JPH0376970B2 - - Google Patents

Info

Publication number
JPH0376970B2
JPH0376970B2 JP59073005A JP7300584A JPH0376970B2 JP H0376970 B2 JPH0376970 B2 JP H0376970B2 JP 59073005 A JP59073005 A JP 59073005A JP 7300584 A JP7300584 A JP 7300584A JP H0376970 B2 JPH0376970 B2 JP H0376970B2
Authority
JP
Japan
Prior art keywords
shell layer
membrane
porous membrane
hollow
inner shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59073005A
Other languages
Japanese (ja)
Other versions
JPS60241904A (en
Inventor
Eiichi Murakami
Eiichi Masunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP7300584A priority Critical patent/JPS60241904A/en
Publication of JPS60241904A publication Critical patent/JPS60241904A/en
Publication of JPH0376970B2 publication Critical patent/JPH0376970B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、新規の特定された構造を有する中空
繊維状多孔質膜に関する。さらに詳細には、実質
的に2層構造をなしその外殻層が内殻層よりも緻
密である特有の構造を有する中空繊維状多孔質膜
に関する。特に体液処理に適した中空繊維状多孔
質膜を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a hollow fibrous porous membrane having a new and specified structure. More specifically, the present invention relates to a hollow fibrous porous membrane having a unique structure in which the outer shell layer is substantially two-layered and denser than the inner shell layer. The present invention provides a hollow fibrous porous membrane particularly suitable for treating body fluids.

〔従来技術〕[Prior art]

近年、腎炎、重症筋無力症、膠原病又は急性肝
炎などの治療に血漿交換療法が用いられている。
In recent years, plasma exchange therapy has been used to treat nephritis, myasthenia gravis, collagen disease, acute hepatitis, and the like.

血漿交換療法で、患者から取り出された血液か
ら血漿を分離して健康人の血漿をほぼ同量交換す
るものであるが、最近多孔性中空繊維を用いて簡
便に行う方法が普及しつつある。
Plasma exchange therapy involves separating plasma from blood taken from a patient and exchanging approximately the same amount of plasma from a healthy person.Recently, a simple method using porous hollow fibers has become popular.

一般的には、この血液から血漿を分離するため
に0.1μないし0.5μの孔径を有し、断面方向に均一
な多孔性の中空繊維が用いられているが、かかる
中空繊維は全体が網目状で且つ、空孔率の高い多
孔性のため非常に脆弱であつてリークが発生しや
すく、また使用時中に於ける濾過効率が低下する
などの問題も少なくない。
Generally, to separate plasma from blood, hollow fibers with pores of 0.1μ to 0.5μ and uniform porosity in the cross-sectional direction are used; Furthermore, due to its high porosity, it is extremely fragile and prone to leaks, and there are many problems such as a decrease in filtration efficiency during use.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の如き欠点をなくし、特に中空
繊維の脆弱性を改良し、製造工程及び使用中にお
けるリークの発生をなくし、更に、血漿の分離効
率を向上するものである。
The present invention eliminates the above-mentioned drawbacks, particularly improves the fragility of hollow fibers, eliminates the occurrence of leaks during the manufacturing process and during use, and further improves plasma separation efficiency.

〔発明の構成〕[Structure of the invention]

本発明者らは、かかる目的を達成すべく鋭意研
究し、中空繊維の微細構造を特殊な構造に改良す
ることにより、中空繊維の脆弱さを改良し、且つ
血漿分離効率も高く優れた特性を有する中空繊維
状多孔質膜を得た。
The present inventors have conducted extensive research to achieve this objective, and by improving the fine structure of hollow fibers into a special structure, the fragility of hollow fibers has been improved, and the plasma separation efficiency has been high and excellent properties have been achieved. A hollow fibrous porous membrane was obtained.

即ち、本発明は、2種以上の有機高分子重合体
の混合物から紡糸されてなる中空繊維状多孔質膜
において、該多孔質膜の壁膜が実質的に内殻層と
外殻層の2層構造をなし、該内殻層及び外殻層が
実質上網目状多孔質構造であり、該外殻層が該内
殻層よりも緻密な多孔質構造であり、該内殻層の
平均孔径D1が外表面の平均孔径D2よりも大きく、
その比D1/D2が3以下であり、D2が0.05〜1μの範
囲にあり、該壁膜全体の平均空孔率が60%以上で
あり、且つ該多孔質膜の水透過能が1000〜10000
ml/mm2・hr・mmHgであることを特徴とする中空繊
維状多孔質膜を提供するものである。
That is, the present invention provides a hollow fibrous porous membrane spun from a mixture of two or more organic polymers, in which the wall membrane of the porous membrane substantially consists of two layers: an inner shell layer and an outer shell layer. has a layered structure, the inner shell layer and the outer shell layer have a substantially network-like porous structure, the outer shell layer has a porous structure denser than the inner shell layer, and the average pore diameter of the inner shell layer is D 1 is larger than the average pore diameter D 2 of the outer surface,
The ratio D 1 /D 2 is 3 or less, D 2 is in the range of 0.05 to 1μ, the average porosity of the entire wall membrane is 60% or more, and the water permeability of the porous membrane is 1000~10000
The present invention provides a hollow fibrous porous membrane characterized by ml/ mm2 ·hr·mmHg.

以下、本発明についてさらに詳細に説明する。
本発明の中空繊維状多孔質膜に関する断面及び外
表面の走査型電子顕微鏡写真(以下単に電子顕微
鏡写真という)の例を第1〜6図に示す。即ち第
1図は本願発明の1例である中空繊維を軸方向に
ほぼ垂直な方向に切断した断面の電子顕微鏡写真
であり、第2図は、該中空繊維の外表面の電子顕
微鏡写真である。また第3〜6図は本願発明の他
の例である中空繊維に関するものである。即ち第
3図は該中空繊維を軸方向にほぼ垂直な方向に切
断した断面の電子顕微鏡写真であり、第4図は該
中空繊維の外表面の電子顕微鏡写真であり、第5
図は該中空繊維の外表面近傍における該断面の電
子顕微鏡写真であり、第6図は該中空繊維の壁膜
中央部における該断面の電子顕微鏡写真である。
The present invention will be explained in more detail below.
Examples of scanning electron micrographs (hereinafter simply referred to as electron micrographs) of the cross section and outer surface of the hollow fibrous porous membrane of the present invention are shown in FIGS. 1 to 6. That is, FIG. 1 is an electron micrograph of a cross section of a hollow fiber, which is an example of the present invention, cut in a direction substantially perpendicular to the axial direction, and FIG. 2 is an electron micrograph of the outer surface of the hollow fiber. . Moreover, FIGS. 3 to 6 relate to hollow fibers which are other examples of the present invention. That is, FIG. 3 is an electron micrograph of a cross section of the hollow fiber cut in a direction substantially perpendicular to the axial direction, FIG. 4 is an electron micrograph of the outer surface of the hollow fiber, and FIG.
The figure is an electron micrograph of the cross section near the outer surface of the hollow fiber, and FIG. 6 is an electron micrograph of the cross section at the center of the wall of the hollow fiber.

第1図及び第3図に示す如く、本発明の中空繊
維状多孔質膜は、その壁膜が実質的に外殻層(同
図においてAと示した領域)と内殻層(同図にお
いてBと示した領域)の2層構造をなすものであ
る。さらに該壁膜の内殻層及び外殻層が実質上網
目状の多孔質構造をなし、外殻層が内殻層よりも
緻密な多孔質構造をなすものである。かかる内外
殻両層における緻密差は、第1,3図等において
示される如く電子顕微鏡観察によつて判断するこ
とができる。
As shown in FIGS. 1 and 3, in the hollow fibrous porous membrane of the present invention, the wall membrane is substantially composed of an outer shell layer (the area indicated as A in the figure) and an inner shell layer (the area indicated as A in the figure). It has a two-layer structure (region indicated as B). Further, the inner shell layer and the outer shell layer of the wall membrane have a substantially network-like porous structure, and the outer shell layer has a denser porous structure than the inner shell layer. The difference in density between the inner and outer shell layers can be determined by electron microscopic observation as shown in FIGS. 1 and 3.

また本発明の中空繊維としては、外殻層の平均
空孔率が内殻層の平均空孔率より小さいものが好
ましい。尚ここで言う外殻層の平均空孔率とは、
該中空繊維外表面の電子顕微鏡写真(倍率が約
4000)によつて得らる該外表面単位面積当りの空
孔部占有面積を百分率で表わしたものの平均値で
あり、内殻層の平均空孔率とは前記断面の電子顕
微鏡写真(倍率が約4000)によつて得られる該内
殻層部の単位面積りの空孔部占有面積を百分率で
表わしたものの平均値である。
The hollow fibers of the present invention are preferably those in which the average porosity of the outer shell layer is smaller than the average porosity of the inner shell layer. The average porosity of the outer shell layer referred to here is
Electron micrograph of the outer surface of the hollow fiber (magnification is approx.
The average porosity of the inner shell layer is the average value of the area occupied by the pores per unit area of the outer surface obtained by 4000) is the average value of the area occupied by the pores per unit area of the inner shell layer, expressed as a percentage.

さらに本発明の中空繊維状多孔質膜は、その内
殻層の平均孔径D1が外表面の平均孔径D2よりも
大きく、その比D1/D2が3以下、好ましくは2以
下の範囲にあるものが膜特性上優れている。ここ
で言う内殻層の平均孔径D1とは、前記第6図に
示される如き該中空繊維の断面写真より細孔の平
均孔径として算出されるものであり、外表面の平
均孔径D2としては前記第2,4図に示される如
き該中空繊維の外表面写真により細孔の平均孔径
として算出されるものである。かかるD2として
は、0.05〜1μが好ましく、更に0.1〜0.5μの範囲に
ある場合が分離特性及び膜強度特性の点で優れて
いる。またD1としては0.05〜3μ、特に0.1〜1μが
好ましい。尚該内殻層の網目状多孔質構造が、該
層全体にわたつて実質的にほぼ均質な細孔分布を
有するものがより好ましい。ここで実質的とは、
均質さについて多少のムラが含まれることを意味
する。又はこれらの隣接した細孔間はほとんどの
場合連通していると考えられる。
Further, in the hollow fibrous porous membrane of the present invention, the average pore diameter D 1 of the inner shell layer is larger than the average pore diameter D 2 of the outer surface, and the ratio D 1 /D 2 is in the range of 3 or less, preferably 2 or less. The film shown in 1. has superior film properties. The average pore diameter D 1 of the inner shell layer referred to here is calculated as the average pore diameter of the pores from the cross-sectional photograph of the hollow fiber as shown in FIG. 6, and the average pore diameter D 2 of the outer surface is calculated as the average pore diameter from the outer surface photographs of the hollow fibers as shown in FIGS. 2 and 4. Such D 2 is preferably 0.05 to 1 μ, and more preferably in the range of 0.1 to 0.5 μ, which is excellent in terms of separation characteristics and membrane strength characteristics. Further, D 1 is preferably 0.05 to 3μ, particularly preferably 0.1 to 1μ. It is more preferable that the network porous structure of the inner shell layer has a substantially homogeneous pore distribution throughout the layer. Substantive here means
This means that there is some unevenness in homogeneity. Or, it is considered that these adjacent pores are in communication in most cases.

また本発明の中空繊維状多孔質膜は、その壁膜
全体の平均空孔率が60%以上であり、好ましくは
70〜95%、殊には80〜90%が優れている。尚かか
る壁膜全体の平均空孔率は、いかなる方法によつ
て求められたものでもよいが、通常は (1−Pb/Pa)×100で求められる。ここでPaは高分 子重合体そのものの密度であり、Pbは該壁膜の
重量を全体の体積で割つたものである。
Further, the hollow fibrous porous membrane of the present invention has an average porosity of 60% or more over the entire wall membrane, preferably
70-95%, especially 80-90% is excellent. The average porosity of the entire wall film may be determined by any method, but is usually determined by (1-Pb/Pa)×100. Here, Pa is the density of the polymer itself, and Pb is the weight of the wall film divided by the total volume.

さらに本発明の中空繊維状多孔質膜は、その水
透過能としてUFRが1000〜10000ml/m2・hr・mm
Hg、好ましくは3000〜7000ml/m2・hr・mmHgな
る非常に大きな値を有するものである。
Furthermore, the hollow fibrous porous membrane of the present invention has a water permeability of UFR of 1000 to 10000 ml/m 2・hr・mm.
Hg, preferably a very large value of 3000 to 7000 ml/m 2 ·hr·mmHg.

また該中空繊維は、前記外殻層の厚さが壁膜全
体の厚さの30%以下であることが望ましく、特に
3〜15%の範囲にある場合には膜強度が保たれ且
つ分離特性も良好である。
In addition, it is preferable that the thickness of the outer shell layer of the hollow fiber is 30% or less of the total thickness of the wall membrane, and in particular, when the thickness is in the range of 3 to 15%, membrane strength is maintained and separation properties are maintained. is also good.

この様に本発明の中空繊維では、外表面もしく
は外殻層において比較的細孔が少ないと考えられ
るが、その中空繊維の壁膜全体の平均孔径が水透
過法によつて次の様に測定できる。即ち該中空繊
維の壁膜に一定量の水を透過せしめた時の流速と
圧力損失を測定し、その結果から次式を用いて壁
膜全体の平均孔径が算出される。
As described above, the hollow fibers of the present invention are thought to have relatively few pores on the outer surface or shell layer, but the average pore diameter of the entire wall of the hollow fibers was measured by the water permeation method as follows. can. That is, the flow rate and pressure loss when a certain amount of water permeates through the wall membrane of the hollow fibers are measured, and from the results, the average pore diameter of the entire wall membrane is calculated using the following equation.

D=(32η・t・J/Pr・△P)1/2 (但し式中、、Dは壁膜全体の平均孔径、tは膜
厚、Jは水の透過速度、ηは水の粘度、Prは膜
の空孔率、△Pは圧力損失を表わす。) この方法で測定すると、得られた該中空繊維の
孔径は、0.05〜1μ、好ましくは0.1〜0.5μであつ
た。
D=(32η・t・J/Pr・△P) 1/2 (where, D is the average pore diameter of the entire wall membrane, t is the membrane thickness, J is the water permeation rate, η is the viscosity of the water, Pr is the porosity of the membrane, and ΔP is the pressure drop.) When measured by this method, the pore diameter of the hollow fibers obtained was 0.05 to 1μ, preferably 0.1 to 0.5μ.

かかる本発明の新規な特有の構造を有する中空
糸状多孔質膜は、例えば湿式製膜時の相分離形成
が該中空系の外殻層と内殻層で異なる形態で進行
することによつて得られるものと考えられる。即
ち前記第5図でみられる様に、有孔方向が外殻層
と内殻層とで異なることがうかがわれる。これは
その製膜時において、外殻層では凝固液との急激
な接触で相分離がすみやかに進行することによつ
て細孔が該繊維のほぼ半径方向に形成されやすい
のに対し、内殻層では凝固液の緩慢な侵入で相分
離が進行することによつて、例えば軸に平行な方
向に隣接した多数の細孔が出来、それらが連通す
るなどして、結果として方向性が限定されない細
孔の多い網目状多孔質構造が形成されるものと考
えられる。尚、該中空繊維の内表面側の相分離
は、内表面側に供給される凝固液が少量であるた
めその相分離速度は速くないと考えられる。
The hollow fiber porous membrane having the novel and unique structure of the present invention can be obtained by, for example, phase separation formation during wet membrane formation proceeding in different forms in the outer shell layer and inner shell layer of the hollow system. It is considered that the That is, as seen in FIG. 5, it can be seen that the direction of the holes is different between the outer shell layer and the inner shell layer. This is because during film production, pores tend to be formed in the radial direction of the fibers due to rapid phase separation in the outer shell layer due to rapid contact with the coagulating liquid, whereas pores in the inner shell layer tend to form in the radial direction of the fibers. As phase separation progresses in the layer due to the slow intrusion of the coagulating liquid, for example, many pores are formed adjacent to each other in a direction parallel to the axis, and these pores communicate with each other, resulting in no limited directionality. It is thought that a network-like porous structure with many pores is formed. It is considered that the phase separation rate on the inner surface side of the hollow fiber is not fast because a small amount of the coagulating liquid is supplied to the inner surface side.

本発明の中空繊維状多孔質膜の素材として用い
られる有機高分子重合体は、湿式又は半乾半湿の
紡糸成形が可能な重合体であればいかなるもので
もよいが、特に2種以上の重合体の混合糸(即ち
ポリマーアロイ)の方が凝固時の相分離能が大き
く且つ相分離速度のコントロールが容易であるこ
とから本発明の中空繊維を得るのに適している。
The organic polymer used as the material for the hollow fibrous porous membrane of the present invention may be any polymer that can be formed by wet or semi-dry and semi-wet spinning. The combined mixed yarn (ie, polymer alloy) has a higher phase separation ability during coagulation and the phase separation rate can be easily controlled, and therefore is suitable for obtaining the hollow fiber of the present invention.

本発明の中空繊維を製造するには、種々の方法
があるが、例えば下記の方法で容易に行うことが
出来る。即ち高分子重合体として、セルロースア
セテート、ポリメチルメタクリレート及びセルロ
ースナイトレートを夫々80:15:5の比率で溶剤
に溶解する。アセトン/メタノール(3/1)の混合
溶媒は、上記の三者を溶解可能である。これに膨
潤剤として、シクロヘキサン、シクロヘキサノー
ル、N−メチルピロリドンなどを30wt%以内で
混合し、更に無機塩類を5wt%以内で混合し、こ
れに該高分子重合体混合物を16〜20%加え加温溶
解すると紡糸原液が作製される。
There are various methods for producing the hollow fibers of the present invention, and for example, the following method can be used easily. That is, as polymers, cellulose acetate, polymethyl methacrylate, and cellulose nitrate are dissolved in a solvent in a ratio of 80:15:5, respectively. A mixed solvent of acetone/methanol (3/1) can dissolve the above three. To this, cyclohexane, cyclohexanol, N-methylpyrrolidone, etc. are mixed within 30 wt% as a swelling agent, and inorganic salts are further mixed within 5 wt%, and 16 to 20% of the polymer mixture is added. When warmly dissolved, a spinning dope is prepared.

これを環状紡糸孔から吐出させ、直ちに、凝固
浴に導くと同時に、環状紡糸孔の内部からも凝固
浴と同一組成の液を流入させる。該凝固浴組成に
は、例えばアセトン−メタノール−水(10:40:
50)を用いる。尚、さらにシクロヘキサン、シク
ロヘキサノール、N−メチルピロリドン等の上記
膨潤剤も添加することもできる。
This is discharged from the annular spinning hole and immediately introduced into the coagulation bath, and at the same time, a liquid having the same composition as the coagulation bath is also introduced from inside the annular spinning hole. The coagulation bath composition includes, for example, acetone-methanol-water (10:40:
50). In addition, the above-mentioned swelling agents such as cyclohexane, cyclohexanol, and N-methylpyrrolidone may also be added.

このように、2種以上の有機高分子重合体の混
合系において、凝固浴の液組成と中空内部凝固液
の組成を実質上同一にすることによつて、中空糸
の外面側の凝固速度が中空部内面側の凝固速度よ
り適度に早くすることができ、目的とする膜壁の
構造が容易に得られる。またかかる高分子重合体
混合系では、単一高分子の場合にくらべ、凝固し
やすいために、外表面近傍に前記の如き外殻層な
る、繊維の緻密層が発生する。この外殻層なる緻
密層は、孔密度が小さいだけで、孔の大きさは、
内部と大差がないものが得やすい。即ちこの場合
にはいわゆる、従来の異方性膜の様な表面の孔径
が非常に小さいのと異なる微細構造を有する。こ
れらの中空繊維は、例えば内径300μ、外径450μ
であり、普通、乾燥状態ではグリセリンを付着す
ることが好ましい。
In this way, in a mixed system of two or more organic polymers, by making the liquid composition of the coagulation bath and the composition of the hollow internal coagulation liquid substantially the same, the coagulation rate on the outer surface side of the hollow fiber can be increased. The solidification rate can be made appropriately faster than the solidification rate on the inner surface of the hollow part, and the desired membrane wall structure can be easily obtained. In addition, in such a mixed polymer system, since it coagulates more easily than in the case of a single polymer, a dense layer of fibers, which is the shell layer as described above, is generated near the outer surface. This dense layer, which is the outer shell layer, has only a small pore density, and the pore size is
It is easy to get something that is not much different from the inside. That is, in this case, it has a microstructure that is different from the so-called conventional anisotropic membrane, which has a very small surface pore size. These hollow fibers have an inner diameter of 300μ and an outer diameter of 450μ, for example.
Therefore, it is usually preferable to attach glycerin in a dry state.

本発明の中空繊維状多孔質膜は、その膜強度及
び分離性能の点で優れることから種々の用途に用
いることができる。その途用としては、限外濾過
のあらゆるものが対象となりうるが、特に体液中
から特定成分を分離除去するための体液処理器の
分離膜に適している。さらに言うならば、血液中
から血漿を分離する血漿分離膜として、本発明の
中空繊維は特に優れた特性を有するものである。
The hollow fibrous porous membrane of the present invention is excellent in membrane strength and separation performance and can be used for various purposes. Although it can be used for all types of ultrafiltration, it is particularly suitable for separation membranes in body fluid treatment devices for separating and removing specific components from body fluids. Furthermore, the hollow fibers of the present invention have particularly excellent properties as a plasma separation membrane for separating plasma from blood.

〔発明の効果〕〔Effect of the invention〕

本発明の中空繊維状多孔質膜は、外表面近傍に
緻密層を有するものであることから、形態保持
性、耐摩耗性等の機械的強度に優れる。それ故、
該中空繊維の製造時、運搬ないしは輸送時、保存
時、あるいは分離モジユールへの組立て時、その
使用等において、リーク等の破損、偏平化等が発
生することなく、非常に安定している。
Since the hollow fibrous porous membrane of the present invention has a dense layer near the outer surface, it has excellent mechanical strength such as shape retention and abrasion resistance. Therefore,
The hollow fibers are extremely stable without leakage, damage, flattening, etc. during manufacture, transportation, storage, assembly into separation modules, use, etc.

また該中空繊維は、壁膜全体に比較的よく似た
孔径の細孔を有する多孔質構造を有することか
ら、分離特性においても極めて優れた性質を有し
ている。即ち透過する物質に関してはその透過速
度が大きく、且つ透過の阻止される物質に関して
はその透過排除率が高い。例えば本発明の中空繊
維を組み込んだ血漿分離モジユールを犬を用いた
動物実験に適用し、その血漿分離能を測定した場
合には、血流100ml/minで30%以上の血漿分離が
可能で、血漿蛋白の透過能も90%以上であるとい
う非常に優れた分離特性が得られる。
Furthermore, since the hollow fibers have a porous structure having pores with relatively similar pore diameters throughout the wall membrane, they also have extremely excellent separation properties. That is, the permeation rate of substances that permeate is high, and the permeation rejection rate of substances whose permeation is blocked is high. For example, when the plasma separation module incorporating the hollow fibers of the present invention was applied to an animal experiment using dogs and its plasma separation ability was measured, it was found that plasma separation of 30% or more was possible at a blood flow rate of 100 ml/min. Very excellent separation properties are obtained, with a permeability of plasma proteins of over 90%.

以下に実施例をあげて本発明のさらに詳細な説
明を行なうが、本発明はこれらの実施例に何ら限
定されるものではない。尚、実施例中「部」とあ
るのは重量部を意味するものである。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples in any way. In the examples, "parts" means parts by weight.

実施例 1 紡糸原液は醋化度52%重合度180のセルロース
アセテート1200部と重合度300のポリメチルメタ
クリレート255部と硝化度11.5%重合度160のセル
ロースナイトレート45部とをN−メチルピロリド
ン3000部、塩化マグネシウム500部、アセトン
3500部、メタノール1500部の混合溶剤に50℃で溶
解した。
Example 1 The spinning stock solution was prepared by mixing 1200 parts of cellulose acetate with a degree of axification of 52%, a degree of polymerization of 180, 255 parts of polymethyl methacrylate with a degree of polymerization of 300, and 45 parts of cellulose nitrate with a degree of nitrification of 11.5% and a degree of polymerization of 160, and 3000 parts of N-methylpyrrolidone. parts, 500 parts of magnesium chloride, acetone
It was dissolved in a mixed solvent of 3,500 parts of methanol and 1,500 parts of methanol at 50°C.

これを濾過した後に、8個の孔数を有する環状
紡糸孔より紡糸し、アセトン−メタノール−水
(10:40:50wt%)の凝固浴に導き、同時に紡糸
孔内部より、同一組成の凝固液を流すことによつ
て内径300μ外径450μの中空糸を得た。
After filtering this, it is spun through an annular spinning hole with 8 holes and introduced into a coagulation bath of acetone-methanol-water (10:40:50wt%). A hollow fiber with an inner diameter of 300 μm and an outer diameter of 450 μm was obtained by flowing.

中空繊維を液体窒素で固定して切断し、断面観
察を電子顕微鏡を用いて行つた。即ち1000倍の倍
率では、断面方向に表面より8%の厚さの外殻層
なる緻密層が観察された。また4000倍の観察で
は、その内殻層は網目状多孔質でありその孔径の
平均値が約0.3μであつた。また外表面には、4000
倍観察で平均値が約0.2μの細孔が約5個/μ2観察
された。水透過法による孔径は0.18μであり、全
体の平均空孔率は85%であつた。この中空繊維を
集束して、円筒モジユールに1500本充填し、内径
基準で0.3m2になる様に、両端をウレタン樹脂で
接着した。水透過能は5000ml/m2・hr・mmHgであ
つた。このものは、普通の輸送中にリークの発生
はみられなかつた。また、動物実験を始め、臨床
評価に於いても充分の血漿分離性能を示した。
The hollow fibers were fixed in liquid nitrogen and cut, and the cross-section was observed using an electron microscope. That is, at a magnification of 1000 times, a dense layer called an outer shell layer was observed in the cross-sectional direction with a thickness of 8% from the surface. Further, when observed at a magnification of 4000 times, the inner shell layer was porous with a network structure, and the average pore diameter was approximately 0.3μ. Also on the outer surface, 4000
Approximately 5 pores/ μ2 with an average value of approximately 0.2μ were observed by double observation. The pore diameter determined by the water permeation method was 0.18μ, and the overall average porosity was 85%. These hollow fibers were bundled and filled into a cylindrical module (1,500 fibers), and both ends were bonded with urethane resin so that the inner diameter was 0.3 m 2 . The water permeability was 5000ml/m 2 ·hr ·mmHg. No leaks were observed with this product during normal transportation. In addition, it has demonstrated sufficient plasma separation performance in animal experiments and clinical evaluations.

劇症肝炎、悪性関節リユーマチ、全身性エリテ
マトーデスなど53症例に179回使用したが、リー
クの発生はみられず、34症例(64%)に有効性が
認められた。
It was used 179 times in 53 cases including fulminant hepatitis, malignant rheumatoid arthritis, and systemic lupus erythematosus, but no leaks were observed and efficacy was observed in 34 cases (64%).

また、臨床評価での血漿蛋白質の透過率は下記
の如くであつた。
In addition, the permeability of plasma proteins in clinical evaluation was as follows.

総蛋白質 94% アルブミン 98% IgA 95% IgM 90% C3 95% C4 97% 実施例 2 醋化度52%重合度、180のセルロースアセテー
ト80%、重合度300のポリメチルメタクリレート
15%、硝化度11.5%重合度160のセルロースナイ
トレート5%の組成の高分子を18%、シクロヘキ
サノール30%塩化カルシウム3%、アセトン/メ
タノール(3/1)混合溶媒49%とからなる紡糸原液
を調製した。
Total protein 94% Albumin 98% IgA 95% IgM 90% C 3 95% C 4 97% Example 2 Cellulose acetate with an axification degree of 52%, a polymerization degree of 180, 80%, polymethyl methacrylate with a polymerization degree of 300
Spinning yarn consisting of 18% polymer with a composition of 15% cellulose nitrate with a degree of nitrification of 11.5% and a degree of polymerization of 160, 30% cyclohexanol, 3% calcium chloride, and 49% acetone/methanol (3/1) mixed solvent. A stock solution was prepared.

