface, so the eddy current flowing within the shield surface greatly suppresses changes in the magnetic field in this direction: Therefore, recording During playback, crosstalk between adjacent tracks can be suppressed.

さらに、このシールドは必ずしも軟磁性体である必要は
ない。従って、シールドとヨークが接してもシールドに
磁束の漏れがなく、ギャップ内の磁界強度を弱めること
がないため、シールドと1:、″。
Furthermore, this shield does not necessarily have to be a soft magnetic material. Therefore, even if the shield and yoke are in contact, there is no leakage of magnetic flux to the shield and the strength of the magnetic field within the gap is not weakened, so the shield and 1:,''.

・ク ヨークを連続的に形成できる。よって、シールドの付加
によって、ヘッドの構造や作製プロセスを繁雑化するこ
とがない。
・Can form yokes continuously. Therefore, the addition of the shield does not complicate the head structure or manufacturing process.

(実施例) 以下図面を用いて本発明を説明する。(Example) The present invention will be explained below using the drawings.

第1図(a)は本発明による薄膜磁気ヘッドの第一の実
施例を示す斜視図である。第1図(a)において、先ず
Al2O3−TiC基板(図示せず)上にスパッタ法で
5i02膜を約10pm成膜した。ついで下シールド9
として膜厚3pmのCu−Al合金膜と、ヨーク10と
して膜厚2μmのCog□Zr1O(重量比)膜をスパ
ッタ法で前記5i02膜上に連続成膜した。その際、C
oZr膜の磁気異方性が図のX方向、即ち、磁気記録媒
体から流入する信号磁束の方向とほぼ垂直になるよう、
一方向の磁界中で成膜した。本実施例の薄膜磁気ヘッド
のトラック幅は、CoZr膜の膜厚となるので2pmで
ある。
FIG. 1(a) is a perspective view showing a first embodiment of a thin film magnetic head according to the present invention. In FIG. 1(a), first, a 5i02 film was formed to a thickness of about 10 pm on an Al2O3-TiC substrate (not shown) by sputtering. Then lower shield 9
A Cu-Al alloy film with a thickness of 3 pm as the yoke 10 and a Cog□Zr1O (weight ratio) film with a thickness of 2 μm as the yoke 10 were successively formed on the 5i02 film by sputtering. At that time, C
The magnetic anisotropy of the oZr film is made almost perpendicular to the X direction in the figure, that is, the direction of the signal magnetic flux flowing from the magnetic recording medium.
The film was formed in a unidirectional magnetic field. The track width of the thin film magnetic head of this embodiment is 2 pm since it corresponds to the thickness of the CoZr film.

ついで、CoZr膜とCu−A1合金膜をイオンミリン
グによりエツチングし、下シールド9とヨーク10を形
成した。ここで、前記ヨーク10は、媒体対向面側に所
定のギャップ長に等しい間隙を有するように形成されて
いる。本実施例では、この間隙は0゜5pmとした。
Next, the CoZr film and the Cu--A1 alloy film were etched by ion milling to form the lower shield 9 and the yoke 10. Here, the yoke 10 is formed so as to have a gap equal to a predetermined gap length on the side facing the medium. In this example, this gap was set to 0°5 pm.

その後、基板全面にスパッタ法により5i02膜を成膜
し前記下シールド9及びヨーク10を埋め込んだ。つい
で、Arガス雰囲気中のエッチバックにより前記5i0
2膜を平坦化した。
Thereafter, a 5i02 film was formed on the entire surface of the substrate by sputtering, and the lower shield 9 and yoke 10 were buried therein. Then, the 5i0 was etched back in an Ar gas atmosphere.
2 films were flattened.

