JPS5962311A - Production of hollow yarn-like semipermeable membrane made of aromatic polysulfone - Google Patents

Production of hollow yarn-like semipermeable membrane made of aromatic polysulfone

Info

Publication number
JPS5962311A
JPS5962311A JP9242883A JP9242883A JPS5962311A JP S5962311 A JPS5962311 A JP S5962311A JP 9242883 A JP9242883 A JP 9242883A JP 9242883 A JP9242883 A JP 9242883A JP S5962311 A JPS5962311 A JP S5962311A
Authority
JP
Japan
Prior art keywords
polysulfone
solvent
soln
semipermeable membrane
aromatic polysulfone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9242883A
Other languages
Japanese (ja)
Other versions
JPS6144526B2 (en
Inventor
Koichi Yoshida
浩一 吉田
Fusakazu Hayano
早野 総和
Yoshiro Ii
伊井 芳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9242883A priority Critical patent/JPS5962311A/en
Publication of JPS5962311A publication Critical patent/JPS5962311A/en
Publication of JPS6144526B2 publication Critical patent/JPS6144526B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To produce a titled semipermeable membrane having excellent mechanical strength and high water permeability by dissolving arom. polysulfone in a liquid mixture of a polar org. solvent and a nonsolvent, and allowing an aq. soln. of electrolyte to coexist. CONSTITUTION:Arom. polysulfone is dissolved in a soln. mixture of a polar org. solvent (for example, N-methyl pyrolidone, etc.) which dissolves arom. polysulfone and a solvent (for example, dimethyl sulfoxide, etc.) which is intimately mixed with the polar org. solvent but does not dissolve arom. polysulfone. An aq. soln. of electrolyte (for example, common salt, etc.) is further allowed to coexist in the soln., and the soln. is molded to a hollow yarn shape. The yarn is then brought into contact with a liquid which is mixed intimately with the solvent mixture but does not dissolve arom. polysulfone (for example, water, etc.) to remove the solvents, whereby a hollow yarn-like semipermeable membrane is obtd. The concn. of the polymer soln. as a raw liquid for forming is preferably about 5-35wt% and the film thickness is about 10-450mu.

Description

【発明の詳細な説明】 本発明は芳香族ポリスルホンから成る新規な中空糸状半
透膜の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a novel hollow fiber semipermeable membrane made of aromatic polysulfone.

従来、半透膜の素材としては極めて多くの高分子化合物
が使用されており、セルロースアセテート、ポリアクリ
a二l・リル、ポリアミド等実際に工業的に生産されて
いるものも少なくない。
Conventionally, a large number of polymer compounds have been used as materials for semipermeable membranes, and many of them are actually produced industrially, such as cellulose acetate, polyacrylic acid, and polyamide.

芳香族ポリスルホンは、元来エンジニアリングプラスチ
ックスとして使用されているものであるが、その耐熱性
、耐薬品性が良好であることがら半透膜の素材としても
使用されるようになってきている。芳香族ポリスルホン
の平膜については、数々の特許及び文献があるが、中空
糸状半透膜としては、アミコン・コーポレーション(特
開昭1−.231g3号公報)、及びガルフ・サウス・
リサーチ・インスチチュート(ジャーナル、オブ、アプ
ライド・ポリマー・サイエンス、20巻1.23クク〜
、2.39’lページ及び239!; N、21101
.ページ、7776年、2/巻、1gg3〜/900ヘ
ーシ、/9り7年)のものが知られる。
Aromatic polysulfone is originally used as an engineering plastic, but because of its good heat resistance and chemical resistance, it is also being used as a material for semipermeable membranes. There are many patents and documents regarding aromatic polysulfone flat membranes, but hollow fiber semipermeable membranes are known by Amicon Corporation (Japanese Unexamined Patent Publication No. 1-231g3) and Gulf South Co., Ltd.
Research Institute (Journal of Applied Polymer Science, Volume 20, 1.23k ~
, 2.39'l pages and 239! ; N, 21101
.. Page, 7776, 2/vol., 1gg3~/900 Hesi, /9ri7) is known.

しかし、アミコン・コーポレーションの芳香族ポリスル
ホン中空糸の構造は、1内側に表面層を持つが、外側に
は表面層を持たず、膜を形成する際に径70μをこえて
重合体が欠落した部分である空洞が外に開口しているた
め、/)機緘的強度が小さい、コ)逆洗ができない、3
)目詰まりが生じゃすい等の実用上の欠点を有する。又
、ガルフ・サウス・リザーチ・インスチチュートのポリ
スルホン中空糸は、本来逆浸透用の支持体として開発さ
れたもので、表面の孔径が2!01からal17μと大
きいにもかかわらずその透水性は極めて小さく、たかだ
か/3+n’/m’・日・短 であり、その製造方法に
よ□っては、表面の孔径が10〜10θAで、しかも透
水率1)i l !; m’/rn”・日・猶以上のも
のは出来ず、限外p過膜としては実用性に乏しいもので
ある。更に平膜の場合と比べて、中空糸をつくるには高
い粘度のポリマー溶液が必要であるが、そのために高い
濃度の芳香族ポリスルホン溶液を用いると、通常の方法
では透水性が著しく低下し、実用上意味を有しないもの
となる。更に、一般にポリアクリ−ニトリルやスルホン
化ポリスルホンのような比較的親水性のポリマーから成
る半透膜は、水との親和性が太きいために、その透水性
は高いが、芳香族ポリスルポンのような疎水性ポリマー
から成る半透膜の透水性は一般に小さく、透水性の大き
な半透膜を得るためには、種々の特殊な手法が必要であ
る。透水性向上のために通常とられる手段は、例えばア
クリロニトリル、スルホン化ポリスルホン、ポリカーボ
ネート及びセルp−ス/セクート等におけるように、表
面層と支持層とから成る異方性半透膜とする手段である
。異方性半透膜においては、透水性を規定する薄い表面
層と、表面層の支持体としての役割を果す透水性に抵抗
を持たない支持層を持つが、圧密化抵抗が小さく種々の
操作時における変化が大きいため使用に不便であり、か
つ機械的強度も小さい。
However, the structure of Amicon Corporation's aromatic polysulfone hollow fibers has a surface layer on the inside, but no surface layer on the outside, and when forming a membrane, the polymer is missing in areas exceeding 70 μm in diameter. Since the cavity is open to the outside, /) mechanical strength is low, c) backwashing is not possible, 3.
) It has practical drawbacks such as clogging. In addition, Gulf South Research Institute's polysulfone hollow fiber was originally developed as a support for reverse osmosis, and despite its large surface pore size ranging from 2!01 to Al17μ, its water permeability is low. It is extremely small, at most /3+n'/m'・day・short, and depending on the manufacturing method, the surface pore size is 10 to 10θA, and the water permeability is 1) i l! m'/rn"・day・y or higher, and it is impractical as an ultrapolar membrane.Furthermore, compared to the case of flat membranes, a high viscosity is required to make hollow fibers. A polymer solution is required, but if a highly concentrated aromatic polysulfone solution is used for this purpose, the water permeability will be significantly reduced by the usual method, making it practically meaningless.Furthermore, in general, polyacrynitrile or sulfone Semipermeable membranes made of relatively hydrophilic polymers such as aromatic polysulfone have high water permeability due to their strong affinity for water, but semipermeable membranes made of hydrophobic polymers such as aromatic polysulfone Water permeability is generally low, and in order to obtain a semipermeable membrane with high water permeability, various special methods are required.Means usually taken to improve water permeability include, for example, acrylonitrile, sulfonated polysulfone, polycarbonate, etc. This is a means of forming an anisotropic semipermeable membrane consisting of a surface layer and a supporting layer, as in the case of Cellpose/Secuto, etc. In an anisotropic semipermeable membrane, a thin surface layer that defines water permeability and a thin surface layer that defines water permeability are used. , has a support layer that has no resistance to water permeability and serves as a support for the surface layer, but it is inconvenient to use because it has low compaction resistance and changes greatly during various operations, and also has low mechanical strength. .

本発明者らは、以上述べたような欠点を持たない高透水
性の芳香族ポリスルホン中空糸状半透膜の!!!造につ
いて鋭意検討を重ねた結果、芳香族ポリスルホン溶液と
して混合溶媒を使用し、更に電解質水溶液を添加する。
The present inventors developed a highly water permeable aromatic polysulfone hollow fiber semipermeable membrane that does not have the above-mentioned drawbacks! ! ! As a result of extensive research on the structure, a mixed solvent was used as the aromatic polysulfone solution, and an aqueous electrolyte solution was added.

ことにより、中空糸の内外両表面に空洞の全くない層を
持ち、耐圧密性及び機械的強度が大きく、かつその構造
が特異であり、従来の異方性半透膜において考えられて
いたのと異なる透水のメカニズムにより高透水性を持つ
ような芳香族ポリスルホン中空糸状半透膜が得られると
いう事実を見い出し、本発明を完成するに至うた。
As a result, the hollow fibers have layers with no cavities on both the inner and outer surfaces, and have high consolidation resistance and mechanical strength. The inventors have discovered that an aromatic polysulfone hollow fiber semipermeable membrane having high water permeability can be obtained through a water permeation mechanism different from that of the previous method, and have completed the present invention.

本発明に該当する芳香族ポリスルホンは次の一般式(I
)で表わされる繰返し単位を有する重合体である。
The aromatic polysulfone applicable to the present invention has the following general formula (I
) is a polymer having a repeating unit represented by

但し、式中x、x’、X#、x” は例えばメチル、エ
チル等のアルキル、りpル、プロ、ム等の−pゲン等の
非解離性の一置換基を表わし、1、m−、nz OはO
又はダ以下の整数を表わす。一般的には1、nl、ns
oがすべてOであるものが入手しやすい。
However, in the formula, x, x', -, nz O is O
or represents an integer less than or equal to da. Generally 1, nl, ns
Those in which all o's are O are easily available.

このような芳香族ポリスルホン重合体を、□適当な寛解
質或いはその水溶液を溶解した芳香族ボリスルポ:/を
良く溶解する極性有機溶媒と、この極性有機溶媒と混和
するが、芳香族ポリスルホンを溶解しない液体(以下、
非溶媒と呼ぶ)との混合溶液に溶解し、通常の方法によ
り中空糸製造用の環状ノズルから押し出し、内外から凝
固させることにより本発明の中空糸状半透膜が得られる
。中空糸状半透膜の形成に際しては、極性有機溶媒中に
溶解した芳香族ポリスルホンが内外両表面からの凝固溶
液の浸入により、非溶媒の液滴を核として周囲に沈殿を
生じ非溶媒液滴の互に接する部分が細孔を形成すると推
定される・。非溶媒の存在は細孔の形成の核として意味
があり、透水性能の向上に太い−に寄与するものであり
、非溶媒を使用しない場合に比べ、透水率は約2〜10
倍に増加する。電解質はこの際、ポリマー鎖の広がりに
影響し、膜構造に何らかの影響を与えると推定される。
Such an aromatic polysulfone polymer is mixed with a polar organic solvent that well dissolves the aromatic borisulpo:/ in which an appropriate medicinal substance or its aqueous solution is dissolved, but does not dissolve the aromatic polysulfone. liquid (hereinafter referred to as
The hollow fiber-like semipermeable membrane of the present invention can be obtained by dissolving the membrane in a mixed solution with a non-solvent (referred to as a non-solvent), extruding it through an annular nozzle for manufacturing hollow fibers by a conventional method, and coagulating it from the inside and outside. When forming a hollow fiber semipermeable membrane, aromatic polysulfone dissolved in a polar organic solvent enters the coagulation solution from both the inner and outer surfaces, causing precipitation around the non-solvent droplets as nuclei. It is estimated that the parts that touch each other form pores. The presence of a non-solvent is significant as a nucleus for the formation of pores, and contributes greatly to the improvement of water permeability, with a water permeability of approximately 2 to 10% compared to when no non-solvent is used.
increase twice. At this time, it is assumed that the electrolyte influences the spread of the polymer chains and has some influence on the membrane structure.

電解質が存在すると芳香族ポリスルホンの極性有機溶媒
と非溶媒の混合溶液中における状態が不安定となりわず
かな凝固溶液にも沈殿を生じやすくなり、そのために内
外両表面からの凝固溶液の浸入により、容易に表面に空
洞の無い層が形成されるのであろう。
When an electrolyte exists, the state of aromatic polysulfone in a mixed solution of a polar organic solvent and a non-solvent becomes unstable, and even a small amount of coagulation solution tends to cause precipitation. A layer without cavities is probably formed on the surface.

極性有機溶媒としては、N−メチルビplJトン、ジメ
チルホルムアミド、ジメチルアセトアミド等が用いられ
、極性有機溶媒と混和するが、芳香族ポリスルホンを溶
解しない、いわゆる非溶媒としては、ジメチルスルホキ
シド、プルピレングリコール等が使用される。非溶媒の
極性有機溶媒に対する割合は、混液が均一状態を保てる
範囲ならば如何なる範囲でもよいが、重量%で5−so
%が好ましい。電解質としては、食塩、硝酸ナトリウム
、硝酸カリウム、硝酸ナトリウム、塩化亜鉛等の無機酸
の金属塩、酢酸ナトリウム、ギ酸ナトリウム等の有機酸
の金属塩、ポリスチンンスルホン酸ナトリウム、ポリビ
ニルベンジルトリメチルアンモニウムクロライド等の高
分子電解質、ジオクチルスルホコノ1り酸ナトリウム、
アルキルメチルタウリン酸ナトリウムなどのイオン系界
面活性剤等が用いられる。これらの電解質は、単独で芳
香族ポリスルホン溶液に加えてもある程度の効果を示す
が、これら電解質を水溶液として添加する時に、特に顕
著な効果を示すものである。電解質水溶液の添加量は添
加によって溶液の均一性が失4つれることがない限り、
特に制限はないが、通常溶媒に対してO5容量%〜10
容量%である。又、電解質水溶液の濃度についても特に
制限はなく、濃度の大きいほうが効果が大きいが、通常
用いられる濃度としては7重量%〜60重蓋%である。
As polar organic solvents, N-methylbiplJton, dimethylformamide, dimethylacetamide, etc. are used, and so-called non-solvents that are miscible with polar organic solvents but do not dissolve aromatic polysulfone include dimethyl sulfoxide, propylene glycol, etc. is used. The ratio of the non-solvent to the polar organic solvent may be within any range as long as the mixed liquid can maintain a homogeneous state.
% is preferred. Examples of electrolytes include common salt, metal salts of inorganic acids such as sodium nitrate, potassium nitrate, sodium nitrate, and zinc chloride, metal salts of organic acids such as sodium acetate and sodium formate, sodium polystine sulfonate, polyvinylbenzyltrimethylammonium chloride, etc. Polyelectrolyte, sodium dioctyl sulfoconolinate,
Ionic surfactants such as sodium alkylmethyltaurate are used. Although these electrolytes exhibit some effects when added alone to an aromatic polysulfone solution, they exhibit particularly remarkable effects when added as an aqueous solution. The amount of the electrolyte aqueous solution to be added is as long as the addition does not cause loss of uniformity of the solution.
There is no particular limit, but usually O5 volume % to 10
It is capacity %. Further, there is no particular restriction on the concentration of the electrolyte aqueous solution, and the higher the concentration, the greater the effect, but the concentration usually used is 7% by weight to 60% by weight.

製膜原液としてのポリマー溶液め濃度は5〜35重量%
、好ましくは70〜303量%である。35重量%をこ
えると、得られる半透膜の透水性能が実用的な意味を持
たないほど小さくなり、又、S重it%より低い濃度で
は、十分な強度を持った中空糸状半透膜は得られない。
The concentration of the polymer solution as a membrane forming stock solution is 5 to 35% by weight.
, preferably 70 to 303% by weight. If it exceeds 35% by weight, the water permeability of the resulting semipermeable membrane becomes so small that it has no practical meaning, and if the concentration is lower than S weight it%, a hollow fiber semipermeable membrane with sufficient strength cannot be obtained. I can't get it.

凝固液としては、水が最も一般的に用いられるが、ポリ
マーを溶解しない有機溶媒を用いても良く、又、これら
非溶媒を2種以上混合して用いても良い。又、内外の凝
固液として異なった液体、又は異なった液体組成の凝固
液を用いることも可能である。
Water is most commonly used as the coagulating liquid, but organic solvents that do not dissolve the polymer may also be used, or a mixture of two or more of these non-solvents may be used. It is also possible to use different liquids as the inner and outer coagulating liquids or coagulating liquids with different liquid compositions.

かかる製法によって得られた芳香族ポリスルホン中空糸
状半透膜は、中空糸の内側及び外側の両表面部に細孔を
有し、空洞の全くない層を持ち、これらの中間層も該表
面層と連続した重合体相を形成している。細孔の径は中
空糸の両表面から膜内部に行くに従って徐々に増大し、
両表面からほぼ停距離にある膜内部で最大となる。そし
て、孔径の大きさの変化は膜表面から内部にわたって連
続的であるテーパー状構造をとる。内表面及び外表面の
細孔の径は/θ〜10oXの範囲にある。その径は種々
の異なる平均分子量のデキストラン水溶液、及び各種タ
ンパク質水溶液を流した際の透過阻止率の測定と、透過
型電子顕微鏡による表面付近の観察により推定される。
The aromatic polysulfone hollow fiber semipermeable membrane obtained by this manufacturing method has pores on both the inner and outer surfaces of the hollow fibers, and has a layer with no cavities, and these intermediate layers are also different from the surface layer. Forms a continuous polymer phase. The diameter of the pores gradually increases from both surfaces of the hollow fiber toward the inside of the membrane.
It is maximum inside the membrane, which is approximately the stopping distance from both surfaces. The pore size changes continuously from the membrane surface to the inside, forming a tapered structure. The diameters of the pores on the inner and outer surfaces are in the range /θ to 10oX. Its diameter is estimated by measuring the transmission rejection rate when aqueous dextran solutions with different average molecular weights and aqueous protein solutions of various types are passed through it, and by observing the vicinity of the surface using a transmission electron microscope.

中空糸の両表面付近には、紡糸条件による違いはあるが
、表面から内部に向かって、約/〜Sμ程度の厚さにわ
たり、空洞は全く存在しない。空洞の全くない表面付近
の層と連続した重合体相を形成する膜内部の層には、空
洞が存在する場合がある。空洞は、膜を形成する重合体
の欠落した部分であり、その直径は10μをこえる値で
ある。したがって、本発明では径10μ以下のものを細
孔という。
There are no cavities near both surfaces of the hollow fiber over a thickness of approximately Sμ from the surface toward the inside, although there are differences depending on the spinning conditions. Cavities may be present in layers within the membrane that form a continuous polymeric phase with layers near the surface that are void-free. Cavities are missing portions of the membrane-forming polymer and have a diameter of more than 10 microns. Therefore, in the present invention, pores with a diameter of 10 μm or less are referred to as pores.

一般に空洞は膜厚を薄くすると少なくなり、膜厚を70
0μ以下にすると空洞の少ない中空糸が容易にできる。
In general, the number of cavities decreases when the film thickness is reduced;
When the thickness is 0μ or less, hollow fibers with few cavities can be easily produced.

空洞が少ない中空糸は、耐圧密化、機械的強度に優れ、
かつ透水性能も良好である。
Hollow fibers with few cavities have excellent consolidation resistance and mechanical strength.
It also has good water permeability.

本発明の中空糸状半透膜の膜厚は10〜1Isoμであ
ることが好ましい。70μより薄いと機械的強度が低く
なる。1isoμをこえる膜厚は必要でないし、望まし
くない。空洞が存在しない場合は勿論、空洞の存在する
場合も、膜の内部の層には多数の細孔が存在し、その径
は膜表面から内部に向かって遠ざかるに従い連続的に徐
々に増大し両表面よりほぼ等距離にある部分で最大とな
り、その平均径は電子顕微鏡による観察によればOOり
〜70μである。膜表面から膜の内部に向かって遠ざか
るに従い細孔の径が増大するのは、凝固が表面から内部
に向かって起こるために、表面では早く、内部に行くに
従ってゆっくり凝固するためと考えられる。
The thickness of the hollow fiber semipermeable membrane of the present invention is preferably 10 to 1 Isoμ. If it is thinner than 70μ, the mechanical strength will be low. Film thicknesses exceeding 1 isoμ are neither necessary nor desirable. Both in the absence of cavities and in the presence of cavities, there are many pores in the inner layer of the membrane, and their diameters gradually increase continuously as they move away from the membrane surface toward the inside. The maximum diameter is reached at a portion approximately equidistant from the surface, and the average diameter thereof is 70 μm when observed using an electron microscope. The reason why the diameter of the pores increases as it moves away from the membrane surface toward the inside of the membrane is thought to be because coagulation occurs from the surface toward the inside, and solidification occurs quickly at the surface and slowly toward the inside.

