JP6469956B2 - Aluminum material, conductors for electric wires and electric wires for vehicles. - Google Patents

Aluminum material, conductors for electric wires and electric wires for vehicles. Download PDF

Info

Publication number
JP6469956B2
JP6469956B2 JP2014048282A JP2014048282A JP6469956B2 JP 6469956 B2 JP6469956 B2 JP 6469956B2 JP 2014048282 A JP2014048282 A JP 2014048282A JP 2014048282 A JP2014048282 A JP 2014048282A JP 6469956 B2 JP6469956 B2 JP 6469956B2
Authority
JP
Japan
Prior art keywords
aluminum
powder
aluminum material
electric wire
electric wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014048282A
Other languages
Japanese (ja)
Other versions
JP2015172225A (en
Inventor
泰史 大塚
泰史 大塚
聡 吉永
聡 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2014048282A priority Critical patent/JP6469956B2/en
Publication of JP2015172225A publication Critical patent/JP2015172225A/en
Application granted granted Critical
Publication of JP6469956B2 publication Critical patent/JP6469956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Description

本発明は、アルミニウム材料とこのアルミニウム材料を用いて製造された電線用導体および上記電線用導体を用いて製造された車両用電線に関する。   The present invention relates to an aluminum material, an electric wire conductor manufactured using the aluminum material, and an electric wire for a vehicle manufactured using the electric wire conductor.

従来、純アルミニウム粉またはアルミニウム合金粉にメカニカルアロイングを施し、メカニカルアロイング粉中の構成元素の一部を処理工程中または処理後において一部酸化させ、これによって生成される酸化物を強化粒子として分散させることを含む高強度アルミニウム合金粉末の製造方法が知られている(たとえば特許文献1参照)。   Conventionally, pure aluminum powder or aluminum alloy powder is mechanically alloyed, and some of the constituent elements in the mechanical alloying powder are partially oxidized during or after the treatment process, and the oxide produced thereby is reinforced particles. There is known a method for producing a high-strength aluminum alloy powder including dispersion as (see, for example, Patent Document 1).

また、金属ナノ結晶粒子の粒子間および/または粒子の内部に、結晶粒成長抑制物質として金属または半金属の酸化物を存在させる金属バルク材の製造方法が知られている(たとえば特許文献2参照)。   Also known is a method for producing a metal bulk material in which a metal or metalloid oxide is present as a crystal grain growth inhibiting substance between and / or inside the metal nanocrystal particles (see, for example, Patent Document 2). ).

また、自然酸化物形成層を有するアルミニム粉末を熱間加工するナノアルミニウム/アルミナ金属母材複合材料の製造方法が知られている(たとえば特許文献3参照)。   In addition, a method for producing a nanoaluminum / alumina metal matrix composite material in which an aluminum powder having a natural oxide forming layer is hot-worked is known (for example, see Patent Document 3).

さらに、アルミニウム基粒子分散型複合材料やこの製造方法として、たとえば、特許文献4に示すものが知られており、酸化物分散型合金の製造方法として、たとえば、特許文献5に示すものが知られている。   Further, as an aluminum-based particle dispersion type composite material and its manufacturing method, for example, the one shown in Patent Document 4 is known, and as a manufacturing method of an oxide dispersion type alloy, for example, the one shown in Patent Document 5 is known. ing.

特開平7−268401号公報JP 7-268401 A 特開2004−143596号公報JP 2004-143596 A 特表2010−511098号公報Special table 2010-511098 gazette 特許第3458146号公報Japanese Patent No. 3458146 特開2006−57164号公報JP 2006-57164 A

ところで、特許文献1では、原料粉末内部に金属酸化物を導入するために、原料粉末にメカニカルアロイングを施している。   By the way, in patent document 1, in order to introduce | transduce a metal oxide inside raw material powder, mechanical alloying is given to raw material powder.

また、特許文献2では、原料としてナノ結晶粒子をもつナノ金属粉末を利用するので、その作成のためにメカニカルアロイングを施している。   Moreover, in patent document 2, since the nano metal powder which has a nanocrystal particle | grain is used as a raw material, mechanical alloying is given for the preparation.

また、特許文献3では、機械的特性、熱伝導率、比熱に着目しているだけである。   Patent Document 3 merely focuses on mechanical characteristics, thermal conductivity, and specific heat.

したがって、上記各先行技術文献に記載されているものでは、次に示すような問題点がある。   Therefore, the problems described in the above prior art documents have the following problems.

粉末へのメカニカルアロイングを実施するための設備が必要になる。酸化物を過剰に導入すると、導電率が低下してしまう。アルミニウムの高強度化の手法として合金化することが広く知られているが、合金化によって強度を向上させると、固溶元素によって導電率や延性が低下してしまう。また、材料のリサイクル性が悪化する。   Equipment for performing mechanical alloying on powder is required. If an excessive amount of oxide is introduced, the electrical conductivity is lowered. Alloying is widely known as a technique for increasing the strength of aluminum. However, when the strength is improved by alloying, the conductivity and ductility are lowered by the solid solution element. In addition, the recyclability of the material deteriorates.

本発明は、上記問題点に鑑みてなされたものであり、メカニカルアロイングを実施するための設備が不要であり、導電率の低下、延性の低下が発生せず、引張強さを向上させることができるアルミニウム材料、および、アルミニウム材料を用いた電線用導体およびこの電線用導体を用いた車両用電線を提供することを目的とする。   The present invention has been made in view of the above-described problems, does not require equipment for carrying out mechanical alloying, and does not cause a decrease in conductivity and a decrease in ductility, thereby improving the tensile strength. An object of the present invention is to provide an aluminum material that can be used, an electric wire conductor using the aluminum material, and a vehicle electric wire using the electric wire conductor.

請求項1に記載の発明は、純度99%以上の純アルミニウム粉末のみを原料とし、0.15wt.%〜0.45wt.%の酸素が酸化アルミニウムとなって内部に分散し、かつ、結晶粒径が3μm以下となっていることで、引張強さが110MPa以上になっており、導電率が純アルミニウムの53%IACS以上になっているアルミニウム材料である。 The invention according to claim 1 uses only pure aluminum powder having a purity of 99% or more as a raw material, and 0.15 wt. % To 0.45 wt. % Oxygen becomes aluminum oxide and is dispersed inside, and the crystal grain size is 3 μm or less, so that the tensile strength is 110 MPa or more, and the conductivity is 53% IACS or more of pure aluminum. It is an aluminum material.

請求項2に記載の発明は、請求項1に記載のアルミニウム材料から得られる電線用導体の製造方法であって、前記アルミニウム材料を伸線加工し焼鈍する電線用導体の製造方法である。 Invention of Claim 2 is a manufacturing method of the conductor for electric wires obtained from the aluminum material of Claim 1, Comprising : It is a manufacturing method of the conductor for electric wires which wire-draws and anneals the said aluminum material.

請求項3に記載の発明は、請求項2に記載の電線用導体の製造方法で得られた電線用導体を芯線とし、この芯線を絶縁体で構成された被覆体で覆う車両用電線の製造方法である。 According to a third aspect of the present invention, there is provided an electric wire for a vehicle in which the electric wire conductor obtained by the method for manufacturing an electric wire conductor according to the second aspect is a core wire, and the core wire is covered with a covering made of an insulator . It is a manufacturing method .

本発明によれば、メカニカルアロイングを実施するための設備が不要であり、導電率の低下、延性の低下が発生せず、引張強さを向上させることができるアルミニウム材料、および、アルミニウム材料を用いた電線用導体およびこの電線用導体を用いた車両用電線を提供することができるという効果を奏する。   According to the present invention, there is no need for equipment for carrying out mechanical alloying, an aluminum material capable of improving tensile strength without causing a decrease in conductivity and ductility, and an aluminum material. The electric wire conductor used and the vehicle electric wire using the electric wire conductor can be provided.

本発明によるアルミニウム材料の断面図である。It is sectional drawing of the aluminum material by this invention. 本発明の実施形態に係るアルミニウム材料の製造工程を示す図である。It is a figure which shows the manufacturing process of the aluminum material which concerns on embodiment of this invention. (a)は酸素量と延性との関係を示す図(グラフ)であり、(b)は酸素量と引張強さ増加量との関係を示す図(グラフ)であり、(c)は酸素量と導電率との関係を示す図(グラフ)であり、(d)は粉末の表面積と酸素量との関係を示す図(グラフ)である。(A) is a diagram (graph) showing the relationship between the oxygen content and ductility, (b) is a diagram (graph) showing the relationship between the oxygen content and the amount of increase in tensile strength, and (c) is the oxygen content. It is a figure (graph) which shows the relationship between and electrical conductivity, (d) is a figure (graph) which shows the relationship between the surface area of powder and the amount of oxygen. 試料の粒径と押出材の酸素含有量との関係を示す図である。It is a figure which shows the relationship between the particle size of a sample, and the oxygen content of an extrusion material. 試料の粒径と押出材の導電率等の特性との関係を示す図である。It is a figure which shows the relationship between characteristics, such as the particle size of a sample, and the electrical conductivity of an extrusion material.

本発明の実施形態に係るアルミニウム材料は、粉末冶金法によって原料粉末から製造されるものであり、アルミニウム材料を伸線加工し焼鈍することで電線用導体を得ることができる。また、電線用導体を絶縁性の合成樹脂等で構成された被覆体で覆うことで、電線用導体を芯線とする電線(たとえば自動車用電線等の車両用電線)を得ることができる。   The aluminum material which concerns on embodiment of this invention is manufactured from a raw material powder by a powder metallurgy method, and can obtain the conductor for electric wires by wire-drawing and annealing an aluminum material. Further, by covering the electric wire conductor with a covering made of an insulating synthetic resin or the like, an electric wire having the electric wire conductor as a core wire (for example, a vehicle electric wire such as an automobile electric wire) can be obtained.

アルミニウム材料の製造方法について、図2等を参照して詳しく説明する。   A method for producing the aluminum material will be described in detail with reference to FIG.

まず、原料粉末(純度99%以上の純アルミニウム粉末)を秤量する(S1)。続いて、秤量した原料粉末を圧粉成形する(S3)。続いて、圧粉成形した圧粉体を焼結する(S5)。続いて、焼結された焼結体を熱間もしくは温間押出し成形して(S7)、素材(細長い棒状のアルミニウム材料)を得る(S9)。   First, raw material powder (pure aluminum powder having a purity of 99% or more) is weighed (S1). Subsequently, the weighed raw material powder is compacted (S3). Subsequently, the compacted green compact is sintered (S5). Subsequently, the sintered body is subjected to hot or warm extrusion molding (S7) to obtain a raw material (a long and narrow bar-shaped aluminum material) (S9).

工程S1で秤量される原料粉末(アルミニウム粉末)は、たとえば概ね球形状または雫状に形成されており、粉体径は1.2μm〜180μmになっている。なお、アルミニウム粉末が雫状になっている場合、短径もしくは長径を粉体径として採用してもよいし、短径と長径の平均値を粉体径として採用してもよい。   The raw material powder (aluminum powder) weighed in step S1 is formed, for example, in a generally spherical shape or bowl shape, and the powder diameter is 1.2 μm to 180 μm. When the aluminum powder is in a bowl shape, the short diameter or the long diameter may be adopted as the powder diameter, or the average value of the short diameter and the long diameter may be adopted as the powder diameter.

工程S1で秤量したアルミニウム粉末は、所定時間大気中に置かれ、これによって表面に酸化被膜が形成される。酸化被膜が形成されたアルミニウム粉末が、工程S3で圧粉成形される。   The aluminum powder weighed in step S1 is placed in the atmosphere for a predetermined time, whereby an oxide film is formed on the surface. The aluminum powder on which the oxide film is formed is compacted in step S3.

工程S3での圧粉の条件に特に限定は無いが、圧粉体の密度は2.7Mg/m 3 付近とすることが望ましい。2.7Mg/m 3 とは、社団法人 日本アルミニウム協会発行「アルミニウムハンドブック 第6版」に記載される純アルミニウムの密度の値である。
There are no particular limitations on the compacting conditions in step S3, but the density of the compact is preferably about 2.7 Mg / m 3 . 2.7 Mg / m 3 is a density value of pure aluminum described in “Aluminum Handbook 6th Edition” issued by Japan Aluminum Association.

焼結工程S5での焼結温度は、圧粉された純アルミニウム粉末が焼結可能であり、かつ、純アルミニウムの融点を超えない温度(400℃〜630℃)であることが望ましい。   The sintering temperature in the sintering step S5 is desirably a temperature (400 ° C. to 630 ° C.) at which the compacted pure aluminum powder can be sintered and does not exceed the melting point of pure aluminum.

押出し成形工程S7における純アルミニウム焼結体の温度は、純アルミニウム焼結体が押出し可能な温度(300℃以上)であることが望ましい。ただし、純アルミニウムの融点を超えない温度を超えないようにすることが望ましい。   The temperature of the pure aluminum sintered body in the extrusion molding step S7 is desirably a temperature (300 ° C. or higher) at which the pure aluminum sintered body can be extruded. However, it is desirable not to exceed a temperature not exceeding the melting point of pure aluminum.

所望の強度特性を得るために、図2で示す工程を経て作成されたアルミニウム材料の結晶粒径は、3μm以下(伸長粒の場合は短径)となっていることが必要であり、かつ、酸素量0.15wt.%〜0.45wt.%(重量%;質量%)の酸化アルミニウムが内部に分散していることが必要である。   In order to obtain desired strength characteristics, the crystal grain size of the aluminum material created through the process shown in FIG. 2 needs to be 3 μm or less (in the case of elongated grains), and Oxygen content 0.15 wt. % To 0.45 wt. % (Weight%; mass%) of aluminum oxide must be dispersed inside.

なお、図1はアルミニウム材料中に酸化物が分散した状態を示しており、円C1が酸化物を示している。本実施形態に係るアルミニウム材料では、結晶粒の粒径が3μm以下になっており、結晶粒内に酸化物が分散している。   FIG. 1 shows a state in which an oxide is dispersed in an aluminum material, and a circle C1 shows the oxide. In the aluminum material according to this embodiment, the grain size of the crystal grains is 3 μm or less, and the oxide is dispersed in the crystal grains.

原料粉末の粉体径が1.2μm〜180μmであることについて詳しく説明する。   The fact that the powder diameter of the raw material powder is 1.2 μm to 180 μm will be described in detail.

粉体径が180μm以上(酸素量0.15wt%以下)である場合、粉末の表面積が減少するので酸化物含有量が低下し酸化物の分散度も低下する。この結果、酸化物分散強化の寄与は低下し、溶融法に対する利点が失われる。たとえば、すでに一般的に製造されている溶融法によるAl−Fe合金(O材)の特性は、JIS Z2241に定義される引張強さ(UTS)110MPa、導電率59%IACS(International Annealed Copper Standar)であり、アルミニウム材料(粉末冶金法によって作成されたアルミニウム材料)で110MPa以上の引張強さとするには、粉体径を180μm以下にする必要がある。なお、アルミニウム材料の引張強さの上限は、特に定めないが、たとえば、アルミニウム材料の引張強さの範囲は、110MPa〜230MPaになっている。230MPaとは、粉体径3μmの粉末で作製した押出材をひずみε≒4まで伸線加工した材料の引張強さである。   When the powder diameter is 180 μm or more (oxygen content 0.15 wt% or less), the surface area of the powder decreases, so that the oxide content decreases and the oxide dispersity also decreases. As a result, the contribution of oxide dispersion strengthening is reduced and the advantage over the melting method is lost. For example, the characteristics of an Al-Fe alloy (O material) that has already been generally produced by the melting method are as follows: tensile strength (UTS) 110 MPa as defined in JIS Z2241, conductivity 59% IACS (International Annealed Copper Standard) In order to obtain a tensile strength of 110 MPa or more with an aluminum material (an aluminum material produced by powder metallurgy), the powder diameter must be 180 μm or less. In addition, although the upper limit of the tensile strength of aluminum material is not specifically defined, the range of tensile strength of aluminum material is 110 MPa-230 MPa, for example. 230 MPa is the tensile strength of a material obtained by drawing an extruded material made of powder having a powder diameter of 3 μm to a strain ε≈4.

また、アルミニウム材料を断面積0.5mmの自動車用電線(一般電線および耐熱電線)の導体として用いる場合、10Aヒューズとのマッチングをとるために導電率を53%以上としつつ、引張強さを140MPaとする必要がある。 In addition, when aluminum material is used as a conductor of an automotive electric wire (general electric wire and heat-resistant electric wire) having a cross-sectional area of 0.5 mm 2 , the tensile strength is set to 53% or more in order to match the 10A fuse. It is necessary to be 140 MPa.

導電率を53%以上(たとえば、53%〜100%)にするためには、図3で示す導電率と酸素量との相関関係、酸素量と粉末表面積との相関関係から、粉体径を1.2μm以上(酸素量0.45wt.%以下)にする必要がある。   In order to make the electrical conductivity 53% or more (for example, 53% to 100%), the powder diameter is determined from the correlation between the electrical conductivity and the oxygen amount and the correlation between the oxygen amount and the powder surface area shown in FIG. It is necessary to make it 1.2 μm or more (oxygen amount 0.45 wt.% Or less).

また、アルミニウム材料を大きい断面積0.75mmの自動車用電線(一般電線および耐熱電線)の導体として用いる場合、引張強さを94MPa以上とし、導電率を58%以上とする必要がある。これは、粉体径を20μm〜180μmとすることで満足させることができる。 Further, when an aluminum material is used as a conductor of an automobile electric wire (general electric wire and heat-resistant electric wire) having a large cross-sectional area of 0.75 mm 2 , it is necessary that the tensile strength is 94 MPa or more and the conductivity is 58% or more. This can be satisfied by setting the powder diameter to 20 μm to 180 μm.

図4や図5を参照すると、アルミニウム材料(粉末冶金法による高強度純アルミニウム材料)によれば、溶融法によって作成された純アルミニウム材料の引張強さが70MPa程度であるのに対し、粉末表面に形成された酸化物を均一分散(アルミニウム材料中に酸化物を高密微細に分散)させることで、導電率53%以上を確保しつつ、かつ、伸び(延性)を著しく低下させることなく、引張強さが向上している。   Referring to FIG. 4 and FIG. 5, according to the aluminum material (high strength pure aluminum material by powder metallurgy method), the tensile strength of the pure aluminum material prepared by the melting method is about 70 MPa, whereas the powder surface By uniformly dispersing the oxide formed in this manner (highly and finely dispersing the oxide in the aluminum material), it is possible to secure a conductivity of 53% or more and to reduce the elongation (ductility) without significantly decreasing. Strength has been improved.

また、アルミニウム材料によれば、粉体径1.2μm〜180μmの純アルミニウム粉末を大気中に置くことによって生じる酸化被膜をそのまま活用するので、メニカルアロイングを実施するための設備が不要になり、メカニカルアロイングなどの高エネルギーのミリング工程が不要になる。   In addition, according to the aluminum material, the oxide film generated by placing pure aluminum powder having a powder diameter of 1.2 μm to 180 μm in the atmosphere is utilized as it is, so that facilities for carrying out the mechanical alloying become unnecessary. , High energy milling process such as mechanical alloying becomes unnecessary.

すなわち、原料となるアルミニウム粉末の径を調整するだけで、アルミニウム材料の強度や導電率を制御できる。   That is, the strength and electrical conductivity of the aluminum material can be controlled simply by adjusting the diameter of the aluminum powder as a raw material.

また、アルミニウム材料によれば、第2の元素(アルミニウムと酸素以外の金属元素等の元素)を添加していないので、導電率の著しい低下が抑制されている。すなわち、アルミニウム材料の引張強さが140MPa以上であっても、導電率が53%になり、断面積0.5mmの電線にも使用することができ、リサイクル性にも優れている。 Moreover, according to the aluminum material, since the second element (elements such as metal elements other than aluminum and oxygen) is not added, a significant decrease in conductivity is suppressed. That is, the tensile strength of the aluminum material is not more than 140 MPa, conductivity becomes 53%, also can be used for electric wire cross-sectional area 0.5 mm 2, it is excellent in recyclability.

また、アルミニウム材料によれば、断面積0.75mmの電線の要件(引張強さ94MPa以上、導電率58%以上)も満足する。 Moreover, according to the aluminum material, the requirements for a wire having a cross-sectional area of 0.75 mm 2 (tensile strength of 94 MPa or more, conductivity of 58% or more) are also satisfied.

なお、図5で示す「YS」は、「Yield Stress」であり、「UTS」は、「Ultimate Tensile Strength」である。   Note that “YS” shown in FIG. 5 is “Yield Stress”, and “UTS” is “Ultimate Tensile Strength”.

S1 秤量工程
S3 圧粉成形工程
S5 焼結工程
S7 押出し成形工程
S1 Weighing process S3 Compacting process S5 Sintering process S7 Extrusion process

Claims (3)

純度99%以上の純アルミニウム粉末のみを原料とし、0.15wt.%〜0.45wt.%の酸素が酸化アルミニウムとなって内部に分散し、かつ、結晶粒径が3μm以下となっていることで、引張強さが110MPa以上になっており、導電率が純アルミニウムの53%IACS以上になっていることを特徴とするアルミニウム材料。 Using only pure aluminum powder with a purity of 99% or more as a raw material, 0.15 wt. % To 0.45 wt. % Oxygen becomes aluminum oxide and is dispersed inside, and the crystal grain size is 3 μm or less, so that the tensile strength is 110 MPa or more, and the conductivity is 53% IACS or more of pure aluminum. An aluminum material characterized in that 請求項1に記載のアルミニウム材料から得られる電線用導体の製造方法であって、
前記アルミニウム材料を伸線加工し焼鈍することを特徴とする電線用導体の製造方法
It is a manufacturing method of the conductor for electric wires obtained from the aluminum material according to claim 1 ,
A method for producing a conductor for electric wire, comprising drawing and annealing the aluminum material.
請求項2に記載の電線用導体の製造方法で得られた電線用導体を芯線とし、この芯線を絶縁体で構成された被覆体で覆うことを特徴とする車両用電線の製造方法 The wire conductors obtained by the manufacturing method of the wire conductor of claim 2 and core wire, a manufacturing method of a vehicular wire, characterized in that covering the core wire with a coating material which is an insulator.
JP2014048282A 2014-03-12 2014-03-12 Aluminum material, conductors for electric wires and electric wires for vehicles. Active JP6469956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014048282A JP6469956B2 (en) 2014-03-12 2014-03-12 Aluminum material, conductors for electric wires and electric wires for vehicles.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048282A JP6469956B2 (en) 2014-03-12 2014-03-12 Aluminum material, conductors for electric wires and electric wires for vehicles.

Publications (2)

Publication Number Publication Date
JP2015172225A JP2015172225A (en) 2015-10-01
JP6469956B2 true JP6469956B2 (en) 2019-02-13

Family

ID=54259707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048282A Active JP6469956B2 (en) 2014-03-12 2014-03-12 Aluminum material, conductors for electric wires and electric wires for vehicles.

Country Status (1)

Country Link
JP (1) JP6469956B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7488235B2 (en) 2021-09-29 2024-05-21 矢崎総業株式会社 Aluminum matrix composite member, its manufacturing method and electrical connection member
CN114843031B (en) * 2022-04-15 2024-02-02 安徽精隆新材料有限责任公司 Manufacturing method of antioxidant high-temperature-resistant aluminum electromagnetic wire
CN114999709B (en) * 2022-06-10 2023-01-24 北京航空航天大学 Powder metallurgy high-strength high-conductivity heat-resistant aluminum conductor and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982906A (en) * 1973-11-14 1976-09-28 Nippon Telegraph And Telephone Public Corporation Production of aluminum-aluminum oxide dispersion composite conductive material and product thereof
JPS596005B2 (en) * 1974-06-04 1984-02-08 住友電気工業株式会社 Stabilized coated superconducting wire and its manufacturing method
JPS6270547A (en) * 1985-09-25 1987-04-01 Toshiba Corp Semiconductor device
JP6080336B2 (en) * 2010-10-25 2017-02-15 矢崎総業株式会社 Electric wire / cable

Also Published As

Publication number Publication date
JP2015172225A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP6534809B2 (en) Aluminum alloy wire, aluminum alloy stranded wire, coated electric wire, wire harness, and method of manufacturing aluminum alloy wire and aluminum alloy stranded wire
JP6432619B2 (en) Aluminum alloy conductor, insulated wire using the conductor, and method for producing the insulated wire
JP6240424B2 (en) Method for producing Al alloy conductive wire
US10246762B2 (en) Aluminum alloy electric wire and automotive wire harness using the same
JP6927685B2 (en) Aluminum wire, and aluminum wire and wire harness using it
CN104995322A (en) Copper alloy wire, copper-alloy strand wire, coated electric wire, and electric wire with terminal
JP6469956B2 (en) Aluminum material, conductors for electric wires and electric wires for vehicles.
JP6749087B2 (en) Fastening member
KR20110136472A (en) Aluminum alloy conductor and method of production the same
JP2016074950A (en) Copper alloy and manufacturing method therefor
JP6342871B2 (en) Aluminum-based composite material and method for producing the same
US10249401B2 (en) Aluminum alloy wire, electric wire, cable and wire harness
JP6212946B2 (en) Aluminum alloy wire excellent in bendability and manufacturing method thereof
US20170243667A1 (en) Aluminum alloy electrical wire and wire harness using same
JP6288456B2 (en) Electric wire manufacturing method, electric wire, and wire harness
JP2018012869A (en) Conductive wire of aluminum alloy and manufacturing method of conductive member of aluminum alloy
WO2011071097A1 (en) Power feed body and method for manufacturing same
JP3901052B2 (en) Aluminum alloy stranded wire conductor cable
US3982906A (en) Production of aluminum-aluminum oxide dispersion composite conductive material and product thereof
Khomenko et al. Effect of deformation processing on the properties of Cu–50% Cr composite
RU2441090C2 (en) Aluminium-based heat-resistant conducting alloy
EP3625833B1 (en) Superconductor wire based on mgb2 core with al based sheath and method of its production
JP6091912B2 (en) Copper-chromium alloy wire and method for non-heating production of high ductility, high-strength copper-chromium alloy wire
JP6009145B2 (en) Aluminum electric wire and method for manufacturing the same
JP2006176833A (en) Aluminum alloy for conduction, and aluminum alloy wire for conduction and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190117

R150 Certificate of patent or registration of utility model

Ref document number: 6469956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250