この平坦化工程の後、上シールド11として、膜厚3p
mのCu−A1合金をスパッタ法で成膜し、イオンミリ
ングによりエツチングしてパターンを形成した。次に、
NiBIFe1g合金よりなるMR素子12をヨーク1
0の媒体対向面とは反対側の各端部に形成した。MR素
子の膜厚は300オングストロームとし、成膜には蒸着
装置を使用した。又、該MR素子12にバイアスを印加
する硬質磁性膜としてCo7oPtao(i子比)膜を
同様にして成膜した。膜厚は450オングストロームで
ある。尚、このCoPt膜はMR素子上に積層して形成
されているが、図の煩雑さを避けるため図示していない
。このCoPt膜によりMR素子12はその磁化0方向
がMR素人セ中を流れる″′″″′電流1・二;ノ と同一方向の所定角度(本実施例では45°)を有する
ようにバイアスされた。
After this planarization step, a film with a thickness of 3p is formed as the upper shield 11.
A film of Cu-A1 alloy of m was formed by sputtering and etched by ion milling to form a pattern. next,
The MR element 12 made of NiBIFe1g alloy is attached to the yoke 1.
0 at each end opposite to the medium facing surface. The film thickness of the MR element was 300 angstroms, and a vapor deposition apparatus was used for film formation. Further, as a hard magnetic film for applying a bias to the MR element 12, a Co7oPtao (i-element ratio) film was formed in the same manner. The film thickness is 450 angstroms. Note that this CoPt film is formed in a layered manner on the MR element, but is not shown in the drawing to avoid complication of the drawing. With this CoPt film, the MR element 12 is biased so that its magnetization 0 direction has a predetermined angle (45° in this embodiment) in the same direction as the current ``'''''' flowing through the MR amateur cell. Ta.

その後、MR素子と回路系とを接続する導電性薄膜パタ
ーンよりなる端子5を形成した。使用した導体はAu薄
膜であり、その膜厚は3000オングストロームである
。ここで、MR素子を互いに電気的に接続する導電性薄
膜パターンには、Au薄膜からなる中間端子13が接続
された。
Thereafter, a terminal 5 made of a conductive thin film pattern was formed to connect the MR element and the circuit system. The conductor used was an Au thin film, and the film thickness was 3000 angstroms. Here, an intermediate terminal 13 made of an Au thin film was connected to the conductive thin film pattern that electrically connects the MR elements to each other.

さらに絶縁膜として5i02膜を3000オングストロ
ーム形成後、リターンヨーク14として、膜厚2pmの
Co9oZrto(重量比)膜をスパッタ方で成膜した
。その際、CoZr膜の磁気異方性が図のy方向、即ち
、磁気記録媒体から流入した信号磁束の通過方向と垂直
になるよう、一方向の磁界中で成膜した。以上のように
して薄膜磁気ヘッドのトランスデユーサ−を試作した。
Further, after forming a 5i02 film with a thickness of 3000 angstroms as an insulating film, a Co9oZrto (weight ratio) film with a thickness of 2 pm was formed as a return yoke 14 by sputtering. At that time, the film was formed in a unidirectional magnetic field so that the magnetic anisotropy of the CoZr film was perpendicular to the y direction in the figure, that is, the direction of passage of the signal magnetic flux flowing in from the magnetic recording medium. In the manner described above, a prototype thin-film magnetic head transducer was fabricated.

この本発明による第一の実施例による薄膜磁気ヘッドで
は、ヨークの膜厚を小さくすることでプロセス的に簡便
に高トラツク密度化が実現された。又、従来の薄膜磁気
ヘッドにおいて高トラツク密度化を実施した際に生じる
諸問題点、すなわち磁区構造の乱れに基ずく電磁変換効
率の低下や再生波形の変動・歪み等が全くみちれなかっ
た。
In the thin film magnetic head according to the first embodiment of the present invention, a high track density can be easily achieved in terms of process by reducing the film thickness of the yoke. Further, various problems that occur when high track density is implemented in conventional thin film magnetic heads, such as a decrease in electromagnetic conversion efficiency due to disorder of the magnetic domain structure and fluctuations and distortions in reproduced waveforms, have not been overlooked.

さらに、シールドがない場合に比較して、隣接トラック
からのクロストークが改善され、トラック幅2μmにも
かかわらず、良好な信号対雑音比が達成された。また、
シールドを付加したことによるプロセスの増加は、極く
僅かであった。
Furthermore, compared to the case without shielding, crosstalk from adjacent tracks was improved and a good signal-to-noise ratio was achieved despite the track width of 2 μm. Also,
The process increase due to the addition of the shield was minimal.

第1図(b)は本発明による薄膜磁気ヘッドの第2の実
施例を示す斜視図である。第1図(b)において、先ず
Al2O3−TiC基板(図示せず)上にスパッタ法で
5i02膜を約10μm成膜し、ついでメッキ法を用い
て膜厚1pmのCuメッキ膜からなる下コイル(図示せ
ず)を形成した。
FIG. 1(b) is a perspective view showing a second embodiment of the thin film magnetic head according to the present invention. In FIG. 1(b), first, a 5i02 film with a thickness of about 10 μm was formed on an Al2O3-TiC substrate (not shown) by sputtering, and then a lower coil made of a Cu plating film with a thickness of 1 pm was formed using a plating method. (not shown) was formed.

ついで、5i02膜絶縁層絶縁パッタ法により2000
オングストローム成膜後、まず、リターンヨーク14と
して、Co9ozr1o膜をスパッタ法により2ミクロ
ン成膜した。その後、CoZr膜の磁気異方性の方向が
、信号磁束の通過方向に対して垂直となるように、一方
向の磁界中で温度300度で焼鈍した。次に5i02絶
縁層を介して、下コイルと電気的連続性を損なわないよ
うにして膜厚1pmの上コイル15を形成し、併せてコ
イル用の端子5を接続した。
Then, a 2000° film was formed using a 5i02 film insulation layer insulation sputtering method.
After forming the angstrom film, first, as the return yoke 14, a 2 micron Co9ozr1o film was formed by sputtering. Thereafter, the CoZr film was annealed at a temperature of 300 degrees in a unidirectional magnetic field so that the direction of magnetic anisotropy was perpendicular to the direction in which the signal magnetic flux passed. Next, an upper coil 15 having a film thickness of 1 pm was formed via the 5i02 insulating layer so as not to impair electrical continuity with the lower coil, and the terminal 5 for the coil was also connected.

ここで、上コイル15の形成は下コイルと全く同一の方
法を用いた。
Here, the upper coil 15 was formed using exactly the same method as the lower coil.

さらに、下シールド9として厚さ211mの銅薄膜をス
パッタ法により成膜し、パターン化した後、ヨーク10
として厚さ2pmのCo9oZrto膜、および、上シ
ールド11として厚さ2pmのCu薄膜を、スパッタ法
により連続成膜した。その後、CoZr膜の磁気異方性
の方向が、磁気記録媒体より流入する信号磁束の方向に
対してほぼ垂直となるように温度250度で磁界中焼鈍
した。ついで、イオンミリングによるエツチングでヨー
ク10および上シールド11のパターンを形成した。以
上のようにして、薄膜磁気ヘッドのトランスデユーサ−
を試作した。
Furthermore, a thin copper film with a thickness of 211 m was formed as the lower shield 9 by sputtering and patterned, and then the yoke 10
A Co9oZrto film with a thickness of 2 pm as the upper shield 11 and a Cu thin film with a thickness of 2 pm as the upper shield 11 were successively formed by sputtering. Thereafter, the CoZr film was annealed in a magnetic field at a temperature of 250 degrees so that the direction of magnetic anisotropy was substantially perpendicular to the direction of the signal magnetic flux flowing in from the magnetic recording medium. Next, patterns for the yoke 10 and the upper shield 11 were formed by etching using ion milling. As described above, the transducer of the thin film magnetic head is
We made a prototype.

この本発明よる第2の実施例の薄膜磁気ヘッドでも、狭
トラツクでありながら、高周波で安定に記録再生を行う
ことができ、磁壁移動に起因する雑音は観察されなかっ
た。さらに、上下シールド9および11の作用により、
記録トラック幅はヨーク10の厚さに対して約1割増加
したのみであり、高トラツク密度記録が実現された。ま
た、上下シールド9および11を付加したことによるヘ
ッド作製プロセスの増加は、極く僅かであった。
Even with the thin film magnetic head of the second embodiment of the present invention, recording and reproducing could be performed stably at high frequencies despite having a narrow track, and no noise caused by domain wall movement was observed. Furthermore, due to the action of the upper and lower shields 9 and 11,
The recording track width was increased by only about 10% compared to the thickness of the yoke 10, and high track density recording was realized. Further, the increase in the head manufacturing process due to the addition of the upper and lower shields 9 and 11 was extremely small.

(発明の効果) 以上述べてきた様に、本発明による薄膜磁気ヘッドにお
いては、平面上で環状に形成されたヨークの膜厚でトラ
ック幅が規定されるため、高トラツク密度化が本質的に
容易であり、従来の薄膜磁気ヘッドにおいて高トラツク
密度化を実施した際に生じる、磁区構造の乱れに基ずく
電磁変換効率の低下や再生波形の変動・歪み等の問題点
が回避される。さらに、ギャップ部でヨークを挟んで上
下に積層されたシールドの作用により、隣接トラック相
互のクロストークが抑制されるため、高い信号対雑音比
が実現される。
(Effects of the Invention) As described above, in the thin film magnetic head according to the present invention, the track width is determined by the film thickness of the yoke formed in an annular shape on a plane, so high track density is essentially achieved. This is easy, and avoids problems such as a decrease in electromagnetic conversion efficiency and fluctuations and distortions in reproduced waveforms due to disturbances in the magnetic domain structure, which occur when high track density is implemented in conventional thin-film magnetic heads. Furthermore, crosstalk between adjacent tracks is suppressed by the action of the shields stacked vertically across the yoke in the gap, resulting in a high signal-to-noise ratio.