したがって、膜表面から内部に向がって距離lだけ離れ
た位置にある細孔の半径rはlの関数となり、1例とし
て/ダク及び157重量%濃度のポリスルホン(ユニオ
ン・カーバイド社製、実施例で用いたものと同じ)をN
−メチルビ−リドン−ジメチルスルホキシド−硝酸ナト
リウムの系で紡糸した膜厚100μの中空糸についてl
とrの関係を第1図に示す。
Therefore, the radius r of a pore located a distance l inward from the membrane surface is a function of l, and as an example (same as used in the example) is N
- Regarding hollow fibers with a membrane thickness of 100μ spun in a system of -methylbi-ridone-dimethylsulfoxide-sodium nitrate
The relationship between and r is shown in Figure 1.

本中空糸においては、/S〜30n?/m’・日・短の
高透水性を示し、特に低濃度ポリマーで紡糸した膜厚の
薄い中空糸では高い透水性を示す。一般に同一条件下で
紡糸された芳香族ポリスルホン中空糸では透水率は、第
1図に示したのと同じ中空糸について、第2図に示すよ
うに膜厚に反比例し、膜厚が薄くなると増大をする事実
が見い出された。ポリアクリルニトリル、スルホン化ポ
リスルホン、ポリカーボネート、セルロースアセテ−1
−等の異方性半透膜では、透水性は表面層(スキン層と
も呼ぶ)によって規定されると言われているが、本発明
の半透膜は空洞のあるなしにかかわらず、表面から膜内
部に至るすべての層に、透水性に対する抵抗を有し、膜
厚全体が透水性を規定すると考えられる。更に、同一条
件下で紡糸された膜厚の異なる芳香族ポリスルホン中空
糸では表面の細孔の径はほとんど同じであり、又、空洞
の存在しない表面付近の層の厚さも膜厚によらず一定で
あることが、それぞれデキストラン及び各種タンパク質
に対する阻止率及び電子顕微鏡写真により確認されるが
、にもかかわらず、透水率が膜厚に反比例するという事
実は、膜を介しての水圧流に対する抵抗は膜厚全体によ
って生ずるものであることを示し、異方性半透膜におけ
るように、表面層のみにより決するものではない。更に
、両表面に空洞のない層を持つにもかかわらず、高い透
水性能を持つことはこのことを支持する。
In this hollow fiber, /S~30n? It shows a high water permeability of /m'·day·short, and especially a thin hollow fiber spun with a low concentration polymer shows a high water permeability. In general, the water permeability of aromatic polysulfone hollow fibers spun under the same conditions is inversely proportional to the membrane thickness, as shown in Figure 2 for the same hollow fiber as shown in Figure 1, and increases as the membrane thickness becomes thinner. The fact that Polyacrylonitrile, sulfonated polysulfone, polycarbonate, cellulose acetate-1
In anisotropic semipermeable membranes such as -, it is said that the water permeability is determined by the surface layer (also called the skin layer), but the semipermeable membrane of the present invention has water permeability from the surface regardless of whether there is a cavity or not. It is thought that all layers up to the inside of the membrane have resistance to water permeability, and the entire membrane thickness determines water permeability. Furthermore, in aromatic polysulfone hollow fibers with different film thicknesses spun under the same conditions, the diameters of the pores on the surface are almost the same, and the thickness of the layer near the surface where there are no cavities is also constant regardless of the film thickness. However, the fact that water permeability is inversely proportional to membrane thickness indicates that the resistance to hydraulic flow through the membrane is It is shown that this is caused by the entire film thickness, and is not determined only by the surface layer, as in the case of anisotropic semipermeable membranes. Furthermore, this is supported by the fact that it has high water permeability despite having void-free layers on both surfaces.

このようにして得られた中空糸は薄膜化により透水率を
極めて大きくすることが可能であり、かつ両表面に空洞
のない層を有する構造を持つため逆洗が可能であり、か
っ圧密化が少なくなり、種々操作時における変化が少な
く、使用に便利となり、槻械的強度も優れたものとなる
The hollow fibers obtained in this way can have extremely high water permeability by making them thinner, and because they have a structure with layers without cavities on both surfaces, they can be backwashed and are not compacted. There are fewer changes during various operations, making it easier to use and providing excellent mechanical strength.

更に、薄膜細円径の中空糸はプライミングボリュームが
小さく、かつ表面積を大きくすることが可能のため、例
えば−透型人工腎臓用の膜或いは腹水の蛋白濃縮膜をは
じめとする各種医療用p過膜としても利用できる。
Furthermore, since the thin film thin circular diameter hollow fiber has a small priming volume and can increase the surface area, it can be used for various medical p-filtrates, such as membranes for transparent artificial kidneys and protein concentration membranes for ascites. It can also be used as a membrane.

以下、実施例により詳細に説明する。Hereinafter, it will be explained in detail using examples.

実施例/ 、20重址%酢酸ソーダ水溶液二g2をN−メチルピロ
リドン3732とジメチルスルホキシド、20/2の混
合溶液に加え、均一溶液とする。この溶液に式 で表わされる繰返し単位を有するポリスルホン(以下ポ
リスルホンと記す)10g、り2を溶解し、ポリマー溶
液とした。このポリマー溶液の粘度は、70g0センチ
ポイズ(20℃)である。このポリマー溶液を中空糸製
造用の環状ノズルから押し出し、水を凝固液として、中
空糸の内部及び外部から凝固させ、内径02日、外径O
ダ閣の中空糸状半透膜を得た。得られた中空糸状半透膜
の純水での透水率は、/jt、Om”/nI+・日・1
、であった。酢酸ソーダ水溶液のかわりに水を用いて紡
糸した場合の同じ形状の中空糸の透水率はQ、j;m7
m−日・鷲であり、酢酸ソーダ水溶液を用いたものの透
水率のほうがはるかに大きい。又、分子量7万とグ万の
デキストランに対するカット率はそれぞれA、3%、2
グチであった。
Example/ Two grams of a 20% sodium acetate aqueous solution is added to a 20/2 mixed solution of N-methylpyrrolidone 3732 and dimethyl sulfoxide to form a homogeneous solution. In this solution, 10 g of polysulfone having a repeating unit represented by the formula (hereinafter referred to as polysulfone) and Ri2 were dissolved to obtain a polymer solution. The viscosity of this polymer solution is 70 g0 centipoise (20° C.). This polymer solution is extruded through an annular nozzle for manufacturing hollow fibers, and is coagulated from the inside and outside of the hollow fibers using water as a coagulating liquid.
A hollow fiber-like semipermeable membrane was obtained. The water permeability of the obtained hollow fiber semipermeable membrane in pure water is /jt, Om''/nI+・day・1
,Met. The water permeability of hollow fibers of the same shape when spinning using water instead of aqueous sodium acetate solution is Q, j; m7
m-day, and the water permeability of the one using an aqueous solution of sodium acetate is much higher. In addition, the cut rates for dextrans with molecular weights of 70,000 and 70,000 are A, 3%, and 2%, respectively.
It was gross.

実施例コ 50重量%の硝酸ナトリウム水溶液gomtをジメチル
アセトアミトム−O−とジメチルスルホキシド/30θ
艷の混合溶媒に加え、均一溶液とし、実施例/で述べた
と同じポリスルボン7!;0?を加えてポリマー溶液と
した。このポリマー溶液がら実施例/と同様な方法で中
空糸状半透膜を得た。
Example 50% by weight aqueous sodium nitrate solution gomt was mixed with dimethylacetamitom-O- and dimethyl sulfoxide/30θ
The same polysulfone 7 as described in Examples was added to the mixed solvent of 艷 to make a homogeneous solution. ;0? was added to prepare a polymer solution. A hollow fiber semipermeable membrane was obtained from this polymer solution in the same manner as in Example.

中空糸の内径はθ2 tu 、外径は0.lImであっ
た。
The inner diameter of the hollow fiber is θ2 tu and the outer diameter is 0. It was lIm.

半透膜の純水での透水率は/ 0.j m’/m’弔・
憤であり、硝酸ナトリウム水溶液のかわりに水を用いた
場合の同じ形状の中空糸に対する透水率0.gmンIn
’ 1日、〜と比べて著しく大きい。分子量り万のデキ
ストランに対するカット率は17g%であった。牛血清
アルブミン及び馬心臓からのチトクロームCに対するカ
ット率はそれぞれ99チ、ざ5褒であった。
The water permeability of a semipermeable membrane with pure water is /0. j m'/m'condolence・
The water permeability for hollow fibers of the same shape when water is used instead of an aqueous sodium nitrate solution is 0. gm In
' 1 day, significantly larger than ~. The cut rate for dextran with a molecular weight of 10,000 was 17 g%. The cut rates for bovine serum albumin and cytochrome C from horse heart were 99 and 5, respectively.

実施例3 30重量%硝酸カリウム水溶液4’mlをジメチルホル
ムアミド53ノとプルビレソゲリコール、291から成
る混合溶液に加えて均一溶液とし、これに実施例/で述
べたと同じポリスルホン/1.Ofを溶解しポリマー溶
液とする。このポリマー溶液の粘度は/、r00センチ
ボイズ(,2o℃)である。このポリマー溶液から実施
例/と同様な方法で中空糸状半透膜を得た。中空糸の内
径はθ2關、外径はolI關であった。半透膜の純水で
の透水率はグQ m’/m″・日・層であり、硝酸カリ
ウム水溶液のかわりに水を用いた場合の同じ形状の中空
糸に対する透水率0.2m”7m−日・ηと比べて、著
しく大きい。分子蓋7万のデキストランに対するカット
率はss係であった。更に、ジメチルホルムアミドとプ
ルビレソゲリコールの混合溶媒のがわりにジメチルボル
ムアミド g/fを用い、上に述べたのと全く同様にし
て中空糸状半透膜を得た。その透水率は塩添加系ではl
 s Il+”/lr?・日・η、塩魚添加系では0ハ
υml・日・1であった。
Example 3 4'ml of a 30% by weight aqueous potassium nitrate solution was added to a mixed solution of 53% dimethylformamide and 291% pulviresogellicol to form a homogeneous solution, and to this was added the same polysulfone/1. Dissolve Of to obtain a polymer solution. The viscosity of this polymer solution is /, r00 centivoise (,2oC). A hollow fiber semipermeable membrane was obtained from this polymer solution in the same manner as in Example. The inner diameter of the hollow fiber was θ2 and the outer diameter was olI. The water permeability of a semipermeable membrane with pure water is guQ m'/m''·day·layer, and the water permeability with respect to a hollow fiber of the same shape when water is used instead of an aqueous potassium nitrate solution is 0.2 m''7 m- It is significantly large compared to day・η. The cut rate for dextran with a molecular cap of 70,000 was about ss. Furthermore, a hollow fiber semipermeable membrane was obtained in exactly the same manner as described above, using dimethylformamide g/f instead of the mixed solvent of dimethylformamide and pulviresogelicol. Its water permeability is l in the salt-added system.
s Il+''/lr?・day・η, and in the salt fish addition system it was 0haυml・day・1.

実施例ダ SO%硝酸ソーダ溶液2−を、N−メチルピロリドン 
左グ2とジメチルスルホキシド、29Fから成る混合溶
液に加えて、均一溶液とし、これに実施例/で述べたと
同じポリスルホン/乙1を加えてポリマー溶液とした。
Example 2: SO% sodium nitrate solution 2-, N-methylpyrrolidone
A homogeneous solution was prepared by adding the mixed solution consisting of Left Group 2, dimethyl sulfoxide, and 29F, and the same polysulfone/Otsu 1 as described in Example 1 was added to this to prepare a polymer solution.

このポリマー溶液の粘度は/30θセンチポイズ(20
℃)である。このポリマー溶液を中空糸製造用の環状ノ
ズルから押し出し、実施例/と同様な方法で中空糸を製
造する際に、ノズルからの押し出し速度及び巻き取り速
度を調節することにより、膜厚30μから350μに種
々の膜厚を有する中空糸状半透膜を得、それらの透水率
と表面における細孔の径の膜厚依存性を調べた。その結
果は第2図に示す如くである。表面における細孔の径は
分子量7万のデキストランカット率より、デキス)・ラ
ンを球状分子と仮定し、計算により求めた。
The viscosity of this polymer solution is /30θ centipoise (20
℃). This polymer solution is extruded through an annular nozzle for producing hollow fibers to produce hollow fibers in the same manner as in Example/1. By adjusting the extrusion speed from the nozzle and the winding speed, the film thickness ranges from 30 μm to 350 μm. Hollow fiber semipermeable membranes with various thicknesses were obtained, and the dependence of their water permeability and pore diameter on the membrane thickness was investigated. The results are as shown in FIG. The diameter of the pores on the surface was calculated based on the cutting rate of dextran with a molecular weight of 70,000, assuming that dextran was a spherical molecule.

なお、ここで得た膜厚ユ60μの中空糸の断面の電子顕
微鏡写真(倍率、:t’to倍)を第3図に示す。
Incidentally, an electron micrograph (magnification: t'to times) of a cross section of the hollow fiber having a film thickness of 60 μm obtained here is shown in FIG.

実施例S SO重蓄%硝酸ソーダ溶液−一を、N−メチルピロリド
ン5lIyとジメチルスルホキシド 2?2から成る混
合溶液に加えて均一溶液とし、これに実施例/で述べた
と同じポリスルホンを種々の量溶解し、ポリマーの重量
%にして、/l17、/&0゜/&j、/、Sニア%の
り種のポリマー溶液を作った。これらのポリマー溶液の
粘度は20″CでそれぞれgbO,/θ00.//30
./300センチボイズであった。
Example S One SO heavy accumulation% sodium nitrate solution was added to a mixed solution consisting of 5 lIy of N-methylpyrrolidone and 2 to 2 dimethyl sulfoxide to form a homogeneous solution, and to this was added various amounts of the same polysulfone as described in Example/ A polymer solution of /l17, /&0°/&j, /,Snear% glue seed was prepared by dissolving the polymer in weight percent. The viscosity of these polymer solutions at 20″C is gbO, /θ00.//30, respectively.
.. /300 centiboise.

これらのポリマー溶液から実施例/で述べたと同様の方
法で中空糸状半透膜を製造した。得られた中空糸はいず
れも内径θ2鯨、外径o4tsoiで膜厚100μのも
のである。これら中空糸の純水に対する透水率及び表面
の細孔の径は第1表に示す如くである。
Hollow fiber semipermeable membranes were produced from these polymer solutions in the same manner as described in Examples. The obtained hollow fibers each had an inner diameter of θ2, an outer diameter of o4tsoi, and a film thickness of 100μ. The water permeability of these hollow fibers to pure water and the diameter of the pores on the surface are as shown in Table 1.

第    l    表 実施例6 実施例5で製造したポリマー濃度が/グツと757重量
%の場合の中空糸断面の走査型及び透過型電子顕微鏡写
真の結果より、中空糸の内表面から膜内部へ向けての距
離lと、その位置における細孔の半径rを測定し、両者
の関係を第1図に示した。
Table l Example 6 From the results of scanning and transmission electron micrographs of the cross section of the hollow fiber produced in Example 5 when the concentration of the polymer was 757% by weight, it was found that the direction from the inner surface of the hollow fiber to the inside of the membrane was The distance l between the two points and the radius r of the pore at that position were measured, and the relationship between the two is shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は細孔の半径と中空糸内表面からの距離との関係
を示すグラフであり、第2図は透水率及び表面細孔の径
に膜厚の関係を示すグラフである。 第3図は実施例qで得た膜厚、260μの中空糸の断面
の電子顕微鏡写真(倍率211O倍)である。 特許出願人 旭化成工業株式会社 代理人弁理士  星   野     透第1 ;?””:+、 3   、Iy− ・・・−・5./′ 1)0 11″字、イく内在性j1 7.1ぐソ〜/−バ乞7体、1ノー、’7%′\ぐ $00 /))1つ*、li″F7知゛「で(1つCps 2.
  L、<、I □ 、[ ・、・鳥−1 (・ 1 ・1゜ 1    ) \1、 1−1 −3. 1(’、、+(、)                
  4.o ()11”+“之−15仁   (′j1
))第3 1り(I
FIG. 7 is a graph showing the relationship between the radius of the pore and the distance from the inner surface of the hollow fiber, and FIG. 2 is a graph showing the relationship between the membrane thickness and the water permeability and the diameter of the surface pore. FIG. 3 is an electron micrograph (magnification: 211Ox) of a cross section of the hollow fiber having a film thickness of 260μ obtained in Example q. Patent applicant Asahi Kasei Industries Co., Ltd. Representative Patent Attorney Toru Hoshino No. 1 ;? "":+, 3, Iy-...-5. /' 1) 0 11" character, iku immanence j1 7.1guso~/-ba begging 7 bodies, 1 no, '7%'\gu$00 /)) one*, li"F7 knowledge “And (1 Cps 2.
L, <, I □ , [ ・,・Bird-1 (・ 1 ・1゜1 ) \1, 1-1 -3. 1(',,+(,)
4. o ()11"+"-15 jin ('j1
)) 3rd 1st (I)

Claims (1)

【特許請求の範囲】[Claims] (1)、芳香族ポリスルホンを溶解する極性有機溶媒と
、該極性有機溶媒と混和するが、芳香族ポリスルボンを
溶解しない溶媒との混合溶媒に芳香族ポリスルホンを溶
解した溶液に、更に電解質水溶液を共存させて得られる
溶液を、中空糸状に成形した後、該混合溶媒と混和する
が、芳香族ポリスルホンを溶解しない液体と接触させて
脱溶媒を行なうことを特徴とする芳香族ポリスルホン中
空糸状半透膜の製造法。
(1) An aqueous electrolyte solution is added to a solution in which aromatic polysulfone is dissolved in a mixed solvent of a polar organic solvent that dissolves aromatic polysulfone and a solvent that is miscible with the polar organic solvent but does not dissolve aromatic polysulfone. An aromatic polysulfone hollow fiber-like semipermeable membrane, characterized in that the solution obtained is formed into a hollow fiber shape and then brought into contact with a liquid that is mixed with the mixed solvent but does not dissolve the aromatic polysulfone to remove the solvent. manufacturing method.
JP9242883A 1983-05-27 1983-05-27 Production of hollow yarn-like semipermeable membrane made of aromatic polysulfone Granted JPS5962311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9242883A JPS5962311A (en) 1983-05-27 1983-05-27 Production of hollow yarn-like semipermeable membrane made of aromatic polysulfone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9242883A JPS5962311A (en) 1983-05-27 1983-05-27 Production of hollow yarn-like semipermeable membrane made of aromatic polysulfone

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5291978A Division JPS54145379A (en) 1978-05-02 1978-05-02 Aromatic polysulfone hollow fiber semipermeable membrane

Publications (2)

Publication Number Publication Date
JPS5962311A true JPS5962311A (en) 1984-04-09
JPS6144526B2 JPS6144526B2 (en) 1986-10-03

Family

ID=14054163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9242883A Granted JPS5962311A (en) 1983-05-27 1983-05-27 Production of hollow yarn-like semipermeable membrane made of aromatic polysulfone

Country Status (1)

Country Link
JP (1) JPS5962311A (en)

Also Published As

Publication number Publication date
JPS6144526B2 (en) 1986-10-03

Similar Documents

Publication Publication Date Title
US4351860A (en) Polyaryl ether sulfone semipermeable membrane and process for producing same
US4481260A (en) Aromatic polysulfone type resin hollow fiber membrane and process for producing the same
US5049276A (en) Hollow fiber membrane
US4822489A (en) Aromatic polysulfone type resin hollow fiber membrane and a process for producing the same
JPH0122003B2 (en)
CN103501878B (en) Performance enhancing additives for fiber formation and polysulfone fibers
JPS62117812A (en) Hollow fiber and its production
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
JPS5962311A (en) Production of hollow yarn-like semipermeable membrane made of aromatic polysulfone
JPH0832295B2 (en) Method for producing composite hollow fiber membrane
JPH0323647B2 (en)
JPH0376969B2 (en)
JP2818366B2 (en) Method for producing cellulose ester hollow fiber membrane
JP2868558B2 (en) Manufacturing method of high-strength, high-flux polysulfone hollow fiber membrane
JP2512909B2 (en) Method for producing hollow fiber porous membrane
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JPH0829241B2 (en) Polysulfone hollow fiber membrane
JPH0756084B2 (en) Polysulfone resin hollow system and method for producing the same
JPH06319967A (en) Porous hollow fiber membrane with continuous multiphase separating structure and production thereof
JPH0829242B2 (en) Polysulfone hollow fiber membrane
JP2818352B2 (en) Manufacturing method of hollow fiber membrane
JPH03186324A (en) Preparation of porous hollow yarn membrane
JPS5834009A (en) Preparation of aromatic polysulfone hollow semi-permeable membrane
JPH02164424A (en) Manufacture of hollow fiber membrane of synthetic polymer