JPS5911522A - Magnetoresistance effect head - Google Patents

Magnetoresistance effect head

Info

Publication number
JPS5911522A
JPS5911522A JP11945782A JP11945782A JPS5911522A JP S5911522 A JPS5911522 A JP S5911522A JP 11945782 A JP11945782 A JP 11945782A JP 11945782 A JP11945782 A JP 11945782A JP S5911522 A JPS5911522 A JP S5911522A
Authority
JP
Japan
Prior art keywords
magnetic field
thin film
rugged parts
pitches
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11945782A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoda
養田 広
Noboru Nomura
登 野村
Nobumasa Kaminaka
紙中 伸征
Terumi Yanagi
柳 照美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11945782A priority Critical patent/JPS5911522A/en
Publication of JPS5911522A publication Critical patent/JPS5911522A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To attain a magnetoresistance effect head having excellent reproducing characteristics, by providing rugged parts having plural pitches to a ferromagnetic thin film where its resistance is changed in response to a signal magnetic field. CONSTITUTION:A stripe pattern having different pitches is formed on a substrate 5 made of a ferromagnetic material such as Mn-Zn by using a photoresist, and the rugged parts of 0.02mu deep are formed by ion milling. The rugged parts are parallel in the direction of current and have different pitches in the direction of the width of the MR element, an anisotropic magnetic field Hk has a different value depending on the position in the broadwise direction and better biasing is executed by changing minutely the value of the Hk. It is possible to set uniformly the entire element to an excellent bias point by controlling locally the anisotropy of the MR element, the distortion is decreased, the dynamic range is increased and Barkhausen noises are reduced.

Description

【発明の詳細な説明】 本発明は信号磁界の変化を強磁性薄膜の抵抗の変化を介
して検出する磁気抵抗効果ヘッドにかかり、強磁性薄膜
全体に均一なバイアス磁界全印加することのできる構造
を提供する。
Detailed Description of the Invention The present invention relates to a magnetoresistive head that detects changes in a signal magnetic field through changes in the resistance of a ferromagnetic thin film, and has a structure capable of applying a uniform bias magnetic field to the entire ferromagnetic thin film. I will provide a.

従来、強磁性薄膜の磁気抵抗効果を利用した磁気ヘッド
は第1図に示すようにして用いられていた。すなわち強
磁性薄膜よりなる磁気抵抗効果素子(以下MR素子と略
す)1は、記録媒体2に垂直に当近接して置かれ、両端
に配置した電極3゜4間に定電流1を流す(ただしMR
素子1を支持する基板は図示せず。)。そして、記録媒
体2からの信号磁界による抵抗値変化を電極3,4間の
電圧変化として検知する。
Conventionally, a magnetic head utilizing the magnetoresistive effect of a ferromagnetic thin film has been used as shown in FIG. That is, a magnetoresistive element (hereinafter abbreviated as MR element) 1 made of a ferromagnetic thin film is placed perpendicularly in close proximity to a recording medium 2, and a constant current 1 is passed between electrodes 3.4 arranged at both ends. M.R.
A substrate supporting element 1 is not shown. ). Then, a change in resistance value due to a signal magnetic field from the recording medium 2 is detected as a change in voltage between the electrodes 3 and 4.

