JP2960251B2 - Method of forming helical coil conductor - Google Patents

Method of forming helical coil conductor

Info

Publication number
JP2960251B2
JP2960251B2 JP6577492A JP6577492A JP2960251B2 JP 2960251 B2 JP2960251 B2 JP 2960251B2 JP 6577492 A JP6577492 A JP 6577492A JP 6577492 A JP6577492 A JP 6577492A JP 2960251 B2 JP2960251 B2 JP 2960251B2
Authority
JP
Japan
Prior art keywords
coil conductor
coil
helical coil
section
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6577492A
Other languages
Japanese (ja)
Other versions
JPH05267044A (en
Inventor
晃則 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6577492A priority Critical patent/JP2960251B2/en
Publication of JPH05267044A publication Critical patent/JPH05267044A/en
Application granted granted Critical
Publication of JP2960251B2 publication Critical patent/JP2960251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、強磁場発生のための高
強度、高導電率を備えるヘリカルコイル導体の成形方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a helical coil conductor having high strength and high electrical conductivity for generating a strong magnetic field.

【0002】[0002]

【従来の技術】磁気閉じ込め核融合装置に必要とされる
磁界は、10〜20テスラ以上であろうと予想されている。
これまでの各種核融合装置では、常電導導体(銅線)の
コイルを用いているために膨大な電力を消費している。
このため電力の消費のない超電導線材によるコイルの開
発が不可欠である。
It is anticipated that the magnetic field required for a magnetically confined fusion device will be in excess of 10-20 Tesla.
Conventional nuclear fusion devices consume a huge amount of electric power because they use coils of a normal conductor (copper wire).
Therefore, it is essential to develop a coil using a superconducting wire that consumes no power.

【0003】強磁界に耐える高性能な超電導導体の開発
のためには、各種導体を開発して、強磁界発生装置の中
に入れ、臨界電流密度(Jc )、上部臨界磁界、交流損
等を調べる必要がある。
In order to develop a high-performance superconducting conductor that can withstand a strong magnetic field, various conductors are developed and put into a strong magnetic field generator, and the critical current density ( Jc ), upper critical magnetic field, AC loss, etc. Need to find out.

【0004】このため、強磁界発生装置が必要であり、
30テラス以上の磁界を発生させるためには、図5に示す
ように、超電導マグネット8(外側)と、水冷マグネッ
ト7(内側)を組合せて両者の磁界の和が最大になる磁
界の中心部が得られるハイブリッドマグネットが用いら
れる。
Therefore, a strong magnetic field generator is required,
In order to generate a magnetic field of 30 terraces or more, as shown in FIG. 5, a superconducting magnet 8 (outside) and a water-cooled magnet 7 (inside) are combined so that the central part of the magnetic field at which the sum of the magnetic fields of both becomes maximum The resulting hybrid magnet is used.

【0005】この水冷マグネットコイルには、ポリヘリ
ックス型とビッター型及びモノヘリックス型の三つの型
があるが本発明は、ポリヘリックス型コイル導体の成形
方法に関するものである。
There are three types of this water-cooled magnet coil, a polyhelix type, a bitter type, and a monohelix type. The present invention relates to a method for forming a polyhelix type coil conductor.

【0006】ポリヘリックス型コイル導体は、平角線で
単層ヘリカルコイル導体を作り、同心環状に複数個のヘ
リカルコイル導体を組合せ、電気的に並・直列に接続し
た多層コイルである。この層間隙に冷却水を流して冷却
する構造が一般に採用されている。この多層コイル導体
が独立に支持されているとすれば、それぞれのコイル導
体に生ずる円周方向の引張り応力は、電流密度、コイル
の半径及び磁界の積に比例する。従って、コイル導体と
しては、できるだけ円周方向の強度、特に耐力が高く導
電率の大きな導体が要求される。
The polyhelical coil conductor is a multilayer coil in which a single-layer helical coil conductor is formed by a rectangular wire, and a plurality of helical coil conductors are concentrically combined and electrically connected in parallel and in series. A structure for cooling by flowing cooling water through the layer gap is generally adopted. Assuming that the multilayer coil conductors are independently supported, the circumferential tensile stress generated in each coil conductor is proportional to the product of the current density, coil radius and magnetic field. Therefore, as the coil conductor, a conductor having high strength in the circumferential direction as much as possible, particularly, high proof strength and high conductivity is required.

【0007】これらの仕様の対象となるCu及びCu合
金は数多くある。例えば、図7の(J)〜(M)に示す
ようにリングローリング鍛造によって、純銅の耐力、引
張り強さを上げる方法があるが、この方法では耐力で30
kg/mm2 、引張り強さ40kg/mm2 が限界である。この他
に析出硬化型Cu合金であるCr−Cu,Cr−Zr−
Cu等があるがいずれも強度的には不十分である。また
アルミナ分散強化型銅合金は強度、電気特性共に十分な
特性を有しているが、大型晶を製造することが難しい。
また図6の(G)(H)に示すように、板状素材4を巻
き付け、溶接部6を設けて円筒5を製作することも可能
であるが、溶接部6の機械的、電気的特性が劣るため、
有効な方法ではない。
There are many Cu and Cu alloys subject to these specifications. For example, as shown in FIGS. 7 (J) to 7 (M), there is a method of increasing the yield strength and tensile strength of pure copper by ring rolling forging.
kg / mm 2 , Tensile strength 40kg / mm 2 Is the limit. In addition, Cr-Cu, Cr-Zr-
There are Cu and the like, but all of them are insufficient in strength. Further, although the alumina dispersion strengthened copper alloy has sufficient strength and electric properties, it is difficult to produce a large crystal.
As shown in FIGS. 6G and 6H, it is possible to wind the plate-shaped material 4 and provide a welded portion 6 to produce the cylinder 5, but the mechanical and electrical characteristics of the welded portion 6 are also possible. Is inferior,
Not a valid method.

【0008】[0008]

【発明が解決しようとする課題】このようにハイブリッ
ドマグネットにおいて強磁界、例えば40〜50テスラを得
ようとすると水冷マグネットに作用する円周方向応力
は、非常に高くなるため、コイル導体の耐力として50kg
/mm2 以上を満足しなければならない。さらにコンパク
ト化するには80%(IACS)以上の導電率が要求され
る。そこで本発明の目的は、より高強度、高導電率を備
えるヘリカルコイル導体の成形方法を提供することであ
る。
In order to obtain a strong magnetic field, for example, 40 to 50 Tesla in the hybrid magnet, the circumferential stress acting on the water-cooled magnet becomes extremely high. 50kg
/ Mm 2 The above must be satisfied. To achieve further compactness, a conductivity of 80% (IACS) or more is required. Therefore, an object of the present invention is to provide a method for forming a helical coil conductor having higher strength and higher electrical conductivity.

【0009】[0009]

【課題を解決するための手段】本発明は、断面平角形の
伸線を円筒に螺旋状に巻き付け、巻き付けた円筒の軸方
向から圧縮力を加えて上記伸線が断面台形になった形状
を再度断面平角状に修正し、しかる後、伸線の内外表面
を仕上げ加工したものである。
According to the present invention, there is provided a wire having a rectangular cross section, which is spirally wound around a cylinder, and a compression force is applied in the axial direction of the wound cylinder to form the wire into a trapezoidal cross section. The cross section was corrected to a rectangular shape again, and then the inner and outer surfaces of the drawn wire were finished.

【0010】[0010]

【作用】ヘリカルコイル導体は、電磁力により円周方向
に大きな引張り応力が働き、軸方向にはその1/5〜1
/10程度の圧縮応力が生じる。このため、巻き付けたま
まの台形状断面では、コイル導体各層間の当りが均一に
らないため、全体の寸法精度が悪くなるばかりでなく、
不均一な当りのため座屈現象が生じやすく、コイル導体
回りの絶縁物が破壊されることもある。しかし、本発明
の如く、強制変形によってコイル導体層間の当りを均一
にすることにより、これらの不具合は全て解消される。
また冷間加工した伸線を熱処理することなく、そのまま
の状態で使用できるため、優れた機械的性質が利用でき
る。
In the helical coil conductor, a large tensile stress acts in the circumferential direction due to the electromagnetic force, and 1/5 to 1 in the axial direction.
A compressive stress of about / 10 occurs. For this reason, in the trapezoidal cross section as it is wound, since the contact between the coil conductor layers is not uniform, not only does the overall dimensional accuracy deteriorate,
Buckling is likely to occur due to uneven contact, and the insulator around the coil conductor may be destroyed. However, by making the contact between the coil conductor layers uniform by forced deformation as in the present invention, all of these disadvantages are eliminated.
In addition, since the cold-drawn wire can be used as it is without heat treatment, excellent mechanical properties can be used.

【0011】[0011]

【実施例】以下、本発明にかかるヘリカルコイル導体の
成形方法の実施例を図面を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for forming a helical coil conductor according to the present invention will be described below with reference to the drawings.

【0012】本実施例では、図3の(E)のアルミナ粒
子分散強化銅12を用い、図3の(E)に示す棒状伸銅10
から、冷間塑性引き抜き加工によって、同図の(F)に
示す長尺の平角の銅帯11を得る。この銅帯11の表面に
は、0.05〜0.1 mmの純銅が被覆されている。
In this embodiment, the alumina particle dispersion strengthened copper 12 shown in FIG. 3E is used, and the rod-shaped copper copper 10 shown in FIG.
Then, a long flat rectangular copper strip 11 shown in FIG. 3 (F) is obtained by cold plastic drawing. The surface of the copper strip 11 is coated with 0.05 to 0.1 mm of pure copper.

【0013】次に、銅帯11を図1の(A)に示す円筒形
状の内金型13に張力を加えながら、銅帯11間の隙間が極
力小さくなるように機械的に巻き付け、螺旋状コイル14
を得る。巻き付け後、張力を除くとコイルの弾性変形分
だけコイル径が増加する。次に、この増加したコイル径
内に内金型13のほかに外金型15を挿入し、上下から、図
1の(C)に示すような荷重を加えて、螺旋状コイル14
の各層の台形状断面を強制変形してもとの平角形状にな
るようにする。加える荷重はコイル断面の塑性変形抵抗
によって決まり、高強度は伸線程、大きな力を加える必
要がある。その後内金型13を除去し、同図(B)のコイ
ル導体17が得られ、更にこの内・外周と各層間の面18a
〜18hを機械仕上げすることにより、最終形状の層間20
a〜20hを有するコイル導体19を同図(D)にすること
ができる。
Next, the copper strip 11 is mechanically wound while applying tension to the cylindrical inner mold 13 shown in FIG. 1A so that the gap between the copper strips 11 is as small as possible. Coil 14
Get. After winding, if the tension is removed, the coil diameter increases by the elastic deformation of the coil. Next, an outer mold 15 is inserted into the increased coil diameter in addition to the inner mold 13, and a load as shown in FIG.
The trapezoidal cross section of each layer is forcibly deformed so that it becomes the original rectangular shape. The load to be applied is determined by the plastic deformation resistance of the coil cross section. For high strength, it is necessary to apply a large force as the wire is drawn. Thereafter, the inner mold 13 is removed to obtain a coil conductor 17 shown in FIG.
~ 18h is machine finished to make the final shape interlayer 20
The coil conductor 19 having a to 20h can be shown in FIG.

【0014】本発明の大きな特徴は、巻き付け後、平角
断面の精度を向上するために圧縮荷重を加え、変形させ
ただけであるから、螺旋状コイルとするための機械加
工、ワイヤカットあるいは放電加工が不用であり、製造
プロセスが極めて単純になる。また内金型の径を変える
ことにより任意の径のコイルの製作が可能であり、一体
のインゴットから切り出す方式に比べ、材料の歩留りが
大変良い。更には、巻き付け後、熱処理を行なわないた
め、加熱には材質の劣化が全く生じることなく、冷間加
工による優れた性質をそのまま活用できる。
A major feature of the present invention is that, after winding, only a compressive load is applied to improve the accuracy of a rectangular cross section and deformed. Therefore, machining for forming a spiral coil, wire cutting or electric discharge machining is performed. Is unnecessary, and the manufacturing process becomes extremely simple. Further, a coil having an arbitrary diameter can be manufactured by changing the diameter of the inner die, and the yield of the material is very good as compared with a method of cutting out from an integrated ingot. Furthermore, since the heat treatment is not performed after the winding, the excellent properties of the cold working can be utilized as it is without any deterioration of the material during heating.

【0015】図4は内金型に平角線を巻き付けたときの
内・外断面の変形程度を示す。通常の巻き付けでは同図
に示すコイル導体厚さと直径の比(t/D)は0.05〜0.
15程度までである。このように変形した断面は、図3に
示すように、比較的小さな面圧相当荷重を加えることに
よって、容易に断面は変形し、もとの平角形状に近くす
ることができる。これは、使用したアルミナ粒子分散強
化銅の表面に被覆されている純銅が小さな荷重で変形し
やすいからである。
FIG. 4 shows the degree of deformation of the inner and outer cross sections when a rectangular wire is wound around the inner mold. In normal winding, the ratio (t / D) of the coil conductor thickness to the diameter shown in FIG.
Up to about 15 As shown in FIG. 3, the cross section thus deformed can be easily deformed by applying a relatively small load corresponding to a surface pressure to approximate the original rectangular shape. This is because pure copper coated on the surface of the alumina particle dispersion strengthened copper used is easily deformed by a small load.

【0016】なお、図3中、Wはコイル導体が変形して
いないときの寸法であり、Δaはコイル導体の下底部が
伸縮したときの変形量を示す。また、図4中、Δbはコ
イル導体の上底部が伸縮したときの変形量をそれぞれ示
している。
In FIG. 3, W is the dimension when the coil conductor is not deformed, and Δa is the amount of deformation when the lower bottom portion of the coil conductor expands and contracts. In FIG. 4, Δb indicates the amount of deformation when the upper bottom portion of the coil conductor expands and contracts, respectively.

【0017】このように、本実施例では、初期の平角伸
線として矩形状のものを用いたが、引き抜き加工時に、
巻き付け後の変形を予想して、台形状に加工し、巻き付
け後に矩形断面とすることも可能である。この場合にお
いても、上述実施例と同等の効果を得ることが可能であ
る。またアルミナ粒子分散強化銅の伸線を用いたが、長
・短繊維、ウイスカ、粒子等の強化材を加えた金属伸
線、あるいは純金属、合金を用いてもよい。
As described above, in this embodiment, a rectangular wire is used as the initial flat rectangular wire.
It is also possible to process into a trapezoidal shape in anticipation of deformation after winding and to form a rectangular cross section after winding. Also in this case, it is possible to obtain the same effect as the above-described embodiment. Further, although wire drawing of alumina particle dispersion strengthened copper is used, metal wire drawing to which reinforcing materials such as long and short fibers, whiskers, particles and the like are added, or pure metal or alloy may be used.

【0018】[0018]

【発明の効果】本発明においては、冷間加工によって機
械的性質の向上した金属系伸線を、円筒に巻き付け、螺
旋状コイルとした後、変形したコイル断面を軸方向から
の荷重によって修正し、コイルの内・外面、更には各層
間の機械仕上げを行うため、冷間加工した特性が劣化す
ることなく、熱処理工程が不要であるため、あらゆる金
属系伸線を用いることが可能である。このため、高強
度、高導電率を機械加工精度の優れたヘリカルコイル導
体の製作が可能である。これにより、強磁界用の水冷マ
グネットの高性能、高信頼性化、コンパクト化が可能に
なる。
According to the present invention, a metal-based drawn wire having improved mechanical properties by cold working is wound around a cylinder to form a helical coil, and then the deformed coil section is corrected by a load from the axial direction. Since mechanical finishing is performed on the inner and outer surfaces of the coil and further between the respective layers, the cold-worked properties do not deteriorate, and a heat treatment step is not required. Therefore, any metal-based wire drawing can be used. Therefore, it is possible to manufacture a helical coil conductor having high strength and high conductivity and excellent machining accuracy. This makes it possible to increase the performance, reliability and compactness of the water-cooled magnet for the strong magnetic field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明にかかるヘリカルコイル導体の成形プ
ロセスを示す概念図で、(A)は螺旋状に巻き付けたコ
イル導体に圧縮力を加えたことを示し、(B)は導体コ
イルに再度圧縮力を加えたことを示し、(C)は最初の
圧縮力によって成形されたコイル導体を示し、(D)は
再度圧縮力を加えた後、機械加工仕上げしたコイル導体
をそれぞれ示している。
FIGS. 1A and 1B are conceptual diagrams showing a forming process of a helical coil conductor according to the present invention, wherein FIG. 1A shows that a compressive force is applied to a spirally wound coil conductor, and FIG. (C) shows the coil conductor formed by the initial compressive force, and (D) shows the coil conductor that has been machined after applying the compressive force again.

【図2】コイル導体の素材形状を示す概念図で、(E)
は丸棒の状態の素材を、(F)は平角に加工した素材を
それぞれ示す。
FIG. 2 is a conceptual diagram showing a material shape of a coil conductor;
Indicates a material in the shape of a round bar, and (F) indicates a material processed into a rectangular shape.

【図3】本発明によって得られたコイル導体の断面台形
から断面平角に成形したときの各断面形状の特性を示す
グラフ。
FIG. 3 is a graph showing characteristics of each cross-sectional shape when a coil conductor obtained by the present invention is formed into a rectangular cross-section from a trapezoidal cross-section.

【図4】本発明によって得られたコイル導体の変形量を
示すグラフ。
FIG. 4 is a graph showing the amount of deformation of a coil conductor obtained according to the present invention.

【図5】ハイブリッドマグネットの構成例を示す図。FIG. 5 is a diagram showing a configuration example of a hybrid magnet.

