JPS596005B2 - Stabilized coated superconducting wire and its manufacturing method - Google Patents

Stabilized coated superconducting wire and its manufacturing method

Info

Publication number
JPS596005B2
JPS596005B2 JP49063597A JP6359774A JPS596005B2 JP S596005 B2 JPS596005 B2 JP S596005B2 JP 49063597 A JP49063597 A JP 49063597A JP 6359774 A JP6359774 A JP 6359774A JP S596005 B2 JPS596005 B2 JP S596005B2
Authority
JP
Japan
Prior art keywords
wire
purity aluminum
superconducting
alumina
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49063597A
Other languages
Japanese (ja)
Other versions
JPS50156393A (en
Inventor
資章 樺山
稔 横田
正範 日向
宏邦 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP49063597A priority Critical patent/JPS596005B2/en
Publication of JPS50156393A publication Critical patent/JPS50156393A/ja
Publication of JPS596005B2 publication Critical patent/JPS596005B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウム安定化被覆超電導線およびその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum stabilized coated superconducting wire and a method for manufacturing the same.

超電導線は、強磁場における安定性に関する研究の進歩
により、電気抵抗の低い常伝導金属中に非常に細い超電
導材料の多数本(例えば10μφ×10.000本)を
埋め込み、更に上記超電導材料にツイスト加工を施した
、いわゆる極細多芯ツイスト超電導線(finemul
ti−twistedwire)が主として使用される
様になつて来た。
Thanks to advances in research on stability in strong magnetic fields, superconducting wires are made by embedding a large number of very thin superconducting materials (e.g. 10 μφ x 10,000 wires) in a normal conducting metal with low electrical resistance, and then twisting them into the superconducting material. Processed so-called ultra-fine multicore twisted superconducting wire (finemul
(ti-twisted wire) has come to be mainly used.

第1図はこの極細多芯ツイスト超電導線の一例の断面を
示すもので、1は例えばNb−Ti合金などの各種合金
系超電導材料で、その多数本が無酸素銅などの常伝導金
属2に埋め込まれ、かつツイストされており、最外層に
絶縁層3が被覆されている。
Figure 1 shows a cross section of an example of this ultra-fine multicore twisted superconducting wire, in which 1 is made of various alloy-based superconducting materials such as Nb-Ti alloy, and many of the wires are made of normal conductive metal 2 such as oxygen-free copper. It is embedded and twisted, and the outermost layer is covered with an insulating layer 3.

従来は上述のような無酸素銅安定化被覆極細多芯ツイス
ト超電導線が大部分であつた。一方、1本の超電導材料
の周りに被覆する常伝導金属として高純度アルミニウム
(99.99%以上)を使用した安定化超電導線につい
ては、例えば特公昭46−696号特公昭45−186
24号で既に提案されており、高純度アルミニウム使用
による利点は次の通りである。0)高純度アルミニウム
は無酸素銅に比べて電気抵抗が低く、特に磁場中では磁
気抵抗の差によつて著しく低くなるので、電線の安定度
が増大する。
Conventionally, most of the wires have been ultrafine multicore twisted superconducting wires coated with oxygen-free copper stabilizing coating as described above. On the other hand, regarding stabilized superconducting wires using high-purity aluminum (99.99% or more) as the normal conductive metal coated around a single superconducting material, for example,
It has already been proposed in No. 24, and the advantages of using high-purity aluminum are as follows. 0) High-purity aluminum has a lower electrical resistance than oxygen-free copper, and in particular in a magnetic field, it becomes significantly lower due to the difference in magnetic resistance, increasing the stability of the wire.

(T■j)高純度アルミニウムは無酸素銅に比べて熱伝
導度が大きいため、電線の安定度が増大する。
(T■j) Since high-purity aluminum has higher thermal conductivity than oxygen-free copper, the stability of the wire increases.

←う 従つて同じ安定度を期待する場合、高純度アルミ
ニウムの量が少なくて済むため、電線全体の体積が減少
し、その結果電流密度が上る。(: 高純度アルミニウ
ムは無酸素銅に比べて比重が小さいため、電線全体の重
量が著しく減少し、この効果は(ハ)の効果により倍増
される。(ホ)アルミニウムの陽極酸化処理により生じ
た酸化被膜は薄く、かつ丈夫で、しかも耐電圧が高く、
熱伝導性も良好であるので、電気絶縁膜として非常に優
れている。かように高純度アルミニウム安定化被覆超電
導線は無酸素銅安定化被覆超電導線に比べて優秀な性能
を有するので、将来直流超電導ケーブル用導体とか、磁
気浮上列車用超電導線としての利用が期待される。
← Therefore, if the same stability is expected, less amount of high-purity aluminum is required, which reduces the overall volume of the wire, resulting in an increase in current density. (: High-purity aluminum has a lower specific gravity than oxygen-free copper, so the weight of the entire wire is significantly reduced, and this effect is doubled by the effect of (c). The oxide film is thin and strong, and has a high withstand voltage.
It also has good thermal conductivity, making it an excellent electrical insulating film. As described above, high-purity aluminum stabilized coated superconducting wire has superior performance compared to oxygen-free copper stabilized coated superconducting wire, so it is expected to be used as a conductor for DC superconducting cables and superconducting wire for magnetic levitation trains in the future. Ru.

更に強磁場におけるフラックスジャンプを防止するため
、細い超電導材料を多数本埋め込んだ高純度アルミニウ
ム安定化被覆多芯超電導線が安定性の優れた超電導特性
を有することは明らかである。
Furthermore, it is clear that a multicore superconducting wire with a high-purity aluminum stabilization coating in which many thin superconducting materials are embedded in order to prevent flux jumps in strong magnetic fields has excellent superconducting properties with excellent stability.

高純度アルミニウム安定化被覆超電導線はかかるすぐれ
た特長が期待されながらも高純度アルミニウムと超電導
材料との変形抵抗の差異、更に高純度アルミニウムが加
工中、加工発熱により軟化を生ずる等の理由で従来実用
化が甚だ困難であつた。本発明は上述の製造方法におけ
る困難性がなくかつ前記(イ)〜(ホ)の特長をそなえ
た安定化多芯超電導線を提供すると共に、それを容易に
、かつ安価に製造しうる工業的製造方法を提供せんとす
るものである。
Although high-purity aluminum stabilized coated superconducting wires are expected to have such excellent features, there are problems with conventional methods such as the difference in deformation resistance between high-purity aluminum and superconducting materials, and the fact that high-purity aluminum softens due to heat generated during processing. It was extremely difficult to put it into practical use. The present invention provides a stabilized multicore superconducting wire that does not have the difficulties of the above-mentioned manufacturing method and has the features (a) to (e) above, and also provides an industrial method that allows it to be manufactured easily and at low cost. The purpose is to provide a manufacturing method.

本発明はアルミナ0.005重量%〜5重量%を含む高
純度アルミニウム−アルミナ合金よりなる安定化被覆層
の中に単芯又は多芯の線状の超電導材料を埋め込んでな
ることを特徴とする安定化被覆超電導線である。
The present invention is characterized in that a single-core or multi-core linear superconducting material is embedded in a stabilizing coating layer made of a high-purity aluminum-alumina alloy containing 0.005% to 5% by weight of alumina. This is a stabilized coated superconducting wire.

本発明における高純度アルミニウム−アルミナ合金より
なる安定化被覆層は高純度アルミニウムの中に微細なア
ルミナ分散させた合金よりなり、上記アルミニウムの純
度は、高い方が液体He温度(4.2ニK)における電
気伝導率、熱伝導度が高く、実用上99.99(fl)
以上の高純度が望ましい。
The stabilizing coating layer made of a high-purity aluminum-alumina alloy in the present invention is made of an alloy in which fine alumina is dispersed in high-purity aluminum. ) has high electrical conductivity and thermal conductivity, practically 99.99 (fl)
Higher purity is desirable.

又本発明において超電導材料とは、例えばNb−*:(
Ti合金、Nb−Zr合金、その他の超電導性材料を意
味するものである。本発明でアルミナを0.005〜5
.0重量%としたのは0.005%未満ではアルミナ含
有による強度、耐熱性の改善が十分でなく、5.0%を
超えるとその加工性が低下するためである。
In addition, in the present invention, the superconducting material refers to, for example, Nb-*:(
It means Ti alloy, Nb-Zr alloy, and other superconducting materials. In the present invention, alumina is 0.005 to 5
.. The reason for setting it to 0% by weight is that if the content is less than 0.005%, the improvement in strength and heat resistance due to the alumina content will not be sufficient, and if it exceeds 5.0%, the workability will decrease.

第2図は粉末法により得た高純度アルミニウムアルミナ
合金の軟化曲線を通常の高純度アルミニウムと比較して
示した図である。
FIG. 2 is a diagram showing a softening curve of a high-purity aluminum-alumina alloy obtained by a powder method in comparison with that of ordinary high-purity aluminum.

図において、aは通常の溶解鋳造一圧延一伸線加工によ
り得た純度99.99(!)の1.0mmφのアルミニ
ウム線を示しB,c,dは表面酸化した純度99,99
%の高純度アルミニウム粉末を静圧成形一加圧焼結一静
水圧押出し一伸線加工の工程により得た1.0m7!l
φの高純度アルミニウム−アルミナ合金線を示し、それ
ぞれのアルミナ含有量および原料粉末の粒度は下記の通
りである。即ち原料粉末の粒度と合金のアルミナ含有量
の間には相関関係があり、粒度が小さい程アルミナ含有
量は大きくなる。
In the figure, a is a 1.0 mmφ aluminum wire with a purity of 99.99 (!) obtained by ordinary melting casting, rolling, and wire drawing processing, and B, c, and d are surface oxidized aluminum wires with a purity of 99.99.
% of high-purity aluminum powder was obtained through the steps of isostatic molding, pressure sintering, isostatic extrusion, and wire drawing. l
High-purity aluminum-alumina alloy wires of φ are shown, and the alumina content and particle size of the raw material powder are as follows. That is, there is a correlation between the particle size of the raw material powder and the alumina content of the alloy, and the smaller the particle size, the greater the alumina content.

原料アルミニウム粉末は通常空気中で自然に表面酸化さ
れており、本発明においては一般に特別な酸化処理を必
要とせず、アルミナ含有量の調節は原料アルミニウム粉
末の粒度によつて調節される。第2図から、粉末法によ
り得た高純度アルミニウム−アルミナ合金は通常の高純
度アルミニウムに比べ何れも耐熱性がすぐれ、かつ常温
付近の引張強さも大で、約1.3倍以上である。
The surface of the raw aluminum powder is usually naturally oxidized in the air, and in the present invention, no special oxidation treatment is generally required, and the alumina content is controlled by the particle size of the raw aluminum powder. From FIG. 2, it can be seen that the high-purity aluminum-alumina alloy obtained by the powder method has superior heat resistance and tensile strength near room temperature, which is about 1.3 times higher than that of ordinary high-purity aluminum.

又アルミナ含有量が多い程引張強さが大きい。更にこれ
らの線を3000〜400℃で10時間焼鈍し、液体へ
リウム温度(4.2″K)における比抵抗を測定し、常
温における比抵抗とそれとの比率を求めた結果は第1表
に示す如くである。
Moreover, the higher the alumina content, the higher the tensile strength. Furthermore, these wires were annealed at 3000-400℃ for 10 hours, the resistivity at liquid helium temperature (4.2"K) was measured, and the ratio between the resistivity at room temperature and the ratio was determined. The results are shown in Table 1. As shown.

得た高純度アルミニウム線に比べ殆んど遜色がなく、し
かも従来アルミニウム被覆多芯超電導線の安定化被覆層
として高純度アルミニウムが用いられなかつた原因であ
る前述の変形抵抗の低さおよび軟化温度の低さを改良で
きるので、工業的に極 こめて有意義である。以下本発
明の製造方法を図面を用いて実施例により説明する。
It is almost comparable to the obtained high-purity aluminum wire, and moreover, it has the low deformation resistance and softening temperature mentioned above, which are the reasons why high-purity aluminum has not been used as a stabilizing coating layer for conventional aluminum-coated multicore superconducting wires. This is extremely meaningful from an industrial perspective because it can improve the low temperature. The manufacturing method of the present invention will be explained below with reference to the drawings and examples.

実施例: 第3図は本発明の安定化被覆超電導線の実施例 1にお
ける製造工程を示す図である。
Example: FIG. 3 is a diagram showing the manufacturing process in Example 1 of the stabilized coated superconducting wire of the present invention.

本実施例は7芯のNb−Ti合金超電導材料が高純度ア
ルミニウム−アルミナ合金安定化被覆層に埋め込まれた
安定化被覆超電導線を製造する場合を示す。先ず99.
99%高純度アルミニウムと溶解した後、アトマイズ法
により粉末とした。この粉末を篩分けして得た150メ
ツシユ以下の粉末(アルミナ含有量0.01%)を50
00kg眉の圧力で円柱状のプロツクに成型した。これ
を真空中で600℃で加圧焼結した後、無潤滑油下で直
径24顛、 冫長さ80闘に切削して仕上げた。この場
合の粉末焼結は他の方法、例えば加圧成型後液相存在下
で非加圧焼結する方法であつても良い。次いでこのプロ
ツクに縦方向に7本の531闘φの孔を開け、これらの
孔にそれぞれ5m1JφのNb55−Ti45合金の超
電導材料芯材を挿入し、これを真空中で脱気し、電子ビ
ーム溶接により密閉封入した。
This example shows the case of manufacturing a stabilizing coated superconducting wire in which seven cores of Nb-Ti alloy superconducting material are embedded in a high purity aluminum-alumina alloy stabilizing coating layer. First, 99.
After melting with 99% high-purity aluminum, it was made into powder by an atomization method. A powder of 150 mesh or less (alumina content 0.01%) obtained by sieving this powder is
It was molded into a cylindrical block using 00 kg of pressure. This was sintered under pressure at 600°C in a vacuum, and then cut to a diameter of 24 mm and a length of 80 mm without any lubricating oil. Powder sintering in this case may be performed using other methods, such as a method in which pressure molding is followed by non-pressure sintering in the presence of a liquid phase. Next, seven holes of 531mm diameter were drilled in the longitudinal direction of this block, and a superconducting material core material of Nb55-Ti45 alloy of 5m1Jmm diameter was inserted into each of these holes, which was degassed in a vacuum and subjected to electron beam welding. It was sealed and sealed.

この複合ビレツトを全角度3(j)、ダイス径5闘のダ
イスを用い、5詣φの複合線材に静水圧押出し加工を行
つた。この線材を更に伸線加工し必要に応じツイスト加
工を施して0.32闘φの線を得た。次いでこQ線にス
キンパスの伸線を施し、0.26mmφとした後、30
00〜400℃で熱処理を施し、最後に陽極酸化処理を
施し、第4図に示すようなアルミニウム安定化被覆極細
多芯超電導線を得た。
This composite billet was hydrostatically extruded into a composite wire rod of 5 mm diameter using a die with a total angle of 3 (j) and a die diameter of 5 mm. This wire was further drawn and twisted if necessary to obtain a wire with a diameter of 0.32 mm. Next, this Q wire was drawn with a skin pass to make it 0.26 mmφ, and then 30
Heat treatment was performed at 00 to 400°C, and finally anodization treatment was performed to obtain an aluminum stabilization coated ultrafine multicore superconducting wire as shown in FIG.

第4図に}いて4は0.050闘φの超電導材料、5は
高純度アルミニウム−アルミナ合金6は厚さ0.005
mmの陽極酸化絶縁層である。この電線を、同程度の安
定性を有する無酸素銅安定化被覆極細多芯ツイスト超電
導線を1として比較すると、下記の値が得られた。
In Fig. 4, 4 is a superconducting material with a diameter of 0.050mm, 5 is a high-purity aluminum-alumina alloy 6 is a thickness of 0.005mm
mm thick anodized insulating layer. When this electric wire was compared with an oxygen-free copper stabilized coated ultrafine multicore twisted superconducting wire having the same degree of stability as 1, the following values were obtained.

これより本発明により製造された超電導線は極めて優秀
な性能を有することが分る。
This shows that the superconducting wire manufactured according to the present invention has extremely excellent performance.

以上の実施例では、静水圧押出し加工が1回の場合につ
いて示したが、線材サイズにより必要に応じて複数回繰
返して静水押出し加工を実施しても良く、又静水圧押出
し加工後の引伸加工は伸線の他、スエジング、圧延等の
加工法を用いても良い。
In the above examples, the case where the hydrostatic extrusion process is performed once is shown, but the hydrostatic extrusion process may be repeated multiple times as necessary depending on the wire size, or the stretching process after the hydrostatic extrusion process is performed. In addition to wire drawing, processing methods such as swaging and rolling may be used.

又実施例では原料粉末としてアトマイズ法により作成し
た150メツシユ以下の粉末を用いたが、この粒度は所
望のアルミナ含有量に応じて適当に選択される。
Further, in the examples, a powder of 150 mesh or less prepared by the atomization method was used as the raw material powder, but the particle size is appropriately selected depending on the desired alumina content.

即ちアルミナ含有量の高いものを得たい場合には粒度の
更に小さいものが使用される。又原料粉末は上記以外の
他の方法で得たもの、例えばアルキルアルミニウム粉で
も良い。肯原料粉末において、表面の自然酸化物だけで
はアルミナ含有量が不足する場合には、粉末成型体を成
型する際別に適量のアルミナ粉を添加混合しても良い。
又本発明における圧粉工程は静圧成形に限らず通常の粉
末を金型に入れるプレスにより圧粉しても良い。又静水
圧押出し加工に用いる複合ビレツトは、高純度アルミニ
ウム中のアルミナ含有量が高い場合、銅、アルミニウム
等の金属でケーシングしても良い。又超電導材料の芯材
の本数は1本又は2本以上何本でも良い。
That is, when it is desired to obtain a product with a high alumina content, a product with a smaller particle size is used. Further, the raw material powder may be one obtained by a method other than the above, for example, an alkyl aluminum powder. If the natural oxide on the surface of the raw material powder is insufficient in alumina content, an appropriate amount of alumina powder may be added and mixed separately when forming the powder compact.
Further, the powder compaction step in the present invention is not limited to static pressure molding, and powder compaction may be performed by a conventional press in which powder is placed in a mold. Additionally, the composite billet used in hydrostatic extrusion may be cased with metal such as copper or aluminum when the alumina content in the high-purity aluminum is high. Further, the number of core materials of the superconducting material may be one or more than two.

以上述べたように本発明は安定化被覆層が耐熱性が良く
かつ強度の高いアルミナ0.005〜50重量%を含む
高純度アルミニウム−アルミナ合金よりなるため、製造
中、超電導材料との変形抵抗の差違、軟化等による加工
の困難性がないので、製造を容易にして工業的生産を可
能にすると共に、高純度アルミニウム−アルミナ合金は
極低温において通常の高純度アルミニウムに匹敵する電
気伝導度および熱伝導度を有するので、極めて特性の良
い安定化被覆超電導線が得られる利点がある。
As described above, the stabilizing coating layer of the present invention is made of a high-purity aluminum-alumina alloy containing 0.005 to 50% by weight of alumina, which has good heat resistance and high strength. Since there is no difficulty in processing due to differences in aluminum, softening, etc., it is easy to manufacture and enables industrial production, and the high-purity aluminum-alumina alloy has electrical conductivity comparable to that of ordinary high-purity aluminum at extremely low temperatures. Since it has thermal conductivity, it has the advantage that a stabilized coated superconducting wire with extremely good characteristics can be obtained.

又本発明においては、自然に表面酸化した高純度アルミ
ニウム粉末を使用し、圧縮成型するため別にアルミナ粉
を加え混合する必要がないので、製造が容易で、製造コ
ストが安くなる利点がある。
In addition, in the present invention, high-purity aluminum powder with naturally surface oxidized surface is used, and since it is compression molded, there is no need to separately add and mix alumina powder, so there is an advantage that manufacturing is easy and manufacturing cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は極細多芯ツイスト超電導線の一汐1の断面を示
す図である。 第2図は粉末法により得た高純度アルミニウム−アルミ
ナ合金の軟化曲線を通常の高純度アルミニウムと比較し
て示した図である。第3図は本発明の安定化被覆超電導
線の実施例における製造工程を示す図である。第4図は
第3図に示す製造工程により得られた最終製品の断面図
である。1,4・・・・・・超電導材料、2・・・・・
・常伝導金属、3・・・・・・絶縁層、5・・・・・・
高純度アルミニウム−アルミナ合金、6・・・・・・陽
極酸化絶縁層。
FIG. 1 is a diagram showing a cross section of one inch of the ultrafine multicore twisted superconducting wire. FIG. 2 is a diagram showing a softening curve of a high-purity aluminum-alumina alloy obtained by a powder method in comparison with that of ordinary high-purity aluminum. FIG. 3 is a diagram showing the manufacturing process in an embodiment of the stabilized coated superconducting wire of the present invention. FIG. 4 is a sectional view of the final product obtained by the manufacturing process shown in FIG. 3. 1, 4...Superconducting material, 2...
・Normal conductive metal, 3... Insulating layer, 5...
High purity aluminum-alumina alloy, 6...Anodized insulating layer.

Claims (1)

【特許請求の範囲】 1 アルミナ0.005〜5.0重量%を含む高純度ア
ルミニウム−アルミナ合金よりなる安定化被覆層の中に
単芯又は多芯の線状の超電導材料を埋め込んでなること
を特徴とする安定化被覆超電導線。 2 表面酸化した高純度アルミニウム粉末を圧縮焼結し
たブロック内に縦方向に複数本の孔を開け、該孔にそれ
ぞれ超電導材料よりなる棒を挿入して複合ビレツトを作
成し、該複合ビレツトに少くとも1回静水圧押出し加工
を施した後、スエージング伸線、圧延等の加工により所
定サイズに引伸することを特徴とするアルミニウム安定
化被覆導線の製造方法。
[Scope of Claims] 1 A single-core or multi-core linear superconducting material is embedded in a stabilizing coating layer made of a high-purity aluminum-alumina alloy containing 0.005 to 5.0% by weight of alumina. A stabilized coated superconducting wire featuring: 2. A composite billet is created by making multiple holes in the longitudinal direction in a block made by compressing and sintering high-purity aluminum powder with surface oxidation, and inserting a rod made of superconducting material into each hole. A method for producing an aluminum stabilized coated conductive wire, which comprises subjecting the wire to one-time hydrostatic extrusion and then drawing it to a predetermined size by processing such as swaging and rolling.
JP49063597A 1974-06-04 1974-06-04 Stabilized coated superconducting wire and its manufacturing method Expired JPS596005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49063597A JPS596005B2 (en) 1974-06-04 1974-06-04 Stabilized coated superconducting wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49063597A JPS596005B2 (en) 1974-06-04 1974-06-04 Stabilized coated superconducting wire and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS50156393A JPS50156393A (en) 1975-12-17
JPS596005B2 true JPS596005B2 (en) 1984-02-08

Family

ID=13233828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49063597A Expired JPS596005B2 (en) 1974-06-04 1974-06-04 Stabilized coated superconducting wire and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS596005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328963B2 (en) * 1988-04-18 1991-04-22 Showa Aluminium Co Ltd

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840286B2 (en) * 1976-01-13 1983-09-05 工業技術院長 Method for manufacturing high tensile strength aluminum stabilized superconducting wire
JP6469956B2 (en) * 2014-03-12 2019-02-13 矢崎総業株式会社 Aluminum material, conductors for electric wires and electric wires for vehicles.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328963B2 (en) * 1988-04-18 1991-04-22 Showa Aluminium Co Ltd

Also Published As

Publication number Publication date
JPS50156393A (en) 1975-12-17

Similar Documents

Publication Publication Date Title
US4411712A (en) Method of manufacture of multifilamentary intermetallic superconductors
JP3171398B2 (en) Anode for porous electrolysis
CA1131894A (en) Composite construction process and superconductor produced thereby
JPH0444365B2 (en)
JPH0578991A (en) Manufacture of wire
EP0045584B1 (en) Methods of making multifilament superconductors
JPS62170111A (en) Manufacture of multicore fine wire super conductor
JPS596005B2 (en) Stabilized coated superconducting wire and its manufacturing method
JPS5827605B2 (en) 100% of the population
US4215465A (en) Method of making V3 Ga superconductors
JPH06158212A (en) Nb3al superconductor, its production, nb3al superconducting precursor composition and high magnetic field generating superconducting magnet
JP3178317B2 (en) High strength superconducting wire
JPS5991610A (en) Method of producing stabilizer for superconductive conductor
JP2005141968A (en) Compound superconducting wire material and its manufacturing method
JPS61266528A (en) Manufacture of high performance compound superconductive material by powder metallurgy
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JP2960251B2 (en) Method of forming helical coil conductor
JP3489313B2 (en) Method for producing Nb3Al-based superconducting wire
JP3033593B2 (en) Aluminum stabilized superconducting wire
JPH1012057A (en) Nb3al-type superconductive wire material and manufacture thereof
JPH09204829A (en) Manufacture of nb3al superconducting wire
JPH063693B2 (en) NbTi Extra-fine multi-core superconducting wire manufacturing method
JPH0589726A (en) Nbyi superconductive wire
JPS6116139B2 (en)
JPS6347086B2 (en)