MR素子1の比抵抗ρは、強磁性薄膜の磁化の方向と電
流の方向のなす角度全θとすると、無信号磁界時の比抵
抗をρ。とじて ρ=ρ0+Δpm、CO32θ で表わされる。したがって、比抵抗変化Δρと最大比抵
抗変化Δpmaxとの比Δρ/Δρmax i印加磁界
Hに対して第2図に示すような特性となり、信号磁界H
に対していちじるしい非直線性を有するので、バイアス
磁界HBを加えて動作点を第2図のP点に設定する必要
がある。バイアス磁界を発生する方法としてはMR素子
に隣接した導電体に電流を流す方法(コンダクタバイア
ス法)や永久磁石薄膜の磁極による方法(ハード膜バイ
アス法)などがあるが、第3図に示すようにいずれの方
法でも強磁性膜全体を均一に最適点に磁化することは困
難である。なお、図の曲線Cはコンダクタンスバイアス
法、同Hはハード膜バイアス法によるバイアス磁界を示
す。これは以下の理由による。
The specific resistance ρ of the MR element 1 is the specific resistance when there is no signal magnetic field, assuming that the total angle between the magnetization direction of the ferromagnetic thin film and the current direction is θ. It is expressed as ρ=ρ0+Δpm, CO32θ. Therefore, the ratio of the specific resistance change Δρ to the maximum specific resistance change Δpmax, Δρ/Δρmax i, has the characteristics shown in Fig. 2 for the applied magnetic field H.
Since it has significant nonlinearity with respect to the magnetic field, it is necessary to set the operating point at point P in FIG. 2 by applying a bias magnetic field HB. Methods for generating a bias magnetic field include passing a current through a conductor adjacent to the MR element (conductor bias method) and using magnetic poles of a thin film of a permanent magnet (hard film bias method), as shown in Figure 3. In either method, it is difficult to uniformly magnetize the entire ferromagnetic film to the optimum point. Note that the curve C in the figure shows the bias magnetic field by the conductance bias method, and the curve H shows the bias magnetic field by the hard film bias method. This is due to the following reasons.

強磁性膜の磁化の方向θは で決定されるから、信号磁界のない場合の磁化の方向を
最適バイアス方向をたとえば46°とするためには、 HB  =75 (Hx 十HD ) とする必要がある。第1図に示しだようなMR素子にお
いては、磁化回転領域で動作しかつヒステリシス現象を
避けるために、Z方向が磁化容易軸になるように一軸異
方性に、磁場中蒸着などの手段によって配向している。
Since the magnetization direction θ of the ferromagnetic film is determined by be. In the MR element shown in Fig. 1, in order to operate in the magnetization rotation region and avoid the hysteresis phenomenon, it is made uniaxially anisotropic so that the Z direction becomes the axis of easy magnetization, by means such as evaporation in a magnetic field. Oriented.

ところがHB+HDは薄膜形状やバイアス磁界発生手段
により場所によって異なるため、第3図に示すように磁
化方向の場所依存性を生じ、膜全体を最適バイアス点に
置けないため、歪が増加し、出力が低下することになる
However, since HB+HD differs depending on the location depending on the thin film shape and bias magnetic field generation means, the magnetization direction becomes location dependent as shown in Figure 3, and the entire film cannot be placed at the optimal bias point, resulting in increased distortion and reduced output. This will result in a decline.

本発明は上記従来の欠点を除去するものであり、強磁性
薄膜に凹凸を形成しかつ凹凸を場所により変えて、薄膜
の異方性磁界をコントロールすることにより、無信号バ
イアス時のMR素子の磁化方向を一定方向にそろえ、良
好な再生特性を有する磁気抵抗効果ヘッドを提供するこ
とを目的とする〇つ寸’)HKkコントロールしてHK
−1−HDを場所ごとにHBに等しくなるようにすれば
、磁化はMR素子内全体で同一方向を向くことになる。
The present invention eliminates the above-mentioned conventional drawbacks, and by forming unevenness on a ferromagnetic thin film and changing the unevenness depending on the location to control the anisotropic magnetic field of the thin film, the MR element can be improved when no signal is biased. The purpose is to provide a magnetoresistive head that aligns the magnetization direction in a certain direction and has good reproduction characteristics.
If -1-HD is made equal to HB at each location, the magnetization will be oriented in the same direction throughout the MR element.

異方性磁界のコントロールの方法としては、第4図に示
すように表面に凹凸(ピッチP、深さD)を形成した基
板上に強磁性薄膜を形成すると、第6図に示すように平
滑な基板上に磁場中蒸着したN i −F e膜の異方
性磁界HKoと比較して、凹凸基板上では溝の方向に大
きなHK(i7形成できる。したがって、基板の場所に
より凹凸のピッチや深さを変えれば任意のHK″If:
もったMR素子を実現可能である。
As a method of controlling the anisotropic magnetic field, if a ferromagnetic thin film is formed on a substrate with an uneven surface (pitch P, depth D) as shown in Figure 4, it will become smooth as shown in Figure 6. Compared to the anisotropic magnetic field HKo of a Ni-Fe film deposited in a magnetic field on a rough substrate, a large HK (i7) can be formed in the direction of the grooves on a rough substrate. Any HK″If you change the depth:
It is possible to realize an MR element with a large amount of power.

以下本発明の実施例にもとづいて、さらに詳細に説明す
る。第6図に示すように、Mn −Z nなどの強磁性
材料よりなる基板5上に7オトレジストを用いてピッチ
の異なるストライプパターンを形成し、イオンミリング
により深さ0.02μmの凹凸を形成する。この上にス
パッタなどの方法により、5i02などの非磁性絶縁膜
−r−qo、5μm形成し、さらにT1などの非磁性導
電膜6 f 0.2 pm、。
The present invention will be described in more detail below based on examples. As shown in FIG. 6, stripe patterns with different pitches are formed on a substrate 5 made of a ferromagnetic material such as Mn-Zn using 7-photoresist, and unevenness with a depth of 0.02 μm is formed by ion milling. . A non-magnetic insulating film such as 5i02 (r-qo) with a thickness of 5 μm is formed thereon by a method such as sputtering, and a non-magnetic conductive film such as T1 (6 f 0.2 pm) is formed thereon.

Ni−Feなどの強磁性膜i0.05μm真空蒸着、ス
パッタリング、または電着(以下総称して蒸着という)
などの手段で形成する。MR素子1の形状にはフォトレ
ジストマスクを用いたリフトオフ。
Ferromagnetic film i0.05μm such as Ni-Fe, vacuum evaporation, sputtering, or electrodeposition (hereinafter collectively referred to as evaporation)
Formed by means such as. The MR element 1 is shaped by lift-off using a photoresist mask.

マスクメッキ等の方法で直接形成しても、全面に薄膜全
被着後フォトレジストマスクを用いてケミカルエノテン
ク、スパッタエツチングやイオンミリングなどの方法で
不要部全エツチング(以下総称してフォトリングラフィ
という)して形成してもよい。さらにその上にCu 、
 A l 、 Au等の非磁性導電膜3を蒸着法および
フォトリングラフィ法により形成する。この後、S i
O2などの非磁性絶縁材8を0.7μm蒸着し、さらに
Ni−Feなどの強磁性薄膜9i0.4μm蒸着してシ
ールドとする。
Even if it is directly formed by a method such as mask plating, unnecessary parts can be etched by a method such as chemical etching, sputter etching, or ion milling (hereinafter collectively referred to as photolithography) using a photoresist mask after a thin film is completely deposited on the entire surface. ) may be formed. Furthermore, Cu on top of that,
A nonmagnetic conductive film 3 made of Al, Au, etc. is formed by vapor deposition and photolithography. After this, S i
A non-magnetic insulating material 8 such as O2 is deposited to a thickness of 0.7 μm, and a ferromagnetic thin film 9i such as Ni-Fe is further deposited to a thickness of 0.4 μm to form a shield.

次にSiOなどの非磁性材料を蒸着、ガラスなどの保護
カバーを接着して(図示せず)ヘッドとする。
Next, a non-magnetic material such as SiO is deposited, and a protective cover such as glass is adhered (not shown) to form a head.

基板51−に形成した凸凹は、第7図に示すように、電
流方向に平行でMR素子11]方向にピッチが異なって
おり、異方性磁界HKは第8図に示すように幅方向の位
置により異なった値をもつ。したがって、第6図に示す
ヘッドの素子1,6に電流を流して最適バイアス点にし
た場合、HB 、 HK−1−HDはそれぞれ第9図に
示すようになり、磁化の方向は第10図に示すようにな
って、第3図に示した場合よりMR素子全体にわたって
良好にバイアスされている。この例では3段階にHKを
変えた例を示したが、さらにHKの値を細かく変化すれ
ば、より良好にバイアスされることは言う壕でもない。
As shown in FIG. 7, the unevenness formed on the substrate 51- is parallel to the current direction and has a different pitch in the MR element 11 direction, and the anisotropic magnetic field HK is in the width direction as shown in FIG. It has different values depending on the position. Therefore, when a current is applied to elements 1 and 6 of the head shown in FIG. 6 to reach the optimum bias point, HB and HK-1-HD will become as shown in FIG. 9, and the direction of magnetization will be as shown in FIG. 10. As shown in FIG. 3, the entire MR element is biased better than in the case shown in FIG. This example shows an example in which the HK is changed in three stages, but it goes without saying that if the HK value is changed more finely, the bias will be better.

なお、第8図、第9図および第10図は本発明の詳細な
説明するだめの図であり、実際にはこのように急峻な変
化をしているわけではない。
It should be noted that FIGS. 8, 9, and 10 are only diagrams for explaining the present invention in detail, and in reality, there is not such a steep change.

筐た、本実施例では基板に凹凸をつけた場合について述
べたが、強磁性薄膜表面に直接凹凸を形成してよい。
Although this embodiment has been described with respect to the case in which the substrate is made uneven, the unevenness may be formed directly on the surface of the ferromagnetic thin film.

また、本実施例はコンダクタバイアス型のMR素子につ
いて述べたが、他のバイアス方式や形状のMR素子につ
いても応用できることは言うまでもない。
Further, although this embodiment has been described with respect to a conductor bias type MR element, it goes without saying that the present invention can also be applied to MR elements with other bias methods and shapes.

以上述べたように、本発明はMR素子の異方性を部分的
にコントロールすることにより、素子全体を均一に良好
なバイアス点に設定することを可能にしたものであり、
従来のヘッドに比べて歪が減少し、ダイナミックレンジ
が増大する。壕だ凹凸により異方性がコントロールされ
ているために、バルクハウゼンノイズが減少する。
As described above, the present invention makes it possible to uniformly set the entire element to a favorable bias point by partially controlling the anisotropy of the MR element.
Distortion is reduced and dynamic range is increased compared to conventional heads. Barkhausen noise is reduced because the anisotropy is controlled by the trench unevenness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気抵抗効果ヘッドを説明するだめの斜
視図、第2図および第3図はその特性を説明するための
図、第4図および第5図はそれぞれ異方性磁界のコント
ロール方法を説明するため第9図および第10図はそれ
ぞれこの実施例の効果を説明するための図である。 5・・・・・・基板、6・・・・・・非磁性導電膜、7
・・・・・非磁性絶縁膜、8・・・・・・非磁性絶縁材
、9・・・・・強磁性薄膜O 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 B   h 第3図 Q σ、5  /θ ′/W 第4図 第5図 凹凸源zD(A) 第  6  図 、</ 第  7  図 第  8  図 ρ タロIθ Y/w
Figure 1 is a perspective view to explain a conventional magnetoresistive head, Figures 2 and 3 are diagrams to explain its characteristics, and Figures 4 and 5 are diagrams for controlling the anisotropic magnetic field. For explaining the method, FIGS. 9 and 10 are diagrams for explaining the effects of this embodiment, respectively. 5...Substrate, 6...Nonmagnetic conductive film, 7
...Nonmagnetic insulating film, 8...Nonmagnetic insulating material, 9...Ferromagnetic thin film O Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure B h Figure 3 Q σ, 5 /θ ′/W Figure 4 Figure 5 Irregularity source zD(A) Figure 6, </ Figure 7 Figure 8 ρ Taro Iθ Y/w

Claims (1)

【特許請求の範囲】[Claims] 信号磁界に応じて抵抗が変化する強磁性薄膜の少なくと
も一面に複数のピッチを有する凹凸全もつことを%徴と
する磁気抵抗効果ヘッド。
A magnetoresistive head characterized by a ferromagnetic thin film whose resistance changes in response to a signal magnetic field, and at least one surface of which has concavities and convexities with a plurality of pitches.
JP11945782A 1982-07-08 1982-07-08 Magnetoresistance effect head Pending JPS5911522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11945782A JPS5911522A (en) 1982-07-08 1982-07-08 Magnetoresistance effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11945782A JPS5911522A (en) 1982-07-08 1982-07-08 Magnetoresistance effect head

Publications (1)

Publication Number Publication Date
JPS5911522A true JPS5911522A (en) 1984-01-21

Family

ID=14761838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11945782A Pending JPS5911522A (en) 1982-07-08 1982-07-08 Magnetoresistance effect head

Country Status (1)

Country Link
JP (1) JPS5911522A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013319A (en) * 1983-07-01 1985-01-23 Nec Corp Magneto-resistance effect head
JPS60140217U (en) * 1984-02-22 1985-09-17 日本電気株式会社 magnetoresistive head
US5680091A (en) * 1994-09-09 1997-10-21 Sanyo Electric Co., Ltd. Magnetoresistive device and method of preparing the same
US5736921A (en) * 1994-03-23 1998-04-07 Sanyo Electric Co., Ltd. Magnetoresistive element
US5738929A (en) * 1993-10-20 1998-04-14 Sanyo Electric Co., Ltd. Magnetoresistance effect element
GB2388915A (en) * 2002-05-22 2003-11-26 Toshiba Res Europ Ltd Anisotropic magnetoresistive sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013319A (en) * 1983-07-01 1985-01-23 Nec Corp Magneto-resistance effect head
JPH0444323B2 (en) * 1983-07-01 1992-07-21 Nippon Electric Co
JPS60140217U (en) * 1984-02-22 1985-09-17 日本電気株式会社 magnetoresistive head
JPH0227383Y2 (en) * 1984-02-22 1990-07-24
US5738929A (en) * 1993-10-20 1998-04-14 Sanyo Electric Co., Ltd. Magnetoresistance effect element
US5736921A (en) * 1994-03-23 1998-04-07 Sanyo Electric Co., Ltd. Magnetoresistive element
US5680091A (en) * 1994-09-09 1997-10-21 Sanyo Electric Co., Ltd. Magnetoresistive device and method of preparing the same
GB2388915A (en) * 2002-05-22 2003-11-26 Toshiba Res Europ Ltd Anisotropic magnetoresistive sensor
GB2388915B (en) * 2002-05-22 2004-07-14 Toshiba Res Europ Ltd An anisotropic magnetoresistance sensor and a method of detecting a magnetic field

Similar Documents

Publication Publication Date Title
JP2637911B2 (en) Method of manufacturing magnetic head, magnetic tape data storage device, thin film magnetic sensor assembly on substrate, and method of manufacturing magnetoresistive (MR) head
KR20010110201A (en) Manufacturing method of magneto-resistive effect type head
JPH10283616A (en) Magneto-resistive composite head and its production as well as magnetic memory device
US5912790A (en) Thin film magnetic recording-reproducing head having a high recording density and high fidelity
JPS5911522A (en) Magnetoresistance effect head
JPH08153310A (en) Magnetoresistance effect type thin film magnetic head
JP2003338014A (en) Magnetoresistive effect device and method of manufacturing the same, and thin-film magnetic head and method of manufacturing the same
JP2000149219A (en) Thin film magnetic head and its manufacture
JP2849354B2 (en) Magnetic transducer and thin-film magnetic head
US5959809A (en) Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus
JP2000276716A (en) Magnetoresistance effect type head, its manufacture and magnetic storage device
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
JP2000076629A (en) Magnetoresistive effect type head, its manufacture and magnetic storage device
KR950000560B1 (en) Mangetoresistive head
JPS5963019A (en) Magneto-resistance effect head
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JP2007172669A (en) Magnetoresistive effect head
JPS5941881A (en) Magnetoresistance effect element
JPH06274832A (en) Magneto-resistance effect type thin-film magnetic head
JPS6089809A (en) Magneto-resistance effect head and its manufacture
JP3474533B2 (en) Thin film magnetic head and method of manufacturing the same
JP4010702B2 (en) Manufacturing method of thin film magnetic head
JP2547408B2 (en) Strip magnetic thin film
KR100668405B1 (en) Magneto-resistive head
JP3382139B2 (en) Manufacturing method of magnetic head