以上述べてきたように、本発明によれば、高い信号対雑
音比を持つ、高トラツク密度の薄膜磁気ヘッドが容易に
実現され、本発明の持つ工業的価値は高いと言える。
As described above, according to the present invention, a thin film magnetic head with a high signal-to-noise ratio and high track density can be easily realized, and it can be said that the present invention has high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜磁気ヘッドの実施例を示す斜
視図、第2図は従来例を示す斜視図、第3図は従来例の
問題点を説明するための平面図である。 図において、 1・・・下部磁性体層、2・・・コイル、3・・・有機
物層、4・・・上部磁性体層、5・・・端子、6・・・
軟磁性体薄膜パターン、7・・・磁化方向、8・・・磁
壁、9・・・下シールド、10・・・ヨーク、11・・
・上シールド、12・・・MR素子、13・・・中間端
子、14・・・リターンヨーク、16・・・上コイルで
ある。 第1図 第2図 5端子 第3図 (a) フ)
FIG. 1 is a perspective view showing an embodiment of a thin film magnetic head according to the present invention, FIG. 2 is a perspective view showing a conventional example, and FIG. 3 is a plan view for explaining problems in the conventional example. In the figure, 1... lower magnetic layer, 2... coil, 3... organic layer, 4... upper magnetic layer, 5... terminal, 6...
Soft magnetic thin film pattern, 7... Magnetization direction, 8... Domain wall, 9... Lower shield, 10... Yoke, 11...
・Upper shield, 12...MR element, 13...Intermediate terminal, 14...Return yoke, 16...Upper coil. Figure 1 Figure 2 5 terminal Figure 3 (a)

Claims (5)

【特許請求の範囲】[Claims] (1)所定のトラック幅と等しい膜厚を有し、平面上に
環状の磁気回路を形成する軟磁性薄膜よりなるヨークと
、磁気記録媒体との対向面で前記ヨークに形成されたギ
ャップと、少なくとも前記ギャップ領域を含み、前記ヨ
ークを挟んで上下に積層された導電性金属薄膜よりなる
シールドとを備えたことを特徴とする薄膜磁気ヘッド。
(1) a yoke made of a soft magnetic thin film having a film thickness equal to a predetermined track width and forming an annular magnetic circuit on a plane; and a gap formed in the yoke on the surface facing the magnetic recording medium; A thin film magnetic head comprising at least the gap region and a shield made of conductive metal thin films stacked vertically with the yoke in between.
(2)前記シールドが非磁性金属薄膜であることを特徴
とする特許請求の範囲第1項に記載の薄膜磁気ヘッド。
(2) The thin film magnetic head according to claim 1, wherein the shield is a nonmagnetic metal thin film.
(3)環状ヨークにコイルが巻かれていることを特徴と
する特許請求の範囲第1項に記載の薄膜磁気ヘッド。
(3) The thin film magnetic head according to claim 1, wherein a coil is wound around the annular yoke.
(4)環状ヨークの一部に磁気回路の連続性を損なうこ
となく、磁気抵抗効果素子が形成されていることを特徴
とする特許請求の範囲第1項に記載の薄膜磁気ヘッド。
(4) The thin film magnetic head according to claim 1, wherein a magnetoresistive element is formed in a part of the annular yoke without impairing the continuity of the magnetic circuit.
(5)所定のトラック幅と等しい膜厚を有し、平面上に
環状の磁気回路を形成する軟磁性薄膜パターンよりなる
ヨーク、磁気記録媒体との対向面で前記ヨークに形成さ
れたギャップ、および、少なくとも前記ギャップ領域を
含み、前記ヨークを挟んで上下に積層された導電性金属
薄膜パターンよりなるシールドを備えた薄膜磁気ヘッド
の製造方法であって、前記ヨークと前記下シールド、あ
るいは、前記ヨークと前記上シールドの、少なくとも何
れか一方を連続して形成することを特徴とする薄膜磁気
ヘッドの製造方法。
(5) a yoke made of a soft magnetic thin film pattern having a film thickness equal to a predetermined track width and forming an annular magnetic circuit on a plane; a gap formed in the yoke on the surface facing the magnetic recording medium; , a method for manufacturing a thin film magnetic head comprising at least the gap region and a shield made of conductive metal thin film patterns stacked above and below with the yoke in between, the yoke and the lower shield, or the yoke; A method of manufacturing a thin film magnetic head, comprising forming at least one of the upper shield and the upper shield continuously.
JP5803887A 1987-03-13 1987-03-13 Thin film magnetic head and production thereof Pending JPS63224016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5803887A JPS63224016A (en) 1987-03-13 1987-03-13 Thin film magnetic head and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5803887A JPS63224016A (en) 1987-03-13 1987-03-13 Thin film magnetic head and production thereof

Publications (1)

Publication Number Publication Date
JPS63224016A true JPS63224016A (en) 1988-09-19

Family

ID=13072762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5803887A Pending JPS63224016A (en) 1987-03-13 1987-03-13 Thin film magnetic head and production thereof

Country Status (1)

Country Link
JP (1) JPS63224016A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363912A (en) * 1989-08-02 1991-03-19 Hitachi Ltd Thin-film magnetic head and production thereof
JPH0487011A (en) * 1990-07-30 1992-03-19 Nec Corp Magneto-resistance effect head
EP0702357A3 (en) * 1994-09-16 1996-11-27 Toshiba Kk Magneto-resistance effect head and magnetic recording/reproducing head thereof
US6256171B1 (en) 1996-09-30 2001-07-03 Kabushiki Kaisha Toshiba Thin film magnetic head having an improved heat dispersion and magnetic recording apparatus using the same
US7317596B2 (en) 2005-06-21 2008-01-08 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording disk drive having read head with high cross-track resolution and disk with low bit-aspect-ratio
US8276257B2 (en) 2004-07-30 2012-10-02 Hitachi Global Storage Technologies Netherlands B.V. Method for making coplanar write head pole tips

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363912A (en) * 1989-08-02 1991-03-19 Hitachi Ltd Thin-film magnetic head and production thereof
JPH0487011A (en) * 1990-07-30 1992-03-19 Nec Corp Magneto-resistance effect head
EP0702357A3 (en) * 1994-09-16 1996-11-27 Toshiba Kk Magneto-resistance effect head and magnetic recording/reproducing head thereof
US6256171B1 (en) 1996-09-30 2001-07-03 Kabushiki Kaisha Toshiba Thin film magnetic head having an improved heat dispersion and magnetic recording apparatus using the same
US8276257B2 (en) 2004-07-30 2012-10-02 Hitachi Global Storage Technologies Netherlands B.V. Method for making coplanar write head pole tips
US7317596B2 (en) 2005-06-21 2008-01-08 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording disk drive having read head with high cross-track resolution and disk with low bit-aspect-ratio

Similar Documents

Publication Publication Date Title
US6266216B1 (en) Inductive/MR composite type thin-film magnetic head with NLTS reduction
KR100319035B1 (en) Thin film magnetic head and recording reproducing separate type magnetic head, and magnetic recording reproducing apparatus using them
EP0634739B1 (en) Magnetoresistance effect magnetic head and composite magnetic head
JPH0576682B2 (en)
JP3155234B2 (en) Thin film magnetic head and method of manufacturing the same
JPS63224016A (en) Thin film magnetic head and production thereof
JP2546875B2 (en) Magnetoresistive head
JPS63138512A (en) Thin film magnetic head and its production
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPH06195637A (en) Thin film magnetic head
JPS62114113A (en) Thin film magnetic head
JPH0498608A (en) Magnetic head
JP2001256617A (en) Thin-film magnetic head and method of manufacture
JP3177852B2 (en) Thin film magnetic head
JPS63129512A (en) Production of magnetoresistance effect type magnetic head
JP3210139B2 (en) Magnetoresistive magnetic head
JP2002208114A (en) Thin film magnetic head and manufacturing method therefor
JP2001084531A (en) Magnetoresistance effect type thin film magnetic head
US6253445B1 (en) Planar thin film head and method for forming a gap of a planar thin film magnetic head
JPS5856223A (en) Thin film magnetic head
JPS5971124A (en) Magneto-resistance effect magnetic head
JPH011114A (en) thin film magnetic head
JPH08138215A (en) Magneto-resistive head and magnetic recording and reproducing head using the same
JPS6363117A (en) Thin film magnetic head
JPS6233413A (en) Manufacture of soft magnetic thin film core