JPH05267044A - Formation of helical conductor - Google Patents

Formation of helical conductor

Info

Publication number
JPH05267044A
JPH05267044A JP6577492A JP6577492A JPH05267044A JP H05267044 A JPH05267044 A JP H05267044A JP 6577492 A JP6577492 A JP 6577492A JP 6577492 A JP6577492 A JP 6577492A JP H05267044 A JPH05267044 A JP H05267044A
Authority
JP
Japan
Prior art keywords
coil
shaped
coil conductor
section
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6577492A
Other languages
Japanese (ja)
Other versions
JP2960251B2 (en
Inventor
Akinori Nagata
晃則 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6577492A priority Critical patent/JP2960251B2/en
Publication of JPH05267044A publication Critical patent/JPH05267044A/en
Application granted granted Critical
Publication of JP2960251B2 publication Critical patent/JP2960251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To manufacture a high strength and high conductivity helical coil conductor by coiling a wire whose cross section is straight angle-shaped around a cylinder spirally, applying compression force to the wire drawing from the longitudinal direction of the cylinder and correcting the trapezoid-shaped wire drawing in its cross section and correcting the shape into straight angle in its cross section and then finishing both the inner and outer surfaces of the wire drawing. CONSTITUTION:With tensile force applied to a cylinder-shaped inner mold, a copper belt is mechanically coiled in such a fashion that the clearance between the copper belts may be minimized, thereby obtain a spirally-shaped coil 2114. After its winding, if tensile force is removed, the size of the coil will be increased by the portion of resultant elastic deformation. Then, an outer mold 15 in addition to the inner mold is inserted into the enlarged coil. The trapezoid-shaped cross section of each layer of the spirally-shaped coils 14 is subjected to forced deformation and returned to the original straight angle. Then, the inner mold 13 is removed and a coil conductor 17 is obtained. Furthermore, all the surfaces between the inner and outer molds and each layer are mechanically finished, thereby producing a coil conductor 19 having a finally-shaped inner layers 20a to 20h.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁場発生のための高
強度、高導電率を備えるヘリカルコイル導体の成形方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a helical coil conductor having high strength and high conductivity for generating a strong magnetic field.

【0002】[0002]

【従来の技術】磁気閉じ込め核融合装置に必要とされる
磁界は、10〜20テスラ以上であろうと予想されている。
これまでの各種核融合装置では、常電導導体(銅線)の
コイルを用いているために膨大な電力を消費している。
このため電力の消費のない超電導線材によるコイルの開
発が不可欠である。
BACKGROUND OF THE INVENTION The magnetic field required for magnetic confinement fusion devices is expected to be 10-20 Tesla or more.
Since various nuclear fusion devices so far use a coil of a normal conductor (copper wire), a huge amount of power is consumed.
For this reason, it is essential to develop a coil of superconducting wire that does not consume power.

【0003】強磁界に耐える高性能な超電導導体の開発
のためには、各種導体を開発して、強磁界発生装置の中
に入れ、臨界電流密度(Jc )、上部臨界磁界、交流損
等を調べる必要がある。
In order to develop a high-performance superconducting conductor that can withstand a strong magnetic field, various conductors are developed and placed in a strong magnetic field generator, and the critical current density ( Jc ), upper critical magnetic field, AC loss, etc. Need to find out.

【0004】このため、強磁界発生装置が必要であり、
30テラス以上の磁界を発生させるためには、図5に示す
ように、超電導マグネット8(外側)と、水冷マグネッ
ト7(内側)を組合せて両者の磁界の和が最大になる磁
界の中心部が得られるハイブリッドマグネットが用いら
れる。
Therefore, a strong magnetic field generator is required,
In order to generate a magnetic field of 30 terraces or more, as shown in FIG. 5, by combining the superconducting magnet 8 (outer side) and the water-cooled magnet 7 (inner side), the central part of the magnetic field where the sum of the two magnetic fields becomes maximum The resulting hybrid magnet is used.

【0005】この水冷マグネットコイルには、ポリヘリ
ックス型とビッター型及びモノヘリックス型の三つの型
があるが本発明は、ポリヘリックス型コイル導体の成形
方法に関するものである。
There are three types of water-cooled magnet coils, a polyhelix type, a bitter type and a monohelix type. The present invention relates to a method for forming a polyhelix type coil conductor.

【0006】ポリヘリックス型コイル導体は、平角線で
単層ヘリカルコイル導体を作り、同心環状に複数個のヘ
リカルコイル導体を組合せ、電気的に並・直列に接続し
た多層コイルである。この層間隙に冷却水を流して冷却
する構造が一般に採用されている。この多層コイル導体
が独立に支持されているとすれば、それぞれのコイル導
体に生ずる円周方向の引張り応力は、電流密度、コイル
の半径及び磁界の積に比例する。従って、コイル導体と
しては、できるだけ円周方向の強度、特に耐力が高く導
電率の大きな導体が要求される。
The poly-helix type coil conductor is a multi-layer coil in which a single-layer helical coil conductor is made of a rectangular wire and a plurality of helical coil conductors are concentrically combined and electrically connected in parallel and in series. A structure in which cooling water is flowed through the layer gap to cool it is generally adopted. If the multilayer coil conductors are independently supported, the circumferential tensile stress generated in each coil conductor is proportional to the product of the current density, the coil radius and the magnetic field. Therefore, as the coil conductor, a conductor having a strength in the circumferential direction as much as possible, particularly a high yield strength and a high conductivity is required.

【0007】これらの仕様の対象となるCu及びCu合
金は数多くある。例えば、図7の(J)〜(M)に示す
ようにリングローリング鍛造によって、純銅の耐力、引
張り強さを上げる方法があるが、この方法では耐力で30
kg/mm2 、引張り強さ40kg/mm2 が限界である。この他
に析出硬化型Cu合金であるCr−Cu,Cr−Zr−
Cu等があるがいずれも強度的には不十分である。また
アルミナ分散強化型銅合金は強度、電気特性共に十分な
特性を有しているが、大型晶を製造することが難しい。
また図6の(G)(H)に示すように、板状素材4を巻
き付け、溶接部6を設けて円筒5を製作することも可能
であるが、溶接部6の機械的、電気的特性が劣るため、
有効な方法ではない。
There are many Cu and Cu alloys that are subject to these specifications. For example, as shown in (J) to (M) of FIG. 7, there is a method of increasing the yield strength and tensile strength of pure copper by ring rolling forging.
kg / mm 2 , Tensile strength 40kg / mm 2 Is the limit. In addition to these, precipitation hardening Cu alloys such as Cr-Cu and Cr-Zr-
Although there are Cu and the like, they are insufficient in strength. Further, although the alumina dispersion strengthened copper alloy has sufficient strength and electrical characteristics, it is difficult to produce large crystals.
Further, as shown in (G) and (H) of FIG. 6, it is possible to wind the plate-shaped material 4 and provide the welded portion 6 to manufacture the cylinder 5, but the mechanical and electrical characteristics of the welded portion 6 Is inferior,
Not a valid method.

【0008】[0008]

【発明が解決しようとする課題】このようにハイブリッ
ドマグネットにおいて強磁界、例えば40〜50テスラを得
ようとすると水冷マグネットに作用する円周方向応力
は、非常に高くなるため、コイル導体の耐力として50kg
/mm2 以上を満足しなければならない。さらにコンパク
ト化するには80%(IACS)以上の導電率が要求され
る。そこで本発明の目的は、より高強度、高導電率を備
えるヘリカルコイル導体の成形方法を提供することであ
る。
As described above, when a strong magnetic field, for example, 40 to 50 Tesla is obtained in the hybrid magnet, the circumferential stress acting on the water-cooled magnet becomes very high. 50 kg
/ Mm 2 The above must be satisfied. To make it more compact, a conductivity of 80% (IACS) or higher is required. Therefore, an object of the present invention is to provide a method for forming a helical coil conductor having higher strength and higher conductivity.

【0009】[0009]

【課題を解決するための手段】本発明は、断面平角形の
伸線を円筒に螺旋状に巻き付け、巻き付けた円筒の軸方
向から圧縮力を加えて上記伸線が断面台形になった形状
を再度断面平角状に修正し、しかる後、伸線の内外表面
を仕上げ加工したものである。
According to the present invention, a wire having a rectangular cross section is spirally wound around a cylinder, and a compressive force is applied from the axial direction of the wound cylinder so that the wire has a trapezoidal cross section. The cross-section was again corrected to a rectangular shape, and then the inner and outer surfaces of the wire were finished.

【0010】[0010]

【作用】ヘリカルコイル導体は、電磁力により円周方向
に大きな引張り応力が働き、軸方向にはその1/5〜1
/10程度の圧縮応力が生じる。このため、巻き付けたま
まの台形状断面では、コイル導体各層間の当りが均一に
らないため、全体の寸法精度が悪くなるばかりでなく、
不均一な当りのため座屈現象が生じやすく、コイル導体
回りの絶縁物が破壊されることもある。しかし、本発明
の如く、強制変形によってコイル導体層間の当りを均一
にすることにより、これらの不具合は全て解消される。
また冷間加工した伸線を熱処理することなく、そのまま
の状態で使用できるため、優れた機械的性質が利用でき
る。
[Operation] A large tensile stress acts on the helical coil conductor in the circumferential direction by the electromagnetic force, and 1/5 to 1 of the tensile stress is exerted in the axial direction.
A compressive stress of about / 10 occurs. For this reason, in the trapezoidal section as wound, the contact between the coil conductor layers is not uniform, which not only deteriorates the overall dimensional accuracy, but also
Due to the uneven contact, buckling is likely to occur and the insulator around the coil conductor may be destroyed. However, as in the present invention, all of these problems are eliminated by making the contact between the coil conductor layers uniform by forced deformation.
Further, since the cold-drawn wire can be used as it is without heat treatment, excellent mechanical properties can be utilized.

【0011】[0011]

【実施例】以下、本発明にかかるヘリカルコイル導体の
成形方法の実施例を図面を用いて説明する。
Embodiments of the method for forming a helical coil conductor according to the present invention will be described below with reference to the drawings.

【0012】本実施例では、図3の(E)のアルミナ粒
子分散強化銅12を用い、図3の(E)に示す棒状伸銅10
から、冷間塑性引き抜き加工によって、同図の(F)に
示す長尺の平角の銅帯11を得る。この銅帯11の表面に
は、0.05〜0.1 mmの純銅が被覆されている。
In this embodiment, the alumina particle dispersion strengthened copper 12 shown in FIG. 3 (E) is used, and the rod-shaped rolled copper 10 shown in FIG. 3 (E) is used.
From the above, a long rectangular copper strip 11 shown in FIG. 4F is obtained by cold plastic drawing. The surface of the copper strip 11 is coated with pure copper of 0.05 to 0.1 mm.

【0013】次に、銅帯11を図1の(A)に示す円筒形
状の内金型13に張力を加えながら、銅帯11間の隙間が極
力小さくなるように機械的に巻き付け、螺旋状コイル14
を得る。巻き付け後、張力を除くとコイルの弾性変形分
だけコイル径が増加する。次に、この増加したコイル径
内に内金型13のほかに外金型15を挿入し、上下から、図
1の(C)に示すような荷重を加えて、螺旋状コイル14
の各層の台形状断面を強制変形してもとの平角形状にな
るようにする。加える荷重はコイル断面の塑性変形抵抗
によって決まり、高強度は伸線程、大きな力を加える必
要がある。その後内金型13を除去し、同図(B)のコイ
ル導体17が得られ、更にこの内・外周と各層間の面18a
〜18hを機械仕上げすることにより、最終形状の層間20
a〜20hを有するコイル導体19を同図(D)にすること
ができる。
Next, the copper strips 11 are mechanically wound so as to minimize the gap between the copper strips 11 while applying tension to the inner mold 13 having a cylindrical shape shown in FIG. Coil 14
To get When the tension is removed after winding, the coil diameter increases by the amount of elastic deformation of the coil. Next, in addition to the inner die 13, the outer die 15 is inserted into the increased coil diameter, and a load as shown in FIG.
Even if the trapezoidal section of each layer is forcibly deformed, the original rectangular shape is obtained. The load to be applied is determined by the plastic deformation resistance of the coil cross section. For high strength, it is necessary to apply a large force in the wire drawing process. After that, the inner mold 13 is removed to obtain a coil conductor 17 shown in FIG. 1B, and a surface 18a between the inner and outer circumferences and each layer is obtained.
By machine finishing ~ 18h, the final shape of the interlayer 20
The coil conductor 19 having a to 20h can be shown in FIG.

【0014】本発明の大きな特徴は、巻き付け後、平角
断面の精度を向上するために圧縮荷重を加え、変形させ
ただけであるから、螺旋状コイルとするための機械加
工、ワイヤカットあるいは放電加工が不用であり、製造
プロセスが極めて単純になる。また内金型の径を変える
ことにより任意の径のコイルの製作が可能であり、一体
のインゴットから切り出す方式に比べ、材料の歩留りが
大変良い。更には、巻き付け後、熱処理を行なわないた
め、加熱には材質の劣化が全く生じることなく、冷間加
工による優れた性質をそのまま活用できる。
A major feature of the present invention is that after winding, a compressive load is only applied and deformed in order to improve the precision of the rectangular cross section, so that machining, wire cutting or electric discharge machining for forming a spiral coil is performed. Is unnecessary, and the manufacturing process is extremely simple. Also, by changing the diameter of the inner die, it is possible to manufacture a coil of any diameter, and the material yield is very good compared to the method of cutting out from an integrated ingot. Furthermore, since no heat treatment is performed after winding, heating does not cause deterioration of the material at all, and the excellent properties of cold working can be utilized as they are.

【0015】図4は内金型に平角線を巻き付けたときの
内・外断面の変形程度を示す。通常の巻き付けでは同図
に示すコイル導体厚さと直径の比(t/D)は0.05〜0.
15程度までである。このように変形した断面は、図3に
示すように、比較的小さな面圧相当荷重を加えることに
よって、容易に断面は変形し、もとの平角形状に近くす
ることができる。これは、使用したアルミナ粒子分散強
化銅の表面に被覆されている純銅が小さな荷重で変形し
やすいからである。
FIG. 4 shows the degree of deformation of the inner and outer cross sections when a rectangular wire is wound around the inner die. In normal winding, the ratio of coil conductor thickness to diameter (t / D) shown in the figure is 0.05 to 0.
Up to about 15. As shown in FIG. 3, the cross section thus deformed can be easily deformed by applying a comparatively small surface pressure-equivalent load, and can be made close to the original rectangular shape. This is because the pure copper coated on the surface of the used alumina particle dispersion strengthened copper is easily deformed by a small load.

【0016】なお、図3中、Wはコイル導体が変形して
いないときの寸法であり、Δaはコイル導体の下底部が
伸縮したときの変形量を示す。また、図4中、Δbはコ
イル導体の上底部が伸縮したときの変形量をそれぞれ示
している。
In FIG. 3, W is a dimension when the coil conductor is not deformed, and Δa is a deformation amount when the lower bottom portion of the coil conductor is expanded or contracted. Further, in FIG. 4, Δb represents the amount of deformation when the upper bottom portion of the coil conductor expands and contracts.

【0017】このように、本実施例では、初期の平角伸
線として矩形状のものを用いたが、引き抜き加工時に、
巻き付け後の変形を予想して、台形状に加工し、巻き付
け後に矩形断面とすることも可能である。この場合にお
いても、上述実施例と同等の効果を得ることが可能であ
る。またアルミナ粒子分散強化銅の伸線を用いたが、長
・短繊維、ウイスカ、粒子等の強化材を加えた金属伸
線、あるいは純金属、合金を用いてもよい。
As described above, in this embodiment, a rectangular wire was used as the initial flat wire, but at the time of drawing,
It is also possible to anticipate the deformation after winding and process it into a trapezoidal shape, and to make a rectangular cross section after winding. Even in this case, it is possible to obtain the same effect as that of the above-described embodiment. Further, although the wire drawing of alumina particle dispersion strengthened copper was used, a metal wire drawing added with a reinforcing material such as long / short fibers, whiskers, particles, or a pure metal or alloy may be used.

【0018】[0018]

【発明の効果】本発明においては、冷間加工によって機
械的性質の向上した金属系伸線を、円筒に巻き付け、螺
旋状コイルとした後、変形したコイル断面を軸方向から
の荷重によって修正し、コイルの内・外面、更には各層
間の機械仕上げを行うため、冷間加工した特性が劣化す
ることなく、熱処理工程が不要であるため、あらゆる金
属系伸線を用いることが可能である。このため、高強
度、高導電率を機械加工精度の優れたヘリカルコイル導
体の製作が可能である。これにより、強磁界用の水冷マ
グネットの高性能、高信頼性化、コンパクト化が可能に
なる。
According to the present invention, a metallic wire drawing having improved mechanical properties by cold working is wound around a cylinder to form a spiral coil, and the deformed coil cross section is corrected by a load from the axial direction. Since mechanical finishing is performed on the inner and outer surfaces of the coil, and further between the layers, the cold-worked characteristics are not deteriorated and a heat treatment step is not required, so that any metal wire drawing can be used. Therefore, it is possible to manufacture a helical coil conductor having high strength and high electrical conductivity and excellent machining accuracy. As a result, the water-cooled magnet for a strong magnetic field can have high performance, high reliability, and a compact size.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかるヘリカルコイル導体の成形プ
ロセスを示す概念図で、(A)は螺旋状に巻き付けたコ
イル導体に圧縮力を加えたことを示し、(B)は導体コ
イルに再度圧縮力を加えたことを示し、(C)は最初の
圧縮力によって成形されたコイル導体を示し、(D)は
再度圧縮力を加えた後、機械加工仕上げしたコイル導体
をそれぞれ示している。
FIG. 1 is a conceptual diagram showing a forming process of a helical coil conductor according to the present invention, where (A) shows that a compressive force is applied to a spirally wound coil conductor, and (B) shows that the conductor coil is compressed again. It shows that a force is applied, (C) shows the coil conductor formed by the initial compression force, and (D) shows the coil conductor machined after applying the compression force again.

【図2】コイル導体の素材形状を示す概念図で、(E)
は丸棒の状態の素材を、(F)は平角に加工した素材を
それぞれ示す。
FIG. 2 is a conceptual diagram showing a material shape of a coil conductor, (E)
Shows a material in the form of a round bar, and (F) shows a material processed into a rectangular shape.

【図3】本発明によって得られたコイル導体の断面台形
から断面平角に成形したときの各断面形状の特性を示す
グラフ。
FIG. 3 is a graph showing the characteristics of each cross-sectional shape when the coil conductor obtained according to the present invention is formed into a rectangular cross-section from a trapezoidal cross section.

【図4】本発明によって得られたコイル導体の変形量を
示すグラフ。
FIG. 4 is a graph showing the amount of deformation of the coil conductor obtained by the present invention.

【図5】ハイブリッドマグネットの構成例を示す図。FIG. 5 is a diagram showing a configuration example of a hybrid magnet.

【図6】従来のコイル導体の成形プロセスを示す概念図
で、(G)はコイル導体が平板状であることを示し、
(H)は平板状のコイル導体を円筒に巻くことをそれぞ
れ示す。
FIG. 6 is a conceptual diagram showing a conventional coil conductor forming process, in which (G) shows that the coil conductor has a flat plate shape,
(H) shows winding a flat coil conductor around a cylinder.

【図7】従来のコイル導体の成形プロセスを示す概念図
で、(J)はコイル導体が円筒素材であることを示し、
(K)は円筒素体であるコイル導体にリングローリング
鍛造成形することを示し、(L)は加工硬化された円筒
素材を示し、(M)は最終形状としての螺旋状コイル導
体をそれぞれ示す。
FIG. 7 is a conceptual diagram showing a conventional coil conductor forming process, wherein (J) shows that the coil conductor is a cylindrical material,
(K) shows that ring rolling forging is performed on a coil conductor which is a cylindrical body, (L) shows a work-hardened cylindrical material, and (M) shows a spiral coil conductor as a final shape.

【符号の説明】[Explanation of symbols]

11…銅帯 12…アルミナ粒子分散強化銅 13…内金型 14…螺旋状コイル 15…外金型 17…コイル導体 19…最終形状のコイル導体 11 ... Copper band 12 ... Alumina particle dispersion strengthened copper 13 ... Inner mold 14 ... Spiral coil 15 ... Outer mold 17 ... Coil conductor 19 ... Final shape coil conductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断面平角の銅帯を円筒に螺旋状に巻き付
け、巻き付けた円筒の軸方向から圧縮力を加えて上記銅
帯が断面台形になった形状を再度、断面平角状に修正
し、しかる後、銅帯の内外表面を仕上げ加工することを
特徴とするヘリカルコイル導体の成形方法。
1. A copper strip having a rectangular cross section is spirally wound around a cylinder, and a compressive force is applied from the axial direction of the wound cylinder to reshape the copper strip having a trapezoidal cross section into a rectangular cross section, Then, a method for forming a helical coil conductor, characterized by finishing the inner and outer surfaces of the copper strip.
JP6577492A 1992-03-24 1992-03-24 Method of forming helical coil conductor Expired - Fee Related JP2960251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6577492A JP2960251B2 (en) 1992-03-24 1992-03-24 Method of forming helical coil conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6577492A JP2960251B2 (en) 1992-03-24 1992-03-24 Method of forming helical coil conductor

Publications (2)

Publication Number Publication Date
JPH05267044A true JPH05267044A (en) 1993-10-15
JP2960251B2 JP2960251B2 (en) 1999-10-06

Family

ID=13296719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6577492A Expired - Fee Related JP2960251B2 (en) 1992-03-24 1992-03-24 Method of forming helical coil conductor

Country Status (1)

Country Link
JP (1) JP2960251B2 (en)

Also Published As

Publication number Publication date
JP2960251B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
JP5097526B2 (en) Method for manufacturing MgB2 superconducting wire
US6313409B1 (en) Electrical conductors and methods of making same
US3239919A (en) Method of producing high energy permanent magnets
JPS62170111A (en) Manufacture of multicore fine wire super conductor
JPH05267044A (en) Formation of helical conductor
US5434129A (en) Method for manufacturing high tc superconductor coils
US6699821B2 (en) Nb3Al superconductor and method of manufacture
EP4238110A1 (en) Aluminum-carbon metal matrix composite magnet wires
JP2588316B2 (en) Method of manufacturing helical coil
JP2010258201A (en) Manufacturing method of ground coil for magnetic levitation railway
JP2003100150A (en) Molded stranded wire conductor and coil using it
JP3428271B2 (en) Nb3Al-based superconducting wire and method for producing the same
JPH034503A (en) Manufacture of helical coil conductor
JP2012190595A (en) Elemental wire for superconducting twisted cable, and superconducting twisted cable
JPH03278509A (en) Manufacture of helical coil
JPH05804B2 (en)
JP2645721B2 (en) Superconducting coil
JP3061208B2 (en) Method for producing copper-stabilized multi-core Nb-Ti superconducting wire
JPH03257716A (en) Superconductor
JPS596005B2 (en) Stabilized coated superconducting wire and its manufacturing method
JPH0589726A (en) Nbyi superconductive wire
JPH02126519A (en) Superconducting conductor
JPH04138620A (en) Superconducting flat type formed stranded wire and manufacture thereof
JPH05234743A (en) Manufacture of superconducting coil
JPH02144902A (en) Manufacture of helical coil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees