【発明の詳細な説明】[Detailed description of the invention]
本発明は半導体薄膜の少なくとも一方の側(金属酸化物
からな、る導電膜を有する薄膜光電変換装置に関する。
:
第1図はそのような装置の一例である太陽電池を示す。
この太陽電池はステンレス鋼、アルミニウムなどからな
る導電性基板1の上にn形層2、ドーピングされない層
(ンンドープ層)3.91層4から桑る非晶質シリコン
層5が設呟られたものである。この非晶質シリコン層重
はシランのグロー放電分解によシ形成され、p形層4.
、の生成時にはシランにジボランを数%hn形層生成時
にはフォスフイン、アルシン等を数チ混入してグロー放
電分解を行う。さ・らに非晶質シリコン層5の上に透明
導電膜6が被着されている。この透明導電膜6はITO
(イ゛ンジウムすず酸化物)、インジウ、ム酸化物ある
いはすず酸化物などからな!0”、!子ビーム蒸着、ス
パッタリング等の技術□により形成される。これらの膜
は□単独で用いたり、それぞn適当な厚さに組み′あわ
せて複数層重・ねた構造とすることも可能であ・る=透
明導電膜6の上には集電用の金属電極7が設けられ・2
電極のない部分を通して半導体層5に入射した光8によ
る光電変換作用により発生じた電流の外部へのとり出し
・電極とじて用いられる。 □しか
しこのような構造の太陽電池においては、透明導電膜6
に■′族元素アあるインジウムが含まれている場合、′
使用中土たは高温などのふん囲気にさらされると、In
が半導体層5の中に拡散して半導体層の性質を変え%p
形層の厚さが厚くなシ、その結果短絡電流が減少すると
いう現象が発生じた。こバと共に開放電圧も漸減してい
き、光電変換特性が劣化する。このような現象は透明導
電膜が非晶質のような状態にあり、子の中の金属原子が
動きやrいことに基づくと思われる。
本発明り、そn−故このような金属酸化物からなる導電
膜からのインジウムあるいは他の金属元素の拡散f伴う
光電変換性イ〈1の劣化を阻止−することを目的とする
。
発明者らはこの目的の達成について検削した結果、半導
体層と導′邂膜との間に導電膜内に含捷nるThe present invention relates to a thin film photoelectric conversion device having a conductive film made of a metal oxide on at least one side of a semiconductor thin film. Figure 1 shows a solar cell as an example of such a device. On a conductive substrate 1 made of stainless steel, aluminum, etc., an n-type layer 2, an undoped layer (n-doped layer) 3, an amorphous silicon layer 5 formed from layers 4 are formed. The amorphous silicon layer is formed by glow discharge decomposition of silane, and the p-type layer 4.
When forming the silane, a few percent of diborane is mixed into the hn-type layer, and several inches of phosphine, arsine, etc. are mixed therein, and glow discharge decomposition is carried out. Furthermore, a transparent conductive film 6 is deposited on the amorphous silicon layer 5. This transparent conductive film 6 is made of ITO.
(indium tin oxide), indium, aluminum oxide, or tin oxide! 0",! It is formed by techniques such as beam evaporation and sputtering. These films can be used alone, or each layer can be combined to an appropriate thickness to create a structure in which multiple layers are stacked. It is also possible that a metal electrode 7 for current collection is provided on the transparent conductive film 6.
It is used as an electrode and for taking out the current generated by the photoelectric conversion effect of the light 8 incident on the semiconductor layer 5 through the part without electrodes to the outside. □However, in a solar cell with such a structure, the transparent conductive film 6
If it contains indium, a group element, ′
If exposed to dirt or high temperature atmosphere during use, In
diffuses into the semiconductor layer 5 and changes the properties of the semiconductor layer %p
As the thickness of the forming layer becomes thicker, a phenomenon occurs in which the short circuit current decreases. As the voltage increases, the open-circuit voltage gradually decreases, and the photoelectric conversion characteristics deteriorate. This phenomenon is thought to be due to the fact that the transparent conductive film is in an amorphous-like state, and the metal atoms within the film are difficult to move. It is therefore an object of the present invention to prevent the deterioration of the photoelectric conversion property (1) caused by the diffusion of indium or other metal elements from such a conductive film made of a metal oxide. As a result of examination to achieve this objective, the inventors found that the conductive film contains an element between the semiconductor layer and the conductive film.
【1にとの
金属元素の拡散を阻止する薄い透明絶縁膜全挿入し、そ
の場合透明絶縁膜が半導体の導電形に影響を乃える元素
を含捷ないことにより必定が光重、変換特性を有する薄
膜装置が得らnるとの考オに到達しまた。
以下[ツ1を・引用り、て本発明の実施例について説明
する。第2図は本発明の第一の実施例を示シ2.第1図
と共通の部分には同一の符号が付さ扛ている。
第1図と異なる点は、透明導電膜6と非晶質シリコン層
50間に透明絶縁膜9が挿入さねでいる。
この透明絶縁膜9ンユS 1aN4. S in2.
S 1Oi9j、TiO2などからなる絶縁膜であり、
非晶質シ11ゴン層5の形成の後、気相成り、1th7
′l−は電子ビーム蒸着兼たけ半導体層の酸化Vこ、(
゛つマ形成さn、るが。
厚さは100八以下に抑えられているので通電Ij )
ソネル電流により行われ、”IZの吸収も無視できて)
との絶縁膜9け、In その他のni族)L素あノ、い
;・6iV族元素など半導体の導電形、抵抗に影響を与
える元素を含−!、ないものが選ばれる。そn、ゆえ、
透明導電膜中のUn 方どの金属元素が拡散しても、こ
の薄い絶縁膜9がトラップとして作用するこJ、になる
。この構造の素子と第1図に示ず従来の構造の素−Fを
作成した結果、従来型の場合120℃の高温放置におい
て500時間で知略電流が約し/′2に低下したものが
、短絡電流の低下がほとんどなく、寸だ半導体層内の成
分分析の結果・、半導体内にInの顕著な拡散が存在せ
ず、安定な素子前4−形成することができだ。
第3図は第一の実施例の変形である。この場合(r(i
’、、海事性基オル1. U )Jラスのような絶縁基
板11の一ヒに導電性被覆12を施したものである。導
11j)性被覆12はI’f’0.5n02 、 In
2O,のような透明導電膜と同じ材料が用いられる。導
電性被覆】22が存在する場合6:、図のように非晶質
半導体n形1脅2と導電層12との間にも透明導電膜6
とn形層4との間と同様に薄い絶縁膜13を挾むことに
よって光電特性の安定化を達成することができる。
第4図は第一の実施例の他の変形例である。導電性基板
1が金属の導電性基板14の上にさらに導電性物質の被
覆15を形成したものであるような場合である。こnは
基板14が研摩等による鏡面処理が困難な場合、その上
に導電5性被覆15を形成し、表面の平滑化を図るため
である。被覆15の導電性物質には透明導電膜と同じ材
料が用いらハ、る。この場合も導電性被覆15からの金
属元素の拡散を、半導体層2との間に絶縁膜16を設け
ることにより、−F側の透明導電膜6からの拡散と同様
に阻止し5光電特性の安定化を達成することができる。
第5図は第二の実施例を示す。カラス板などの5−−
透明絶縁基板21の上に透明導電膜22が分離し。
で形成さノ]2ている。透明導電膜と透明導電膜のない
部分のガラ、ス面全体にわf−って透明絶縁膜25が形
成される。この透明絶縁膜tj:、S i、、N4 、
5icSiO又はTr02等から成る絶縁膜であり、気
相成長又は電子ビーム蒸着によって形成されるがJνさ
は100A以下に制限さtl、る。但L7、この絶縁膜
は半導体の導電形に影響を与える元素を含まないものが
望ましい。透明絶縁膜25上に半導体層23を透明導電
膜22に対応して分離して形成される半導体層は、p形
層、ノンドープ層、n形層の110に気相成長によって
形成される。分離半導体層は半導体層を全面に成長した
後、印刷等によって、レジスト材をパターンの形状に塗
布した後プラズマエツチング又は液体エツチングの手法
によって半導体層全分離形成する。この上に、金属層2
4を透明導電膜22.半導体層23、と少I7ずつずら
して分離して形成する。この金属層の分離パターンはマ
スクを用いた蒸着、印刷による電極形成等により形成さ
れる。この結果単位光電変換セル−6〜
27が互に直列され、直列接続された半導体装置が一気
にできあがる。お互の単位セルは、透明絶縁膜25のう
ちで透明導電膜22と金属[24との境界28で接続さ
れる。28の部分には、透明絶縁膜が存在しているがこ
の膜厚が100A以下と十分りすいために前述のように
金属と透明導電膜の接続が電流のトンネルによって可能
である。
第6図は、第二の実施例の変形である。この実施例は、
第5図に示す第二の実施例における透明導電膜22と金
属層24との接続を十分に行うために接続部分29にお
いて、透明絶縁膜を除去したものである。この結果、直
列接続がより良好となる。金属電極形成後、被覆膜26
を形成する。
こゝの膜は半導体層22を形成する非晶質半導体のノン
ドープ層、透明絶縁膜22の成分の絶縁材料あるいは樹
脂等からなり、こ牡によってpn接合界面等が保護さ扛
て一層安定な半導体装置を形成することができる。
以上述べたように1本発明は透明導電膜と半導体層の間
に、半導体に悪影響を及ぼす元素を含ま= 7−
ない成分よシなる薄い絶縁膜を挿入することによシ、半
導体装置の光電特性を損わずに透明導電膜から半導体層
への不純物元素の侵入を防ぐことができ、寿命の長い安
定性のよい薄膜光電変換装置を提供するものでおり、特
に太陽電池において極めて大きな効果を得ることができ
る。[In step 1, a thin transparent insulating film that prevents the diffusion of metal elements is completely inserted, and in that case, the transparent insulating film does not contain any elements that affect the conductivity type of the semiconductor, so it is necessary to improve the light weight and conversion characteristics. We also arrived at the idea that a thin film device with Embodiments of the present invention will be described below with reference to [1]. FIG. 2 shows a first embodiment of the invention.2. Components common to those in FIG. 1 are given the same reference numerals. The difference from FIG. 1 is that a transparent insulating film 9 is inserted between a transparent conductive film 6 and an amorphous silicon layer 50. This transparent insulating film 9YS1aN4. S in2.
It is an insulating film made of S1Oi9j, TiO2, etc.
After the formation of the amorphous silicon layer 5, a gas phase is formed, and 1th7
′l− is the oxidation V of the semiconductor layer which also serves as electron beam evaporation, (
゛Tuma formation n, Ruga. Since the thickness is suppressed to 1008 or less, it is possible to conduct electricity (Ij)
It is carried out by Sonnel current, and the absorption of IZ can be ignored.
Contains elements that affect the conductivity type and resistance of semiconductors, such as In and other Ni group) L elements, I; and 6iV group elements. , those without are selected. So, therefore,
No matter which metal element diffuses into the transparent conductive film, this thin insulating film 9 acts as a trap. As a result of creating an element with this structure and an element with a conventional structure (not shown in Fig. 1), the conventional type had an intellectual current of about /'2 after 500 hours when left at a high temperature of 120°C. There is almost no drop in short-circuit current, and as a result of component analysis within the semiconductor layer, there is no significant diffusion of In within the semiconductor, making it possible to form a stable device. FIG. 3 shows a modification of the first embodiment. In this case (r(i
',, Maritime group 1. U) A conductive coating 12 is applied to one insulating substrate 11 such as J lath. The conductive coating 12 is I'f'0.5n02, In
The same material as the transparent conductive film, such as 2O, is used. Case 6: When a conductive coating 22 is present, a transparent conductive film 6 is also present between the amorphous semiconductor n-type 1 layer 2 and the conductive layer 12 as shown in the figure.
By sandwiching the thin insulating film 13 between the photoelectric layer and the n-type layer 4, stabilization of the photoelectric characteristics can be achieved. FIG. 4 shows another modification of the first embodiment. This is the case where the conductive substrate 1 is a metal conductive substrate 14 on which a coating 15 of a conductive substance is further formed. This is because when the substrate 14 is difficult to be mirror-finished by polishing or the like, the conductive coating 15 is formed thereon to smooth the surface. The same material as the transparent conductive film is used for the conductive substance of the coating 15. In this case as well, by providing the insulating film 16 between the conductive coating 15 and the semiconductor layer 2, the diffusion of the metal element from the transparent conductive film 6 on the -F side can be prevented in the same way as the diffusion of the metal element from the -F side. Stabilization can be achieved. FIG. 5 shows a second embodiment. A transparent conductive film 22 is separated on a 5-- transparent insulating substrate 21 such as a glass plate. Formed with ノ] 2. A transparent insulating film 25 is formed over the transparent conductive film and the entire glass surface where the transparent conductive film is not present. This transparent insulating film tj:, S i,, N4,
It is an insulating film made of 5icSiO or Tr02, etc., and is formed by vapor phase growth or electron beam evaporation, but the width is limited to 100A or less. However, L7, this insulating film desirably does not contain any element that affects the conductivity type of the semiconductor. A semiconductor layer formed on the transparent insulating film 25 by separating the semiconductor layer 23 corresponding to the transparent conductive film 22 is formed into a p-type layer, a non-doped layer, and an n-type layer 110 by vapor phase growth. The separated semiconductor layer is formed by growing the semiconductor layer over the entire surface, applying a resist material in the shape of a pattern by printing or the like, and then completely separating the semiconductor layer by plasma etching or liquid etching. On top of this, metal layer 2
4 as a transparent conductive film 22. The semiconductor layer 23 is formed separately from the semiconductor layer 23 with a slight shift of I7. This separation pattern of the metal layer is formed by vapor deposition using a mask, electrode formation by printing, or the like. As a result, the unit photoelectric conversion cells 6 to 27 are connected in series, and a series-connected semiconductor device is completed at once. The mutual unit cells are connected to each other at a boundary 28 between the transparent conductive film 22 and the metal [24] in the transparent insulating film 25. A transparent insulating film is present in the portion 28, but the thickness of this film is 100 A or less, which is sufficiently thin, so that connection between the metal and the transparent conductive film is possible by current tunneling as described above. FIG. 6 is a modification of the second embodiment. This example is
In order to sufficiently connect the transparent conductive film 22 and the metal layer 24 in the second embodiment shown in FIG. 5, the transparent insulating film is removed at the connection portion 29. This results in better series connection. After forming the metal electrode, the coating film 26
form. This film is made of a non-doped layer of amorphous semiconductor that forms the semiconductor layer 22, an insulating material or resin that is a component of the transparent insulating film 22, and the film protects the pn junction interface, etc., making the semiconductor even more stable. A device can be formed. As described above, the present invention provides a photovoltaic device for semiconductor devices by inserting a thin insulating film between a transparent conductive film and a semiconductor layer, which does not contain any elements that have an adverse effect on semiconductors. It is possible to prevent impurity elements from entering the semiconductor layer from the transparent conductive film without impairing its characteristics, and provides a long-life, stable thin-film photoelectric conversion device, which is particularly effective in solar cells. Obtainable.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は従来の太陽電池の断面図、第2図は本発明の第
一の実施例の断面図、第3図、第4図はその変形例の断
面図、第5図は本発明の第二の実施例、第6図はその変
形例をそれぞれ示す断面図である。
5.23・・・非晶質シリコン層、6.22・・・透明
導電膜、9,25・・・透明絶縁膜。
′f′1閃、 テ2図
?3(¥1 才4閏
1
才5I¥1
”t’乙圀Fig. 1 is a sectional view of a conventional solar cell, Fig. 2 is a sectional view of the first embodiment of the present invention, Figs. 3 and 4 are sectional views of modified examples thereof, and Fig. 5 is a sectional view of the first embodiment of the present invention. The second embodiment, FIG. 6, is a sectional view showing a modification thereof. 5.23...Amorphous silicon layer, 6.22...Transparent conductive film, 9,25...Transparent insulating film. 'f' 1 flash, Te 2 figure? 3 (¥1 4 leap 1 5I ¥1 “t’otokuni”