【図6】従来のコイル導体の成形プロセスを示す概念図
で、(G)はコイル導体が平板状であることを示し、
(H)は平板状のコイル導体を円筒に巻くことをそれぞ
れ示す。
FIG. 6 is a conceptual diagram showing a conventional coil conductor forming process, in which (G) shows that the coil conductor has a flat plate shape;
(H) shows that a flat coil conductor is wound around a cylinder.

【図7】従来のコイル導体の成形プロセスを示す概念図
で、(J)はコイル導体が円筒素材であることを示し、
(K)は円筒素体であるコイル導体にリングローリング
鍛造成形することを示し、(L)は加工硬化された円筒
素材を示し、(M)は最終形状としての螺旋状コイル導
体をそれぞれ示す。
FIG. 7 is a conceptual diagram showing a conventional coil conductor molding process, in which (J) shows that the coil conductor is a cylindrical material,
(K) shows ring rolling forging on a coil conductor that is a cylindrical body, (L) shows a work-hardened cylindrical material, and (M) shows a helical coil conductor as a final shape.

【符号の説明】[Explanation of symbols]

11…銅帯 12…アルミナ粒子分散強化銅 13…内金型 14…螺旋状コイル 15…外金型 17…コイル導体 19…最終形状のコイル導体 11 Copper strip 12 Alumina particle dispersion strengthened copper 13 Inner mold 14 Helical coil 15 Outer mold 17 Coil conductor 19 Final shape coil conductor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 断面平角の銅帯を円筒に螺旋状に巻き付
け、巻き付けた円筒の軸方向から圧縮力を加えて上記銅
帯が断面台形になった形状を再度、断面平角状に修正
し、しかる後、銅帯の内外表面を仕上げ加工することを
特徴とするヘリカルコイル導体の成形方法。
1. A copper strip having a rectangular cross section is spirally wound around a cylinder, and a compressive force is applied from the axial direction of the wound cylinder to correct the copper strip into a trapezoidal cross section again into a rectangular cross section. Thereafter, the inner and outer surfaces of the copper strip are finished to form a helical coil conductor.
JP6577492A 1992-03-24 1992-03-24 Method of forming helical coil conductor Expired - Fee Related JP2960251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6577492A JP2960251B2 (en) 1992-03-24 1992-03-24 Method of forming helical coil conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6577492A JP2960251B2 (en) 1992-03-24 1992-03-24 Method of forming helical coil conductor

Publications (2)

Publication Number Publication Date
JPH05267044A JPH05267044A (en) 1993-10-15
JP2960251B2 true JP2960251B2 (en) 1999-10-06

Family

ID=13296719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6577492A Expired - Fee Related JP2960251B2 (en) 1992-03-24 1992-03-24 Method of forming helical coil conductor

Country Status (1)

Country Link
JP (1) JP2960251B2 (en)

Also Published As

Publication number Publication date
JPH05267044A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US3623221A (en) Method of fabricating a tubular superconductor assembly
CA1134422A (en) Dynamoelectric machine stator having articulated amorphous metal components
JPH06349347A (en) High-temperature superconductor and usage method of said high-temperature superconductor
US4421946A (en) High current capacity superconductor
US4857675A (en) Forced flow superconducting cable and method of manufacture
JPS6356648B2 (en)
JPS62170111A (en) Manufacture of multicore fine wire super conductor
US3800061A (en) Composite conductor containing superconductive wires
EP0193079B1 (en) Method of manufacturing electromagnetic members
JP2960251B2 (en) Method of forming helical coil conductor
EP0461109B1 (en) Stranded conductor of electricity with a flat wire core
US20210249160A1 (en) Wire having a hollow micro-tubing and method therefor
US4339681A (en) Superconducting field winding for the rotor of an electric machine
JPH0475642B2 (en)
KR20230096080A (en) Aluminum-Carbon Metal Matrix Composite Magnet Wires
JP4448916B2 (en) Molded stranded conductor and coil using the same
JP2588316B2 (en) Method of manufacturing helical coil
JP3428271B2 (en) Nb3Al-based superconducting wire and method for producing the same
JPS59101704A (en) Superconductive conductor and method of producing same
JP2876667B2 (en) Aluminum stabilized superconducting wire
JP2012190595A (en) Elemental wire for superconducting twisted cable, and superconducting twisted cable
JPH03278509A (en) Manufacture of helical coil
JPH05804B2 (en)
JPS596005B2 (en) Stabilized coated superconducting wire and its manufacturing method
JP3061208B2 (en) Method for producing copper-stabilized multi-core Nb-Ti superconducting wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees