JPS5834009A - Preparation of aromatic polysulfone hollow semi-permeable membrane - Google Patents

Preparation of aromatic polysulfone hollow semi-permeable membrane

Info

Publication number
JPS5834009A
JPS5834009A JP13190481A JP13190481A JPS5834009A JP S5834009 A JPS5834009 A JP S5834009A JP 13190481 A JP13190481 A JP 13190481A JP 13190481 A JP13190481 A JP 13190481A JP S5834009 A JPS5834009 A JP S5834009A
Authority
JP
Japan
Prior art keywords
membrane
hollow
aromatic polysulfone
glycol
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13190481A
Other languages
Japanese (ja)
Inventor
Takashi Nomi
隆 能美
Yasuo Hashino
橋野 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13190481A priority Critical patent/JPS5834009A/en
Priority to US06/491,340 priority patent/US4822489A/en
Priority to DE8282902468T priority patent/DE3270865D1/en
Priority to PCT/JP1982/000329 priority patent/WO1983000705A1/en
Priority to EP82902468A priority patent/EP0086235B1/en
Publication of JPS5834009A publication Critical patent/JPS5834009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To prepare a hollow semi-permeable membrane having high water permeability and mechanical properties, by a method wherein a solution of an aromatic polysulfone in which glycols are also present is extruded in a hollow shape and the resulting hollow extrudate is coagulated. CONSTITUTION:An aromatic polysulfone is dissolved in a polar org. solvent such as N-methylpyrrolidone, dimethylformamide or dimethylacetamide and glycols such as ethylene glycol, propylene glycol, glycerol or trimethylolpropane are added to the resulting solution in an amount of 0.5% or more. The obtained mixed solution is extruded through an annular die and the extrudate is coagulated in a coagulating bath such as water from the inner and the outer sides thereof. Because of the presence of glycol, fine pores are formed to increase the water permiability 2-10 times and the precipitation of the polymer is facilitated to give a layer having no voids on the surface of a membrane. Thus a hollow membrane excellent in compaction resistance and mechanical strength is obtained.

Description

【発明の詳細な説明】 本実11i#i下記一般式(1)で表わされる繰返し単
位を有する芳香族ポリスルフォン (但し、式中X、 X’S!’、 !”轄メチル、エチ
ル等のアル中ル、クロル、プロ五等のへ田ゲンの非解離
性置換基又11−COOH、gO,H等の解離性置換基
をあられしXl−%IXI N n %・ho又は参謀
下の整数をあられす。) からなる高度の透水性、機械的物性を有する中空状半透
膜の製造方法に関する0本発明の製造方法により得られ
る芳香族ポリスルフォン中空状半透膜は、基本的には特
開昭jグー141332号公報開示のものと同様の構造
を有する。今般、本発明者らは、グリコール類の共存す
る芳香族ポリスルフォンの溶液を中空押出凝固させるこ
とにより、前記先行発明と同等乃至更に優れた性能を有
する芳香族ポリスルフォン中空状膜が得られることを見
出した。
Detailed Description of the Invention Aromatic polysulfone having a repeating unit represented by the following general formula (1) (provided that X, X'S!', !" in the formula include methyl, ethyl, etc.) Non-dissociative substituents such as alkyl, chlor, pro-5, etc. or dissociative substituents such as 11-COOH, gO, H, etc. The aromatic polysulfone hollow semipermeable membrane obtained by the manufacturing method of the present invention basically has special properties. It has a structure similar to that disclosed in Kaisho J Gu No. 141332.The present inventors have now achieved a solution equivalent to or similar to the prior invention by hollow extrusion solidifying a solution of aromatic polysulfone in which glycols coexist. It has been found that an aromatic polysulfone hollow membrane having even better performance can be obtained.

本発明の方法社、高濃度の重合体溶液から高度の透水性
と機械的物性とを兼ね具えたポリスルフォン中空状半透
膜の製造を可能とする点において注目される。
The method of the present invention is noteworthy in that it enables the production of a polysulfone hollow semipermeable membrane having both high water permeability and mechanical properties from a highly concentrated polymer solution.

本発明は、グリフール類を含む芳香族ポリスルフォンの
極性有機溶媒溶液を環状ノズルから中空状に吐出させた
後、腋混合溶媒と混和するが芳香族ぎりスルフォンを涜
解しない液体と接触させて脱l#媒を行なうことを特徴
とする中空状半透膜の製造方法に関するものである。
The present invention involves discharging a polar organic solvent solution of aromatic polysulfone containing glyfurs into a hollow shape from an annular nozzle, and then contacting it with a liquid that is miscible with the axillary mixed solvent but does not disturb the aromatic polysulfone. The present invention relates to a method for manufacturing a hollow semipermeable membrane, characterized in that a l# medium is used.

グQコールIiを含む芳香族ポリスルフォンの極性有機
溶媒の溶液社、芳香族ポリスルフォン重合体を良く溶解
する極性の有機溶媒に溶解し、グリコール類を添加する
ことによって調製することができる。
A solution of aromatic polysulfone containing glycol Ii in a polar organic solvent can be prepared by dissolving the aromatic polysulfone polymer in a polar organic solvent that well dissolves the polymer and adding glycols.

この混合溶液を代表的には中空糸製造用の環状ノズルか
ら押し出し、内外から凝固させることにより本発明の中
空状半透膜が得られる。中空状半透膜の形成に際して社
、極性有機溶媒中に溶解した芳香族ポリスルホンが内外
両表面からの凝固溶液の浸入により、グリコールを核と
して周囲に沈澱を生じグリコールの互に接する部分が細
孔を形成すると推定される。グリコールの存在は細孔の
形成の核として意味があり、透水性能の向上に大いに寄
与するものてあり、グリコールを使用しない場合に比べ
、透水率は約2〜70倍に増加すると共にポリマー鎖の
広がりに影響し、膜構造に何らかの影響14えると推定
される。グリコールが存在すると芳香族ポリスルホンの
極性有機溶媒と非ずかな凝固溶液にも沈澱を生じゃすく
なり、その為に内外両表面からの凝固溶液の浸入にょシ
、容易に表面に空洞の無い層が形成されるのであろう。
The hollow semipermeable membrane of the present invention can be obtained by extruding this mixed solution typically through an annular nozzle for manufacturing hollow fibers and coagulating it from the inside and outside. When forming a hollow semipermeable membrane, aromatic polysulfone dissolved in a polar organic solvent enters the coagulation solution from both the inner and outer surfaces, causing precipitate around the glycol core, and the areas where the glycols touch each other become pores. is estimated to form. The presence of glycol is significant as a nucleus for the formation of pores, and greatly contributes to improving water permeability. Compared to the case where glycol is not used, water permeability increases approximately 2 to 70 times, and the polymer chain It is estimated that this affects the spread and has some influence on the membrane structure. The presence of glycol makes it difficult for aromatic polysulfone to form a precipitate in the polar organic solvent and even in a small coagulation solution, which prevents the coagulation solution from penetrating from both the inner and outer surfaces, easily forming a void-free layer on the surface. It will probably be formed.

極性有機溶媒としては、N−メチルピロリドン、ジメチ
ルホルムアミド、ジメチルアセトアミドが用いられる。
As the polar organic solvent, N-methylpyrrolidone, dimethylformamide, and dimethylacetamide are used.

グリコール類の混合割合蝶、混合溶液が均一な溶液状態
を保てる範囲ならばいかなる割合でもよいが、重量−で
少くともQ、j−以上添加し、重合体の漉度、溶媒と中
空成形性及び膜性能を考慮して決めればよい。
Mixing ratio of glycols Any ratio may be used as long as the mixed solution can maintain a uniform solution state, but it should be added at least Q, J- or more by weight, and the strainability of the polymer, solvent and blow moldability, etc. It may be determined by taking membrane performance into consideration.

クリコール類としては、エチレングリフール、ジエチレ
ングリコール、トリエチレングリコール、テトラエチレ
ングリコール、ポリエチレングリコール(分子量−〇〇
、too 、 1oooXtooo−1ト) 、フリピ
レングリコール、ジプロピレングリコール、Fジプロピ
レングリコール、ポリプロピレングリ”−1k C分子
量2oo″、too、コoooStooo) &ど、グ
リセリン、トリメチロールプロパン、ポリテトラエチレ
ングリコールな挙げることができ°る。
Examples of glycols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol (molecular weight -○○, too, 1oooXtooo-1), flipylene glycol, dipropylene glycol, F dipropylene glycol, polypropylene glycol. Examples include glycerin, trimethylolpropane, and polytetraethylene glycol.

製膜原箪としてのポリマーSmの員度は1o−is重量
暢、好ましくは/J〜30重量囁である。3!重量慢を
こえると、得られる半透膜の透水性能が実用的な意味を
持°たない捻と小さくなり、又j重量囁より低い鏝度で
は、十分な強度をもった中空状半透膜は得られない。凝
giiiiとしては、水が最も一般的に用いられるが、
ポリマーを溶解しない有機*Sを用いても良(、またこ
れら非SSを二種以上混合して用いても嵐い。又内外の
凝閤筐としセ異なった原状または異なった筐体層成のa
m*を用いることも回部である。
The strength of the polymer Sm as a film forming base is 10-is weight, preferably /J to 30 weight-thin. 3! If the weight exceeds the weight, the water permeability of the resulting semipermeable membrane will become so small that it has no practical meaning, and if the trowel is lower than the weight, the hollow semipermeable membrane will not have sufficient strength. cannot be obtained. Water is most commonly used as coagulation giii, but
It is possible to use organic*S that does not dissolve the polymer (and it is also possible to use a mixture of two or more of these non-SS).Also, it is possible to use a mixture of two or more of these non-SS. a
Using m* is also a gyration.

かかる製法によって得ら祭た芳香族ポリスルホン中空状
半透膜は、中空糸の内側及び外側の両表勇部K11l孔
を有し、空洞の全くない層を持ち、これらの中間層も陳
真画層と連続した重合体相を形成している。細孔の価は
中空糸の両表貢から膜内部に行<KIEつて徐々に増大
し1両貴勇からほぼ等距離にある膜内部で最大となる。
The aromatic polysulfone hollow semipermeable membrane obtained by this manufacturing method has K11 holes on both the inner and outer surfaces of the hollow fibers, and has a layer with no cavities, and these intermediate layers are also similar to those of the Chen Zhen layer. forms a continuous polymer phase. The pore value gradually increases from both sides of the hollow fiber to the inside of the membrane, and reaches its maximum inside the membrane at approximately the same distance from the two sides of the hollow fiber.

そして、孔径の大きさの変化は膜suiから内*に−わ
たって連続的であるテーパー状榔造をとる。内表面及び
外表藺の細孔の甑は/ 0−1001の範8にある。
The change in pore diameter takes on a continuous tapered structure from the membrane sui to the inner part. The pores on the inner and outer surfaces are in the range 8/0-1001.

その径は種々の興なる平均分子量のデキストラン水si
i、及び各種タンパク質水Stを流した際の透過阻止率
の一定と、透過置電子顕黴鏡による表両付近の観察によ
り推定される。中空糸の両aiii付近には、紡糸条件
による違いはあるが、表面から内11に向かつて#/〜
!ミクロン程度の厚さにわたり、空洞は全く存在しない
。9L#の全くないlI藺付近の層と連続した重合体相
な形成する膜内部の層には、空洞が存在する場合がある
。空洞は。
Its diameter varies depending on the average molecular weight of dextran water.
It is estimated based on the constant transmission rejection rate when flowing i and various protein waters St, and observation of the vicinity of both surfaces using a transmission electron microscope. There are differences depending on the spinning conditions near both aiii of the hollow fiber, but from the surface to the inner 11 #/~
! There are no cavities present over a thickness of the order of microns. Cavities may exist in the inner layer of the membrane, which is a polymer phase that is continuous with the layer in the vicinity of 9L#, which is completely free of 9L#. The cavity is.

膜t−彫成する重合体の欠落した部分であり、その直径
は10μを趣える値である。したがって、本発明では、
@ioμ以下のもの&−細孔という。
Membrane T - This is the missing part of the polymer to be carved, and its diameter is approximately 10μ. Therefore, in the present invention,
Those smaller than @ioμ are called pores.

一般に!2!桐は膜厚を薄くすると少なくなり、膜厚を
100μ以下にすると空洞の少ない中空糸が審aにでき
る。空洞が少ない中空糸は、耐圧書化。
in general! 2! The amount of paulownia decreases when the film thickness is reduced, and when the film thickness is reduced to 100 μm or less, hollow fibers with fewer cavities can be created. Hollow fibers with few cavities are pressure resistant.

機械的強tに優れ、かつ透水性能・も良好である。It has excellent mechanical strength and good water permeability.

空l11Mが存在しない場合は勿論、空洞の存在する場
合も、膜の内部の層には多機の細孔が存在し、七01&
は膜SUSから内部に向って遠ざかるに従い連鎖的に徐
々に増大し両amよりaPi等距離にある部分で最大と
なり、その平均径は電子皐黴鏡による観Sによれば0.
0j−10μである。膜e1mから膜の内部に向つ【達
ざかるKit−い細孔の径が増大するのは、凝−が真自
から内部に向っておこるために、表面では早く、内部に
ゆ<Kitつてゆっくり凝−するためと考えられる。従
って、膜表内から円11に向って距−jだけ―れた位置
にある細孔の牛11rはjの員数となり、−例として一
〇重量嘔濃度のポリスルホン(ユニオン・カーバイト社
員、実施例で用いたものと同じ〕をジメチルアセトアミ
ド(DMAC)−テトラエチレングリコールの系で紡糸
した膜厚300ミクロンの中空糸につい曵Iとrの関係
をII/ llIc示す。
Not only in the absence of cavities, but also in the presence of cavities, there are multiple pores in the inner layer of the membrane.
increases gradually in a chain reaction as it moves inward from the film SUS, and reaches its maximum at a portion equidistant from both am and aPi, and its average diameter is 0.
0j-10μ. The diameter of the pores that reach the inside of the membrane from the membrane e1m increases because condensation occurs from the inside toward the inside, quickly at the surface and slowly at the inside. This is thought to be for the purpose of concentrating. Therefore, the number of pores 11r located at a distance j from the membrane surface toward the circle 11 is j, and for example, polysulfone with a concentration of 10% by weight (union carbide employee, conducted The relationship between I and r is shown as II/llIc for a hollow fiber with a film thickness of 300 microns spun using a dimethylacetamide (DMAC)-tetraethylene glycol system.

本中空糸Kmいては膜厚にもよるが、−10〜30C−
・日・気圧の高透水性を示し、特に高#kllポリ!−
で紡糸した膜厚の薄い中空糸では高い透水性を示す、 
−*に同一条件下で紡糸された芳香族ポリスルホン中空
糸では透水率は、II/IQK示したのと同じ中9糸に
ついて、JIIJ図に示すように、膜厚に反比例し、膜
厚が薄くなると増大する事実が見い出された◎ ポリアクリミニトリル、スルホン化ポリスルホン、ポリ
カーlネート、セルレースアセテート等の異方性半透膜
では、透水性は1lli1層(スキン層とも呼ぶ)Kよ
って規定されると言われている力瓢本実羽の半透膜は空
洞のある無しにかかわらず、表面から中空状膜内部に至
る全ての層に、透水性に対する抵抗を有し、膜厚全体が
透水性を規定すると考えられる。さらに、同一条件下で
紡糸された膜厚の異なる芳香族ポリスルホン中空糸では
表−の細孔の径はほとんど同じであり、又、空洞の存在
しないlI!雨付近の層の厚さも膜厚に依らず一定であ
ることが、それぞれデキストラン及び各種タンパク質に
対する阻止率及び電子皐黴鏡写真により確認されるが、
にもかかわらず、透水率が膜厚に反比例すると一;5事
実は、膜を介しての水圧流に対する抵抗は膜厚全体によ
って生ずるものであることを示し、異方a半透膜に於け
るよ5に、*一層のみ(より決fるものではない。さら
に、両前IIiに空洞のない層を持つにもかかわらず、
高い遥水性簡を持つことはこのことな支持する・。
This hollow fiber Km depends on the film thickness, but -10~30C-
・Exhibits high water permeability under daily and atmospheric pressure, especially high #kll poly! −
Thin hollow fibers spun with high water permeability.
- For the aromatic polysulfone hollow fibers spun under the same conditions as in *, the water permeability is inversely proportional to the membrane thickness, as shown in the JIIJ diagram for the same medium 9 yarns as shown in II/IQK, and the membrane thickness is thinner. It has been found that the water permeability increases with the increase of water permeability in anisotropic semipermeable membranes such as polyacryminitrile, sulfonated polysulfone, polycarbonate, and cellulose acetate. It is said that the semi-permeable membrane of Chikyoumoto Miwa has resistance to water permeability in all layers from the surface to the inside of the hollow membrane, regardless of whether there is a cavity or not, and the entire thickness of the membrane is water permeable. It is considered that the Furthermore, in aromatic polysulfone hollow fibers with different membrane thicknesses spun under the same conditions, the diameters of the pores on the surface are almost the same, and there are no cavities. The thickness of the layer near the rain is also constant regardless of the film thickness, as confirmed by the rejection rate for dextran and various proteins and the electron microscopic photograph, respectively.
Nevertheless, the fact that water permeability is inversely proportional to membrane thickness indicates that the resistance to hydraulic flow through a membrane is due to the entire membrane thickness, and the 5. * Only one layer (more indeterminate. Furthermore, despite having layers without cavities on both front IIi,
Having a high water resistance will support this.

このようにして得られた中!糸は薄膜化により透水率を
極めて大きくすることがWJ#!であり、かつ両IIm
に!!!潤のない層を有する構造をもつためj!洗が可
能であり、かつ圧密化が少なくなり、種薯操作時に於け
る変化が少な(、使用に便判となり、機械的像度も優れ
たものとなる。
Inside thus obtained! WJ#! The thread has extremely high water permeability by making it a thin film! and both IIm
To! ! ! Because it has a structure with a moisture-free layer, j! It can be washed, there is less compaction, there are fewer changes during seedling operation (it is convenient to use, and the mechanical image quality is excellent).

さらに、薄膜鋼内後の中9糸はプツィミングボリエーム
が小さくかつ表面積を大きくすることが可能の為、飼え
ば、Pm1l&人工腎臓用の膜或いは腹水の蛋白濃―膜
をはじめとする台種誕療用濾過膜としても有用できる。
In addition, the medium 9th thread after the thin film steel has a small Pziming volume and a large surface area, so if kept, it can be used as a membrane for Pml and artificial kidneys or ascites protein-concentrated membrane. It can also be useful as a filtration membrane for seed birth therapy.

以下、夷11sf4tcより詳細にlI!明する。Below is more details from Ii11sf4tc! I will clarify.

実施fil。Implementation fil.

濤厳とし゛てジメチルアセトアンド、添m剤とし【テト
ラエチレングリコールを選定し、ポリマー  ・) で衆わされる繰返し単位を有するポリスルホン(以下ポ
リスルホンと記す)をそれぞれ、71:り:一〇重量嘩
の開会で混合し均一な**とした。
Dimethyl acetate was selected as an additive, and polysulfone (hereinafter referred to as polysulfone) having a repeating unit that is composed of [selected tetraethylene glycol and polymer] was added as an additive, and 71:1:10 wt. At the opening of the test, the mixture was mixed to make a uniform **.

本ポリマーSgを中空糸製造用の層状ノズルから押し出
し、内部及び外部凝−筐として精製水を用い、諌ポリマ
ーIltを内外両から凝a′:5せ、中空状多孔膜を紡
糸した。この峙、中空糸紡糸条件は以下の通りとした。
This polymer Sg was extruded from a layered nozzle for producing hollow fibers, purified water was used as the inner and outer coagulation casings, and the cylindrical polymer Ilt was coagulated from both the inside and outside with a':5 to form a hollow porous membrane. In this regard, the hollow fiber spinning conditions were as follows.

ノズルから外部凝固IEtでの距離(以下空中滝行距−
とIej)/、1体、 得られた中空糸の性質は以下の通り、内径07!−1外
径/、3jwm、膜厚0.J■、透水率lコめ曾・日・
気圧−jc、破裂強度j / KVIL”、デキストラ
ン分子量IC,≠X/り、7X10番に対するカット率
は、それぞれ2≠、0%、20.0暢、tJ、0%であ
った。
Distance from the nozzle to external coagulation IEt (hereinafter referred to as aerial waterfall travel distance)
and Iej)/, 1 body, The properties of the obtained hollow fiber are as follows, inner diameter 07! -1 outer diameter/, 3jwm, film thickness 0. J■、Water permeability lkomeseng・day・
The cut rates for atmospheric pressure −jc, burst strength j/KVIL”, dextran molecular weight IC,≠X/ri, and 7×10 were 2≠0%, 20.0%, and tJ, 0%, respectively.

実施例2.−15゜ 実施1mlと同様なやり方で、種々な添加剤を菖え中9
糸#糸を行った。中空糸jI[i[に加えた添1剤及び
得られた中空糸の性質を矛/IIK示す。
Example 2. -15° In the same manner as the 1 ml test, various additives were added.
Yarn # Yarn was done. The additive added to the hollow fiber jI[i[ and the properties of the obtained hollow fiber are shown below.

比較例1゜ 実施例1と同一のポリマーS箪を用い、鳳IIE亀度λ
7CにてドクタープレイドKl#41’00tsnre
ガフス板上にキャストした後、7分間放置し、JjCの
水中で凝−させた。得られた多孔膜平膜の諸性質は以下
の通り、膜厚J 00−、透水率o、oi(〜・日・気
圧)、弾性率i 3/ i <Kg/d )、強度ぶO
((讐)以下、 比較例2.3゜ ポリスルホン10p、N−メチルビo9ドンタop#t
so℃にて混合し均一なtSCとした。この流し込み筐
をガラス板上に、ドクタープレイドを用い膜厚コ30μ
mで流駕した。得られた多孔膜平膜の諸性質は以下の過
9:膜厚100sp*、透水率よd/d−日・気圧、弾
性率コJIQIld、強度/ OKf’d以下。
Comparative Example 1゜Using the same polymer S as in Example 1,
Dr. Plaid Kl#41'00tsnre at 7C
After casting on a gaff plate, it was left to stand for 7 minutes and allowed to solidify in JJC water. The properties of the obtained porous flat membrane are as follows: film thickness J00-, water permeability o, oi (~・day・atmospheric pressure), elastic modulus i3/i<Kg/d), and strength O.
(Hereinafter, Comparative Example 2.3゜Polysulfone 10p, N-methylbio9 donta op#t
The mixture was mixed at 0.degree. C. to obtain a uniform tSC. Place this poured casing on a glass plate and use Dr. Plaid to make a film with a thickness of 30 μm.
I ran away with m. The properties of the obtained porous flat membrane are as follows: thickness: 100 sp*, water permeability: d/d-day/atmospheric pressure, elastic modulus: JIQIld, strength: OKf'd or less.

本5at−用い内部凝−INK水を用いて中空糸紳糸j
Ill状ノズルから空中K1m糸し、ポリマな中空糸内
側より凝−させ、中!糸を紡糸した。
Hollow fiber yarn j using internal coagulation using INK water
A K1m thread is passed through an Ill-shaped nozzle in the air, and the polymer hollow fiber is coagulated from the inside. The yarn was spun.

祷られた中空糸膜は、内@0.71wm、外径i、3z
−1膜厚03■、逓水率j d7d・日・気圧コjc、
l11豐強度/J墜留1強度/ 01LIld 、弾性
率λ!牟−であった。
The desired hollow fiber membrane has an inner diameter of 0.71wm, an outer diameter of i, and a diameter of 3z.
-1 film thickness 03■, water flow rate j d7d・day・atmospheric pressure jc,
l11 strength / J 1 strength / 01LIld, elastic modulus λ! It was mu-.

比較例4.5゜ ポリマーとしてポリスルホン2011.ml&としてジ
メチルアセドアイドIIIを温会し均一な濠筐とした1
本濤筐を用い厘*S度λ!℃にてドクタープレイドを用
いて膜厚?!Otamでガラス板上に牟ヤストした後、
1分間放置し23℃水中で凝−させた。
Comparative Example 4.5°Polysulfone 2011. 1. Warm dimethylacedoide III as ml and make a uniform moat 1
Using the Honto cabinet, 厘*S degreeλ! Film thickness using Dr. Plaid at ℃? ! After spraying on a glass plate with Otam,
It was left to stand for 1 minute and coagulated in water at 23°C.

得られた多孔膜平膜は、膜厚300μm、透水率QOO
jd7讐・日・気圧λItであった。
The obtained porous flat membrane had a thickness of 300 μm and a water permeability of QOO.
The atmospheric pressure was λIt.

本濤箪を用いて実施例1と同一の中空糸紡糸条件下で中
!糸を紡糸した所、得られた中空糸の諸性質は、内@0
.71曽、外徴i、ss■、膜厚0.J−1逓水率00
 / d7d・日・気圧コjc、稙−強度J / Q/
d 、強度!1(−1弾性率l!コl(−であった。
Under the same hollow fiber spinning conditions as in Example 1 using Hontokan! When the yarn was spun, the properties of the hollow fiber obtained were as follows:
.. 71 so, external characteristics i, ss■, film thickness 0. J-1 Water flow rate 00
/ d7d・day・atmospheric pressure jc, base strength J/Q/
d. Strength! 1(-1 elastic modulus l!kol(-).

此験儒6゜ ポリスルホンSSとしてジメチルアセトアミド、添加剤
としてテトラエチレングリコールをそれぞれio :t
i :り重量囁の割合で混合し均一な溶液とした。本S
*をドクタープレイドを用いてガラス板上にキャストし
た後、1分間放置し23℃水中で凝−させた。得られた
多孔膜平膜は膜厚300声、透水率! wlld・日・
気圧2タC1弾性率2/j畳−5強度2階−であった。
In this experiment, dimethylacetamide was used as the 6° polysulfone SS, and tetraethylene glycol was used as the additive, respectively.
i: A uniform solution was obtained by mixing at a ratio of about 100 ml by weight. Book S
* was cast onto a glass plate using Dr. Plaid, and left to stand for 1 minute to solidify in water at 23°C. The resulting porous flat membrane has a thickness of 300 mm and a water permeability! wlld・day・
The atmospheric pressure was 2 ta, C1, the elastic modulus was 2/j tatami, and the strength was 2 tatami.

比較例7゜ 10重量囁の硝酸ナトリクム水**to−をジメチルア
セトアミドλ420 IItとジメチルスルホキシド、
1300編の混合**ec、ii+え、さらに、実施例
のポリスルホン7に0 # Ik31えて均一なS筐と
した。本ポリマーSmから実施例/と同様な方法で。
Comparative Example 7゜10% by weight of sodium nitrate water**to- was mixed with dimethylacetamide λ420 IIt and dimethyl sulfoxide,
A mixture of 1300 **ec, ii+et, and 0 # Ik31 was added to the polysulfone 7 of the example to make a uniform S casing. From this polymer Sm in a similar manner to Example/.

中空糸状牛遥膜な得た。中空糸の内機0.7j閣。A hollow fiber membrane was obtained. Hollow fiber inner machine 0.7j cabinet.

外@1.31wm、透水率/、 Owlld−日・気圧
、破裂強度/ j El/d 、弾性率?2μv/d、
強度30階−であった。又、分子量7 x / 0’の
デキストランに対するカット率は4c1%であった。
Outside @ 1.31wm, water permeability/, Owld-day/atmospheric pressure, bursting strength/j El/d, elastic modulus? 2 μv/d,
The strength was 30 stories. Further, the cut rate for dextran with a molecular weight of 7 x / 0' was 4c1%.

実施fl16゜ ポリスルホン(ps)、ジメチルアセトアミド(DMA
@)、テトラエチレングリコール(TgGンをそれぞれ
、にIニア/:りj1%の1金で混会し均一なS*とし
た執*Saの孔径のノズルから押し出すととにより、 
P3@0.7jwxrj外ll&が種々異なる膜厚WL
化した中空糸を鋳糸した。その偽の条件は、実施例lと
M榔である。
Implementation fl16° polysulfone (ps), dimethylacetamide (DMA)
@) and tetraethylene glycol (TgG) were mixed with 1% gold to form a uniform S* and extruded through a nozzle with a hole diameter of S*Sa.
P3@0.7jwxrj outer ll & various film thickness WL
The resulting hollow fibers were cast into fibers. The false conditions are Example 1 and M.

得られた中空糸膜のはいずれ411れた、徽***、弾
性率及びmat示した。これらの中空系の膜厚と透水率
の関係を才Jllec示す。
The obtained hollow fiber membrane had a value of 411, an elastic modulus, and a mat. The relationship between the membrane thickness and water permeability of these hollow systems is shown below.

夷jmll17.〜21゜ ポ1jマーとしてボタスルホン、添1剤として、テトラ
エチレングリコール、各穏濤厳を用いて陶は実施例1と
はは岡啼であった。偽の性質な才λ貴に示す。
夷jmll17. -21° Botasulfone was used as the polymer, tetraethylene glycol was used as the additive, and the pottery was different from that in Example 1. Show your fake talent and talent.

実施IHL〜26゜ ポリスルホン濃度厳としてDMAc、@1剤とし″(T
gGを用い、ポリスルホン及びDMAcJ)開会#を変
化させて、ポリスルホン濃度の異なる擬属用鳳筐を作り
、実1111111/と同様な方法で、中空糸を醜糸し
た。IIられた中!糸のlI性質を13表に示す。
Conducted IHL ~ 26° Polysulfone concentration was set to DMAc @1 agent'' (T
Using gG, polysulfone and DMAcJ) opening numbers were varied to create pseudogeneric casings with different concentrations of polysulfone, and the hollow fibers were made into filaments in the same manner as the fruit 1111111/. While being beaten! Table 13 shows the II properties of the yarn.

実施例27.〜34、 ポリスルホン(Pg)、ジメチルア竜ドアミド(DMA
e)%テトラエチレングリコール(TEG)を、それぞ
れ、コ0 ニア/ :りの割合で属合し均一なS*とし
た後、ポリマーStをll状ノズルから押し出し、内l
l及び外部凝固筐としてW*水を用い、蒙ポリマーを内
外画から凝■させ中空状多孔膜を口糸した。この時中空
糸纏糸用ノズルから外部凝■筐までの!中走行距離を種
々変化させ、得られた糸の性質を検討した。結果を才4
c、*vc°示す。
Example 27. ~34, polysulfone (Pg), dimethylamide (DMA)
e) After combining %tetraethylene glycol (TEG) at a ratio of Co 0 Nia/: R to make a uniform S*, extrude the polymer St from a ll-shaped nozzle, and
Using W* water as a liquid and an external coagulation box, the polymer was coagulated from the inside and outside to form a hollow porous membrane. At this time, from the hollow fiber wrapping nozzle to the external casing! The properties of the yarn obtained were examined by varying the running distance. Results 4
c, *vc° is shown.

観 略 和 実施$135.36゜ 実施例コアー3参と岡−の紡糸用X*を用い、環状ノズ
ルにて、空中滝行距@/、j信、内部及び外部凝iii
*としてメタノールを用い、ポリマーを凝−させた。得
られた中空糸は、円外@0.7j−1/、J!−1硫i
+in度、透水率、弾性率、強度共に真好なものが得ら
れた。
Implementation of Kansaiwa $135.36゜Example Using core 3 and Oka's spinning X
*The polymer was coagulated using methanol. The obtained hollow fiber has an outer circle @0.7j-1/, J! -1 sulfur i
Good results were obtained in terms of +in degree, water permeability, elastic modulus, and strength.

同IIK内部凝111EKメタノール、外部凝−ilに
本を用いても破襞強度、透水率、弾性率1強度共に良好
なものが得られた・
Good fracture strength, water permeability, and elastic modulus 1 strength were obtained even when the same IIK internal coagulation 111EK methanol and external coagulation were used.

【図面の簡単な説明】[Brief explanation of the drawing]

才l■は側孔の生機と中空糸内lll1からの距離との
関係を示すグラフである6オコ園は透水亭員−びlI!
菖麟孔の径と膜雫の勇係を示すグラフである。 矛3図は実施g4itで得られた中空糸の膜厚と透水率
の関係を示すグラフである。 畳許l臥 旭化威工1m株式会社 代履人弁七鳳 舒 道 紳 コし! 牛 イ受  J 丁 (F) 手続補正書(自発) 昭和56年12月2r日 特許庁長官島田春樹 殿 1、事件の表示 昭和56 年 特 許 願第13/り0≠号2、発明の
名称  芳香族ポリスルフォン中空状事件との関係 特
許出願人 4、代理人 6、 補正により増加する発明の数 なし7・ 補正の
対象 1.明細書の「発明の詳細な説明」「図面の簡単
な説明」 ■6図面 8、補正の内容 (別紙のとおり) 傭正の内容 1、 91輌書 (1)  第1oHi3行 「日・気圧コ!℃」をr日・気圧(水筆21 C1以下
同じ)」と訂正する。 (2)  第1J頁り行目 「ll3Ill」を「、第2図」と訂正する。 (3)  第17173行〜16行 「第2図は・・・・・・・・・である。第3図は・・・
・・・・・・である。」を 「第一図は実施例/Aで得られた中9糸の膜厚と透水率
の関係を示すグラフである。jと訂正する。 用0図面 図面を添付のものと差しかえる。 (訂正内容は、第1wAを僅かに訂正。第2図を削除、
第3図を第2図に変災、) 特許出願人 旭化成工業株式会社 代理人弁理士 星  野    透
Figure 1 is a graph showing the relationship between the gray material in the side hole and the distance from the inside of the hollow fiber.
It is a graph showing the relationship between the diameter of the irises and the thickness of the membrane drop. Figure 3 is a graph showing the relationship between the membrane thickness and water permeability of the hollow fiber obtained in the implementation g4it. Tatami is 1m Asahi Kaweiko 1m Co., Ltd. Daichiben Shichiho Shu Doshinkoshi! Ushii Uke J Ding (F) Procedural amendment (spontaneous) December 2r, 1980 Haruki Shimada, Commissioner of the Patent Office 1, Indication of the case 1981 Patent application No. 13/RI0≠2, Title of the invention Relationship with the aromatic polysulfone hollow case case Patent applicant: 4, attorney: 6 Number of inventions increased by amendment: None 7. Subject of amendment: 1. “Detailed explanation of the invention” and “Brief explanation of the drawings” in the specification ■6 Drawing 8, contents of the amendment (as attached) Contents of the license 1, 91 documents (1) 1st oHi line 3 “day and atmospheric pressure !℃" is corrected to "r days/atmospheric pressure (same as water brush 21 C1 and below)". (2) Correct the line "ll3Ill" on the 1st page J to read "Figure 2". (3) Lines 17173 to 16 “Figure 2 is...... Figure 3 is...
It is... '' is corrected as ``Figure 1 is a graph showing the relationship between the membrane thickness and water permeability of the medium 9 yarn obtained in Example/A. The corrections include a slight correction to 1st wA. Figure 2 has been deleted.
Figure 3 shows the disaster in Figure 2.) Patent applicant Toru Hoshino, patent attorney representing Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)  グリコール類を含む芳香族ポリスルフォン系
重合体の極性有機溶媒溶液を環状ノズルから中空状に吐
出させた後、該混合溶媒と混和するが芳香族ポリスルフ
ォンを溶解しない液体と接触させて脱溶媒を行なうこと
を特徴とする芳香族ポリスルフォン中空状半透膜の製造
方法。
(1) After discharging a polar organic solvent solution of an aromatic polysulfone-based polymer containing glycols into a hollow shape from an annular nozzle, the solution is brought into contact with a liquid that is miscible with the mixed solvent but does not dissolve the aromatic polysulfone. A method for producing an aromatic polysulfone hollow semipermeable membrane, which comprises removing the solvent.
JP13190481A 1981-08-22 1981-08-22 Preparation of aromatic polysulfone hollow semi-permeable membrane Pending JPS5834009A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13190481A JPS5834009A (en) 1981-08-22 1981-08-22 Preparation of aromatic polysulfone hollow semi-permeable membrane
US06/491,340 US4822489A (en) 1981-08-22 1982-08-23 Aromatic polysulfone type resin hollow fiber membrane and a process for producing the same
DE8282902468T DE3270865D1 (en) 1981-08-22 1982-08-23 Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same
PCT/JP1982/000329 WO1983000705A1 (en) 1981-08-22 1982-08-23 Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same
EP82902468A EP0086235B1 (en) 1981-08-22 1982-08-23 Aromatic polysulfone resin hollow yarn membrane and process for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13190481A JPS5834009A (en) 1981-08-22 1981-08-22 Preparation of aromatic polysulfone hollow semi-permeable membrane

Publications (1)

Publication Number Publication Date
JPS5834009A true JPS5834009A (en) 1983-02-28

Family

ID=15068882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13190481A Pending JPS5834009A (en) 1981-08-22 1981-08-22 Preparation of aromatic polysulfone hollow semi-permeable membrane

Country Status (1)

Country Link
JP (1) JPS5834009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132111A (en) * 1982-01-29 1983-08-06 Asahi Chem Ind Co Ltd Polysulfone hollow fiber
JPS58156018A (en) * 1982-01-29 1983-09-16 Asahi Chem Ind Co Ltd Polysulfone resin hollow fiber
JPS59228017A (en) * 1983-06-07 1984-12-21 Nitto Electric Ind Co Ltd Preparation of hollow yarn membrane of aromatic polysulfone

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142765A (en) * 1974-10-08 1976-04-12 Kanegafuchi Chemical Ind Bikoshitsumakuno seizoho
JPS5416381A (en) * 1977-07-06 1979-02-06 Kanegafuchi Chem Ind Co Ltd Preparation of ultrafiltrating membrane
JPS5426283A (en) * 1977-08-01 1979-02-27 Mitsui Petrochem Ind Ltd Preparation of semipermeable membrane of polysulfone
JPS5531474A (en) * 1978-08-29 1980-03-05 Nitto Electric Ind Co Ltd Selective permeable membrane
JPS5735906A (en) * 1980-08-12 1982-02-26 Kuraray Co Ltd Production of polysulfone-based membrane having selective permeability
JPS588516A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Preparation of polysulfone separation membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142765A (en) * 1974-10-08 1976-04-12 Kanegafuchi Chemical Ind Bikoshitsumakuno seizoho
JPS5416381A (en) * 1977-07-06 1979-02-06 Kanegafuchi Chem Ind Co Ltd Preparation of ultrafiltrating membrane
JPS5426283A (en) * 1977-08-01 1979-02-27 Mitsui Petrochem Ind Ltd Preparation of semipermeable membrane of polysulfone
JPS5531474A (en) * 1978-08-29 1980-03-05 Nitto Electric Ind Co Ltd Selective permeable membrane
JPS5735906A (en) * 1980-08-12 1982-02-26 Kuraray Co Ltd Production of polysulfone-based membrane having selective permeability
JPS588516A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Preparation of polysulfone separation membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132111A (en) * 1982-01-29 1983-08-06 Asahi Chem Ind Co Ltd Polysulfone hollow fiber
JPS58156018A (en) * 1982-01-29 1983-09-16 Asahi Chem Ind Co Ltd Polysulfone resin hollow fiber
JPH0323647B2 (en) * 1982-01-29 1991-03-29 Asahi Chemical Ind
JPH0350005B2 (en) * 1982-01-29 1991-07-31 Asahi Chemical Ind
JPS59228017A (en) * 1983-06-07 1984-12-21 Nitto Electric Ind Co Ltd Preparation of hollow yarn membrane of aromatic polysulfone

Similar Documents

Publication Publication Date Title
JP3232117B2 (en) Polysulfone porous hollow fiber
US20030134550A1 (en) Braid-reinforced hollow fiber membrane
JPH0350005B2 (en)
US4822489A (en) Aromatic polysulfone type resin hollow fiber membrane and a process for producing the same
JP2736992B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP2542572B2 (en) Hollow fiber
JPS5834009A (en) Preparation of aromatic polysulfone hollow semi-permeable membrane
JPH0478729B2 (en)
JP2008168224A (en) Hollow fiber porous membrane and its manufacturing method
JPH0323647B2 (en)
JP4781497B2 (en) Cellulose acetate hollow fiber separation membrane
JPS63296939A (en) Polyvinylidene fluoride resin porous film and its manufacture
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JP2954327B2 (en) Porous hollow fiber membrane
KR20010061733A (en) A polysulfone typed hollow fiber membrane, and a process of preparing for the same
JPH06343842A (en) Cellulose acetate hollow fiber separation membrane
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
JPS6329562B2 (en)
JPH02152528A (en) Production of porous hollow fiber
JPH0221930A (en) Polysulfone-based hollow yarn membrane
JPS59169510A (en) Anisotropic hollow yarn membrane
JPH0376970B2 (en)
JPH0722690B2 (en) Aromatic polysulfone hollow fiber membrane and method for producing the same
JPH04316607A (en) Production of porous solid yarn
JPS59209611A (en) Hollow yarn like membrane and preparation thereof