8ケの環状紡糸孔より紡出してアセトン−メタ
ノール・水(10:40:50wt%)の凝固浴に直ち
に導き、同時に紡糸孔内部より凝固液を流して中
空繊維を作成した。中空繊維の内径は320μ、外
径480μであつた。その全体の平均空孔率が87%、
水透過能は4800ml/m2・hr・mmHgであつた。また
その電子顕微鏡観察を行つたが、断面観察で1000
倍率では外表面層に外部より6%の厚さの範囲で
有孔性が殆ど認められない程であつたが、内殻層
では網目状多孔性が観察された。またその4000倍
の観察では、内殻層において平均孔径約0.6μの細
孔が認められた。しかし、表面観察では4000倍率
でほぼ円形ないしは楕円形の細孔が認められ、そ
の孔径は平均値約0.3μであつた。製造工程中に於
けるリーク、輸送試験でのリークは認められなか
つた。
The fibers were spun through eight annular spinning holes and immediately introduced into a coagulation bath of acetone-methanol-water (10:40:50 wt%), and at the same time a coagulating liquid was flowed from inside the spinning holes to create hollow fibers. The hollow fiber had an inner diameter of 320μ and an outer diameter of 480μ. Its overall average porosity is 87%,
The water permeability was 4800ml/m 2 hr mmHg. We also performed electron microscopy, and cross-sectional observation revealed that 1000
At magnification, almost no porosity was observed in the outer surface layer within a thickness range of 6% from the outside, but network-like porosity was observed in the inner shell layer. Furthermore, when observed at a magnification of 4000 times, pores with an average pore diameter of approximately 0.6μ were observed in the inner shell layer. However, when the surface was observed at a magnification of 4000, approximately circular or elliptical pores were observed, and the average diameter of the pores was approximately 0.3 μ. No leaks were observed during the manufacturing process or during transportation tests.

比較例 1 醋化度52%、重合度180のセルロースアセテー
ト18%、シクロヘキサール30%、塩化カルシウム
3%、アセトン/メタノール(3/1)混合溶媒49%
の組成の紡糸原液を作成し、同一条件で紡糸し
た。得られた中空系の空孔率は70%以下であり、
水透過能も2000ml/m2・hr・mmHgであつた。電子
顕微鏡観察でも、有孔性はほぼ均一であり、表面
層は特に認められず、繊維は脆弱でリークが多発
し、モジユール加工が極めて困難であつた。
Comparative Example 1 18% cellulose acetate with a degree of dilution of 52% and a degree of polymerization of 180, 30% cyclohexal, 3% calcium chloride, 49% acetone/methanol (3/1) mixed solvent
A spinning dope having the composition was prepared and spun under the same conditions. The porosity of the obtained hollow system is 70% or less,
The water permeability was also 2000ml/ m2・hr・mmHg. Even when observed under an electron microscope, the porosity was almost uniform, no particular surface layer was observed, the fibers were brittle and leaked frequently, and module processing was extremely difficult.

参考例 ポリフツ化ビニリデン(Penwall社Kynar301
F)16%、ポリビニールピロリドン10%、シクロ
ヘキサノン30%、N−メチル−2−ピロリドン54
%の紡糸原液を作成し、環状紡糸孔よりメタノー
ル/水(1:1)の凝固浴に紡糸すると同時に紡
糸孔内部より同一組成の凝固液を流した。得られ
た中空繊維の全体平均空孔率は80%であり、断面
電子顕微鏡視察(1000倍)では、表面より5%の
厚さの範囲には有孔性は殆ど認められないが、内
殻層部には網目状多孔性が観察された。また4000
倍率の断面観察では、その内殻層に平均孔径が約
0.2μの細孔が認められた。さらに4000倍率の外表
面観察では、平均値が約0.15μの有孔性が認めら
れた。
Reference example Polyvinylidene fluoride (Penwall Kynar301
F) 16%, polyvinylpyrrolidone 10%, cyclohexanone 30%, N-methyl-2-pyrrolidone 54
% spinning dope was prepared and spun into a coagulation bath of methanol/water (1:1) through an annular spinning hole, and at the same time a coagulating solution having the same composition was flowed from inside the spinning hole. The overall average porosity of the obtained hollow fibers was 80%, and cross-sectional electron microscopy (1000x magnification) showed that almost no porosity was observed in the 5% thickness range from the surface, but the inner shell Network-like porosity was observed in the layer. 4000 again
Cross-sectional observation at high magnification shows that the average pore size in the inner shell layer is approximately
Pores of 0.2μ were observed. Further, when the outer surface was observed at 4000x magnification, porosity with an average value of approximately 0.15μ was observed.

水透過能は4000ml/m2・hr・mmHgであり、充分
の強さをもつた中空繊維であつた。
The water permeability was 4000 ml/m 2 ·hr · mmHg, indicating that the hollow fiber had sufficient strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の中空繊維状多孔質膜
の1例に関する電子顕微鏡写真であり、第1図が
断面図、第2図が外表面図である。第3図は本発
明の他の例の中空繊維の電子顕微鏡写真であり、
第3,5,6図が断面図、第4図が外表面図であ
る。
FIGS. 1 and 2 are electron micrographs of an example of the hollow fibrous porous membrane of the present invention, with FIG. 1 being a sectional view and FIG. 2 being an external surface view. FIG. 3 is an electron micrograph of a hollow fiber according to another example of the present invention,
3, 5, and 6 are cross-sectional views, and FIG. 4 is an external surface view.

Claims (1)

【特許請求の範囲】 1 2種以上の有機高分子重合体の混合物から紡
糸されてなる中空繊維状多孔質膜において、該多
孔質膜の壁膜が実質的に内殻層と外殻層の2層構
造をなし、該内殻層及び外殻層が実質上網目状多
孔質構造であり、該外殻層が該内殻層よりも緻密
な多孔質構造であり、該内殻層の平均孔径D1
外表面の平均孔径D2よりも大きく、その比D1/D2
が3以下であり、D2が0.05〜1μの範囲にあり、該
壁膜全体の平均空孔率が60%以上であり、且つ該
多孔質膜の水透過能が1000〜10000ml/m2・hr・mm
Hgであることを特徴とする中空繊維状多孔質膜。 2 該外殻層の厚さが、壁膜全体の厚さの30%以
下である第1項記載の中空繊維状多孔質膜。 3 該多孔質膜が体液処理用である第1項記載の
中空繊維状多孔質膜。
[Scope of Claims] 1. A hollow fibrous porous membrane spun from a mixture of two or more organic polymers, in which the wall membrane of the porous membrane substantially consists of an inner shell layer and an outer shell layer. It has a two-layer structure, the inner shell layer and the outer shell layer have a substantially network-like porous structure, the outer shell layer has a porous structure denser than the inner shell layer, and the average of the inner shell layer is The pore diameter D 1 is larger than the average pore diameter D 2 of the outer surface, and the ratio D 1 /D 2
is 3 or less, D2 is in the range of 0.05 to 1μ, the average porosity of the entire wall membrane is 60% or more, and the water permeability of the porous membrane is 1000 to 10000ml/ m2 . hr・mm
A hollow fibrous porous membrane characterized by being Hg. 2. The hollow fibrous porous membrane according to item 1, wherein the thickness of the outer shell layer is 30% or less of the thickness of the entire wall membrane. 3. The hollow fibrous porous membrane according to item 1, wherein the porous membrane is for treating body fluids.
JP7300584A 1984-04-13 1984-04-13 Hollow fiber-seaped porous membrane Granted JPS60241904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7300584A JPS60241904A (en) 1984-04-13 1984-04-13 Hollow fiber-seaped porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7300584A JPS60241904A (en) 1984-04-13 1984-04-13 Hollow fiber-seaped porous membrane

Publications (2)

Publication Number Publication Date
JPS60241904A JPS60241904A (en) 1985-11-30
JPH0376970B2 true JPH0376970B2 (en) 1991-12-09

Family

ID=13505796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7300584A Granted JPS60241904A (en) 1984-04-13 1984-04-13 Hollow fiber-seaped porous membrane

Country Status (1)

Country Link
JP (1) JPS60241904A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2542572B2 (en) * 1985-11-15 1996-10-09 日機装 株式会社 Hollow fiber
ES2326799T3 (en) * 2002-05-17 2009-10-20 Millipore Corporation METHOD FOR PRODUCING A HIGH PRODUCTION ASYMMETRIC MEMBRANE.
JP2007245107A (en) * 2006-03-20 2007-09-27 Daicel Chem Ind Ltd Hollow fiber porous membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284183A (en) * 1975-12-30 1977-07-13 Asahi Chem Ind Co Ltd Production of hollow fibers for filter membrane
JPS53104578A (en) * 1977-02-24 1978-09-11 Asahi Chem Ind Co Ltd Hollow form micro-filter and production of the same
JPS5916503A (en) * 1982-07-20 1984-01-27 Teijin Ltd Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JPS60108052A (en) * 1983-11-17 1985-06-13 東洋紡績株式会社 Hollow yarn type serum separation membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284183A (en) * 1975-12-30 1977-07-13 Asahi Chem Ind Co Ltd Production of hollow fibers for filter membrane
JPS53104578A (en) * 1977-02-24 1978-09-11 Asahi Chem Ind Co Ltd Hollow form micro-filter and production of the same
JPS5916503A (en) * 1982-07-20 1984-01-27 Teijin Ltd Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JPS60108052A (en) * 1983-11-17 1985-06-13 東洋紡績株式会社 Hollow yarn type serum separation membrane

Also Published As

Publication number Publication date
JPS60241904A (en) 1985-11-30

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US4399035A (en) Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same
JP2782583B2 (en) Asymmetric microporous hollow fiber
US4351860A (en) Polyaryl ether sulfone semipermeable membrane and process for producing same
EP1321178B1 (en) A braid-reinforced hollow fiber membrane
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
JPH05137982A (en) Porous hollow polysulfone fiber
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JP2542572B2 (en) Hollow fiber
JPH0376970B2 (en)
JPH0478729B2 (en)
JPS6333871B2 (en)
JPH053335B2 (en)
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JPS6160165B2 (en)
JPH0364176B2 (en)
JP2550543B2 (en) Polyacrylonitrile-based hollow fiber membrane and method for producing the same
JPH0420651B2 (en)
JPH07258915A (en) Porous polysulfone hollow yarn
JPWO2018079808A1 (en) Cellulose acetate hollow fiber membrane
JP2954327B2 (en) Porous hollow fiber membrane
JP2512909B2 (en) Method for producing hollow fiber porous membrane
JP2005065725A (en) Hollow fiber blood purifying membrane
JP3205267B2 (en) Method for producing selectively permeable hollow fiber membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees