JPS5953800B2 - AC motor control device - Google Patents
AC motor control deviceInfo
- Publication number
- JPS5953800B2 JPS5953800B2 JP55178055A JP17805580A JPS5953800B2 JP S5953800 B2 JPS5953800 B2 JP S5953800B2 JP 55178055 A JP55178055 A JP 55178055A JP 17805580 A JP17805580 A JP 17805580A JP S5953800 B2 JPS5953800 B2 JP S5953800B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- power factor
- signal
- motor
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1892—Arrangements for adjusting, eliminating or compensating reactive power in networks the arrangements being an integral part of the load, e.g. a motor, or of its control circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/03—Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for very low speeds
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/04—Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2201/00—Indexing scheme relating to controlling arrangements characterised by the converter used
- H02P2201/03—AC-DC converter stage controlled to provide a defined DC link voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/047—V/F converter, wherein the voltage is controlled proportionally with the frequency
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Description
【発明の詳細な説明】
この発明は、インバータ駆動装置によつて交流電動機を
可変速運転するための制御装置に関するものであり、更
に詳しくは、このように運転される交流電動機が負荷条
件によつて動作不安定にの現象を乱調と云う)になるこ
とがあるのを防止する手段に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for operating an AC motor at variable speed using an inverter drive device, and more specifically, the invention relates to a control device for operating an AC motor at variable speed using an inverter drive device. This invention relates to means for preventing the phenomenon of unstable operation (referred to as disturbance).
第1図は、乱調防止回路を備えた従来の交流電動機の制
御装置の一例を示すブロック図であり、本発明者が(特
願昭55年49808号)としてすでに提案したもので
ある。FIG. 1 is a block diagram showing an example of a conventional AC motor control device equipped with a disturbance prevention circuit, which was already proposed by the present inventor (Japanese Patent Application No. 49808 of 1982).
この制御装置の原理は、電動機の内部磁束の変化により
乱調の徴候を検出し、その内部磁束の変化率に応じて、
電動機へ給電する電力変換装置の出力周波数を変化させ
ることにより、内部磁束の変化にダンピングをかけて乱
調防止という目的を達成するものである。The principle of this control device is to detect signs of disturbance due to changes in the internal magnetic flux of the motor, and then, depending on the rate of change of the internal magnetic flux,
By changing the output frequency of the power converter that supplies power to the electric motor, changes in internal magnetic flux are damped to prevent disturbances.
第1図において、1は商用三相交流電源、2は制御整流
器で構成されたコンバータ、3は制御整流器で構成され
たインバータ、4はインバータ3の負荷である誘導電動
機、5は電流平滑用リアクトル、6はコンバータ3の出
力電圧を制御するコンバータ用移相器、7は変流器およ
び整流器により構成される電流検出器、8および9はコ
ンバータ用移相器を制御する電流制御用演算器ど電圧制
御用演算器、10は変成器および整流器により構成され
る電圧検出器、11はインバータ3のサイリスタを制御
するための論理回路と増巾回路とからなるインバータ制
御回路、12は電圧/周波数変換器、13は負荷電圧及
びインバータ出力周波数を任意に設定することができる
速度設定器であフる。In Figure 1, 1 is a commercial three-phase AC power supply, 2 is a converter configured with a controlled rectifier, 3 is an inverter configured with a controlled rectifier, 4 is an induction motor that is the load of the inverter 3, and 5 is a current smoothing reactor. , 6 is a converter phase shifter that controls the output voltage of the converter 3, 7 is a current detector composed of a current transformer and a rectifier, and 8 and 9 are current control computing units that control the converter phase shifter. 10 is a voltage detector composed of a transformer and a rectifier; 11 is an inverter control circuit composed of a logic circuit and an amplification circuit for controlling the thyristor of the inverter 3; 12 is a voltage/frequency conversion circuit; 13 is a speed setting device that can arbitrarily set the load voltage and inverter output frequency.
誘導電動機4の発生トルクはインバータ3の出力電圧V
ac、電流は1acもしくはIdc、出力周波数および
すベリ周波数などの関数として与えられる。The torque generated by the induction motor 4 is the output voltage V of the inverter 3.
ac, the current is given as a function of 1ac or Idc, the output frequency, the sweep frequency, etc.
以上に説明した制御系ではインバータ3の周丁波数に関
して速度設定値e、による開ループ制御が、そして負荷
電圧に関しては出力電圧の検出値と電圧基準値(速度設
定値e、)との比較による閉ループ制御が行なわれてお
り、負荷力率(磁束発生するための磁化電流とトルク発
生に寄与する2フ次電流の比)が制御されていないため
、特定の負荷条件においては誘導電動機の発生トルクや
インバータの出力電圧電流が低周波で振動するという不
安定現象、所謂“乱調”が生じることが知られている。
そこで第1図においては次のような手段Sを講じている
。すなわち変成器14を介して絶縁検出された電動機端
子電圧VR、V5、VTが磁束検出器20に導かれここ
で磁束の大きさlφlが演算される。すなわち、3相電
圧VR,V,,VTがまず公知の3相/2相変換器15
によつて2相電圧V,hVβに変換される。そして各出
力電圧Va,Vljはそれぞれ積分器16によつて積分
されることによつて2相の磁束φA,φβに相当する信
号に変換され、振巾演算器17に導かれ、1φ1=4T
=丁なる関係式にしたがつて磁束1φ1に相当する信号
となり、これを微分回路18により微分し、その微分信
号d゛1.φ1/Dtが極性切換器22によりその都度
運転モード(電動機が電動機運転モードにあるか発電機
運転モードにあるか)に合わせた極性で電圧/周波数変
換器12の入力部の加算器19に導かれて本来の周波数
指令値である速度設定信号e1に重畳される。運転モー
ドの判別はコンバータ2の出力電圧を定める点弧角の指
令信号である電流制御演算器8の出力電圧Eaのレベル
を比較器21において基準レベルと比較することによつ
て行なわれる。一般に点弧角制御信号Eaはその値が零
レベルにあるときコンバータ2の点弧角は90゜となり
コンバータ直流出力電圧は零となり、これがコンバータ
2の順変換動作と逆変換動作との境界となつており、電
動機運転モードのときはコンバータ2は順変換動作をし
、発電機運転モードのときはコンバータ2は逆変換動作
をすることから、この場合には比較器21は点弧角制御
信号の極性により運転モードを判別することになる。こ
れにより、電動機の回転速度あるいはコンバータ2の出
力電圧もしくはインバータ2の入力電圧を検出すること
なしに電動機の運転モードの判別が可能となる。各モー
ドに対する極性関係を正しく選ぶことによつて、内部磁
束の変化にダンピング効果を与えることができるので、
2次電流と磁化電流との相互干渉にダンピング効果が生
じ広い速度制御範囲にわたつて不安定現象が防止できる
。上述の如き、本発明者の既提案にかかる制御装置は、
乱調防止回路として非常に有効であるが、次のような欠
点がある。In the control system described above, the frequency wave number of the inverter 3 is controlled by the speed setting value e, and the load voltage is controlled by comparing the detected value of the output voltage with the voltage reference value (speed setting value e,). Closed-loop control is performed, and the load power factor (ratio of magnetizing current to generate magnetic flux and secondary current that contributes to torque generation) is not controlled, so under certain load conditions, the torque generated by the induction motor will decrease. It is known that an unstable phenomenon in which the output voltage and current of the inverter and the inverter oscillate at low frequencies, so-called "disturbance", occurs.
Therefore, in FIG. 1, the following measures S are taken. That is, the motor terminal voltages VR, V5, and VT which are isolated and detected via the transformer 14 are led to the magnetic flux detector 20, where the magnitude of the magnetic flux lφl is calculated. That is, the three-phase voltages VR, V, VT are first converted to the known three-phase/two-phase converter 15.
It is converted into two-phase voltages V and hVβ by . The output voltages Va and Vlj are respectively integrated by an integrator 16 and converted into signals corresponding to two-phase magnetic fluxes φA and φβ, which are then guided to an amplitude calculator 17, where 1φ1=4T
According to the relational expression d1. φ1/Dt is introduced to the adder 19 at the input section of the voltage/frequency converter 12 with the polarity matched to the operating mode (whether the motor is in the motor operating mode or the generator operating mode) each time by the polarity switch 22. and is superimposed on the speed setting signal e1, which is the original frequency command value. The operation mode is determined by comparing the level of output voltage Ea of current control calculator 8, which is a firing angle command signal that determines the output voltage of converter 2, with a reference level in comparator 21. Generally, when the value of the firing angle control signal Ea is at zero level, the firing angle of the converter 2 is 90° and the converter DC output voltage is zero, and this is the boundary between the forward conversion operation and the inverse conversion operation of the converter 2. Converter 2 performs a forward conversion operation in the motor operation mode, and reverse conversion operation in the generator operation mode, so in this case, the comparator 21 changes the firing angle control signal. The operation mode is determined by the polarity. This makes it possible to determine the operating mode of the motor without detecting the rotational speed of the motor, the output voltage of converter 2, or the input voltage of inverter 2. By choosing the polarity relationship correctly for each mode, it is possible to give a damping effect to changes in the internal magnetic flux.
A damping effect occurs due to the mutual interference between the secondary current and the magnetizing current, and unstable phenomena can be prevented over a wide speed control range. As described above, the control device proposed by the present inventor is as follows:
Although it is very effective as a disturbance prevention circuit, it has the following drawbacks.
1負荷が軽くなる(電動機力率が悪くなる)につれ乱調
防止の効果が弱くなる。1 As the load becomes lighter (the motor power factor becomes worse), the effect of preventing disturbance becomes weaker.
2コンバータ出力電圧の極性、すなわち電動機力率角が
90゜より大か小によつて帰還信号の極性を切り換える
必要があるため、例えば、ポンプ駆動用のように一象限
しか運転を行なわない場合(加速のみであるので平均的
な力率角は常に90゜以下)であつても、一時的に力率
角が90゜を超えることがあり、この切り換えが必要と
なる。It is necessary to switch the polarity of the feedback signal depending on the polarity of the two converter output voltages, that is, whether the motor power factor angle is larger or smaller than 90°. Even if the average power factor angle is always 90 degrees or less since it is only an acceleration, the power factor angle may temporarily exceed 90 degrees, and this switching is necessary.
以下にこのことを説明する。This will be explained below.
いま、説明を簡単にするために誘導機の洩れリアクタン
ス及び1次抵抗を零とすると、電流、電圧のベクトル関
係は第2図の如く示される。ここにおいて、i1は1次
電流、I2は2次電流、IMは磁化電流、V1は1次電
圧、φ2は有効磁束である。ここで、電動機力率は電流
ベクトルと電圧ベクトルのなす角θの余弦であり、第2
図で゛はCOsθで示される。いま、誘導機に負荷変動
などの外乱が加わつて2次電流12と磁化電流1Mとの
間に相互干渉が起こり力率角が±Δθ度だけ変化したと
する。第3図A,bはこのときの様子を示したベクトル
図であり、第3図aが負荷が大きい(力率が良い)とき
、第3図bが軽負荷(力率が悪い)のときのベクトル関
係を示している。Now, to simplify the explanation, assuming that the leakage reactance and primary resistance of the induction machine are zero, the vector relationship between current and voltage is shown as shown in FIG. Here, i1 is the primary current, I2 is the secondary current, IM is the magnetizing current, V1 is the primary voltage, and φ2 is the effective magnetic flux. Here, the motor power factor is the cosine of the angle θ formed by the current vector and the voltage vector, and the second
In the figure, ゛ is indicated by COsθ. Now, suppose that a disturbance such as a load change is applied to the induction machine, causing mutual interference between the secondary current 12 and the magnetizing current 1M, and the power factor angle changes by ±Δθ degrees. Figures 3A and 3B are vector diagrams showing the situation at this time. Figure 3A is when the load is large (good power factor), and Figure 3B is when the load is light (poor power factor). It shows the vector relationship of .
これらの図よりjわかるように同一力率角Δθの変化に
対して磁化電流1Mの変化量ΔIMは、負荷が小さくな
るにつれ小さくなつており、磁化電流と磁束の大きさは
比例するのでこのことは負荷が小さくなるにつれ同一力
率角Δθの変化に対して磁束の変化量すなわち、帰還信
号量が小さくなることを示している。また、第3図bで
は、平均的な力率COsθは正であつても斜線領域では
力率角(θ−Δθ)が90゜以上となつており、力率が
負となる。このため、この領域では磁束の変化量の極性
を反転して帰還しなければならない。反転しないとこの
領域では正帰還となつてしまうため、乱調現象を増大す
る結果となる。第4図は、乱調防止回路を備えた従来の
交流電動機の制御装置の他の例を示すプロツク図であり
、本発明者が(特願昭55年53239号)としてすで
に提案したものである。As can be seen from these figures, the amount of change ΔIM in magnetizing current 1M becomes smaller as the load becomes smaller for the same change in power factor angle Δθ, and this is true because the magnitude of magnetizing current and magnetic flux are proportional. indicates that as the load decreases, the amount of change in magnetic flux, that is, the amount of feedback signal, decreases with respect to a change in the same power factor angle Δθ. Furthermore, in FIG. 3b, even though the average power factor COsθ is positive, in the shaded region the power factor angle (θ−Δθ) is 90° or more, and the power factor is negative. Therefore, in this region, the polarity of the amount of change in magnetic flux must be reversed and returned. If it is not inverted, positive feedback will occur in this region, resulting in increased disturbance. FIG. 4 is a block diagram showing another example of a conventional AC motor control device equipped with a disturbance prevention circuit, which was already proposed by the present inventor as (Japanese Patent Application No. 53239 of 1982).
この制御装置においても、制御系の基本構成は第1図の
それと同様であり、互いに同一の構成要素には同一参照
付号が付されている。In this control device as well, the basic configuration of the control system is the same as that shown in FIG. 1, and the same components are given the same reference numbers.
この提案によつて付加された乱調防止回路はコンバータ
2の出力電圧&kを代表する移相器6の制御入力信号E
aをインバータ周波数fを代表する設定器13の速度設
定信号e1で割ることにより電動機力率COsθに相当
する信号を出力する割算器23と、この割算器の出力信
号を力率角θに相当する信号に変換する線形化回路25
とこの線形化回路の出力信号を微分する微分回路24と
、電圧/周波数変換器の入力回路で周波数指令値となる
速度設定信号e1にその微分回路24の出力信号を重畳
する加算器19とから構成されている。例えばトルク外
乱により力率角θが増方向に変化すると、電圧/周波数
変換器12の入力電圧は本来の周波数指令値e1よりも
力率角変化率DO/Dtの分だけ高くされる。The disturbance prevention circuit added according to this proposal is based on the control input signal E of the phase shifter 6 representing the output voltage &k of the converter 2.
A divider 23 outputs a signal corresponding to the motor power factor COsθ by dividing a by the speed setting signal e1 of the setting device 13 representing the inverter frequency f, and converts the output signal of this divider into a power factor angle θ. Linearization circuit 25 for converting into a corresponding signal
A differentiating circuit 24 that differentiates the output signal of this linearization circuit, and an adder 19 that superimposes the output signal of the differentiating circuit 24 on the speed setting signal e1 that becomes the frequency command value in the input circuit of the voltage/frequency converter. It is configured. For example, when the power factor angle θ changes in the increasing direction due to torque disturbance, the input voltage of the voltage/frequency converter 12 is made higher than the original frequency command value e1 by the power factor angle change rate DO/Dt.
これによつてインバータ周波数、すなわち電動機1次電
流周波数が高められ力率角増加を妨げる作用が生じる。
逆に、力率角の減方向に対しては、本来の周波数指令値
よりも力率角変化率分だけ低い周波数でインバータが運
転され力率角減少を妨げる作用が生じる。本提案による
乱調防止回路によれば、電圧/周波数変換器の入力電圧
の微少変化に対する微分回路24の出力電圧変化を見た
場合に当該信号伝達区間におけるゲインに周波数依存性
がなく、一定のゲイン維持されるために、すべての速度
制御範囲にわたつて最適な補償量を得ることがでできる
。しかしながら、反面次のような欠点がある。This increases the inverter frequency, that is, the motor primary current frequency, and has the effect of preventing an increase in the power factor angle.
Conversely, in the direction of decreasing the power factor angle, the inverter is operated at a frequency that is lower than the original frequency command value by the rate of change in the power factor angle, thereby creating an effect that prevents the decrease in the power factor angle. According to the disturbance prevention circuit according to the present proposal, when looking at changes in the output voltage of the differentiating circuit 24 in response to minute changes in the input voltage of the voltage/frequency converter, the gain in the signal transmission section has no frequency dependence and has a constant gain. Therefore, an optimum amount of compensation can be obtained over the entire speed control range. However, on the other hand, it has the following drawbacks.
1力率COsθの変化分は同一力率角Δθの変化に対し
てθが0゜附近(力率が良い)と90゜附近(力率が悪
い)ではその量が異なるため力率によつて帰還量が変化
してしまう。1 The amount of change in power factor COsθ differs depending on the power factor because the amount of change in power factor COsθ is different when θ is around 0° (good power factor) and around 90° (poor power factor) for the same change in power factor angle Δθ. The amount of feedback changes.
2このため力率COsθは線形化回路によつて力率CO
sθから力率角θに変え、その変化量DO/Dtを帰還
しなければならない。2 Therefore, the power factor COsθ is changed to the power factor COsθ by the linearization circuit.
It is necessary to change the power factor angle θ from sθ and feed back the amount of change DO/Dt.
この発明は、上述の如き、従来提案された制御装置の欠
点を解決するためになされたものであり、従つてこの発
明の目的は、既提案の二つの制御装置の長所を生かすこ
とにより力率に依存しないで常に同じ乱調防止効果を得
ることのできる交流電動機の制御装置を提供することに
ある。This invention was made in order to solve the drawbacks of the conventionally proposed control devices as described above, and the purpose of this invention is to improve the power factor by making use of the advantages of the two previously proposed control devices. An object of the present invention is to provide a control device for an AC motor that can always obtain the same disturbance prevention effect without depending on.
この発明の構成の要点は、インバータ駆動装置によつて
交流電動機を可変速運転する制御装置において、交流電
動機の内部磁束を演算する演算回路と、インバータ駆動
装置の出力電王を制御する位相制御器の制御人力信号を
速度設定信号て割算する除算回路と、前記演算回路によ
り求めた内部磁束信号である第1の信号と前記除算回路
により求めた割算結果である第2の信号を微分して出力
する微分回路と、前記微分出力をインバータ駆動装置の
速度設定信号に重畳させる手段とを設けた点にある。第
5図は、この発明の一実施例を示すプロツク図である。The main point of the configuration of the present invention is that, in a control device that operates an AC motor at variable speed using an inverter drive device, a calculation circuit that calculates the internal magnetic flux of the AC motor and a phase controller that controls the output voltage of the inverter drive device are provided. A division circuit that divides the control human power signal by the speed setting signal, and a first signal that is the internal magnetic flux signal obtained by the arithmetic circuit and a second signal that is the division result obtained by the division circuit are differentiated. The present invention is characterized in that a differential circuit for outputting the output and a means for superimposing the differential output on the speed setting signal of the inverter drive device are provided. FIG. 5 is a block diagram showing one embodiment of the present invention.
同図に示す構成は、前述の第1図の回路において、割算
器23と微分回路24と加算器25とから成る回路を追
加したものに相当し、またこの追加回路は、第4図にお
ける相当回路の中から線形化回路15を除去した回路に
一致している。The configuration shown in FIG. 1 corresponds to the circuit shown in FIG. This corresponds to a circuit obtained by removing the linearization circuit 15 from the corresponding circuit.
この結果、負荷が大きい(力率が良い)ときには主に磁
束の変化量を帰還する第1図の回路で述べた磁束検出回
路20からなる回路により、また、負荷が小さいときに
は、割算器23と微分回路24と加算器25とからなる
力率の変化を帰還する追加回路により、乱調防止の効果
が得られるため全体として力率に依存しないで常に同じ
乱調防止効果を得ることができる。第6図は、第5図の
変形実施例を示すプロツタ図である。As a result, when the load is large (good power factor), the circuit consisting of the magnetic flux detection circuit 20 described in the circuit of FIG. An additional circuit for feeding back changes in the power factor, which includes the differential circuit 24 and the adder 25, provides the effect of preventing disturbances, so that the same effect of preventing disturbances as a whole can be obtained regardless of the power factor. FIG. 6 is a plotter diagram showing a modified embodiment of FIG. 5.
第6図が第5図と異なる点は比較器21と極性切換器2
2と微分回路24を省略し、加算器25を振巾演算器1
7と微分回路18との間に挿入することにより割算器2
3の出力信号と振巾演算器17の出力信号を加算して微
分回路]8の入力信号とした点である。これによりポン
プ駆動のような一象限運転の場合において、力率COs
θが軽負荷時に第3図bにおける斜線領域に入り、磁束
の変化量を帰還する信号が正帰還となつたとしても、そ
の量は小さいのでその分力率COsθの変化量を帰還す
る信号にフよつて十分その正帰還量を打消せるため全体
として十分な乱調防止効果が得られる。The difference between FIG. 6 and FIG. 5 is a comparator 21 and a polarity switch 2.
2 and the differentiating circuit 24 are omitted, and the adder 25 is replaced by the amplitude calculator 1.
7 and the differentiating circuit 18, the divider 2
The output signal of 3 and the output signal of the amplitude calculator 17 are added to form an input signal of the differentiating circuit]8. As a result, in the case of one-quadrant operation such as pump drive, the power factor COs
Even if θ enters the shaded area in Figure 3b at light load and the signal that feeds back the amount of change in magnetic flux becomes a positive feedback, the amount is small, so the signal that feeds back the amount of change in power factor COsθ is Since the amount of positive feedback can be sufficiently canceled by the feedback, a sufficient effect of preventing disturbance can be obtained as a whole.
このため比較器21と極性切換器22を省くことがで出
来、さらに加算器25の位置をすらすことにより微分回
路24をも省けるので全体として回路構成が簡単5とな
る。この発明によれば磁束の大きさ1φlと力率COs
θを加算してその変化分を周波数指令値に帰還したため
、線形化回路を用いることなく力率の変化に関係せず常
に同一の乱調防止効果を得るこθとか出来る。Therefore, the comparator 21 and the polarity switch 22 can be omitted, and furthermore, by moving the adder 25, the differentiating circuit 24 can also be omitted, so that the overall circuit configuration can be simplified. According to this invention, the magnitude of magnetic flux is 1φl and the power factor COs
Since θ is added and the change is fed back to the frequency command value, it is possible to always obtain the same disturbance prevention effect regardless of changes in the power factor without using a linearization circuit.
第1図は乱調防止回路を備えた従来の交流電動機の制御
装置の一例を示すプロツク図、第2図は誘導機における
電流、電圧のベクトル関係を示すベクトル図、第3図は
乱調時の同様なベクトル図であつてaは相対的に重負荷
時のそれ、bは軽負荷時のそれを示す。
第4図は、乱調防止回路を備えた従来の交流電動機の制
御装置の他の例を示すプロツク図、第5図はこの発明の
一実施例を示すプロツク図、第6図はこの発明の他の実
施例を示すプロツク図、である。符号説明、1・・・・
・・交流電源、2・・・・・・コンバータ、3・・・・
・・インバータ、4・・・・・・誘導電動機、5・・・
・・・電流平滑用リアクトル、6・・・・・・コンバー
タ用移相器、7・・・・・・電流検出器、8・・・・・
・電流制御用演算器、9・・・・・・電圧制御用演算器
、10・・・・・・電圧検出器、11・・・・・・イン
バータ制御回路、12・・・・・・電圧/周波数変換器
、13・・・・・・速度設定器、14・・・・・・電動
機端子電圧検出器、15・・・・・・2相/3相変換器
、16・・・・・・積分器、17・・・・・・演算器、
18・・・・・・微分回路、19・・・・・・加算器、
20・・・・・・磁束検出器、21・・・・・・比較器
、22・・・・・・極性切換器、23・・・・・・割算
回路、24・・・・・・微分回路、25・・・・・・線
形化回路。Fig. 1 is a block diagram showing an example of a conventional AC motor control device equipped with a disturbance prevention circuit, Fig. 2 is a vector diagram showing the vector relationship between current and voltage in an induction machine, and Fig. 3 is a similar diagram when the disturbance occurs. In this vector diagram, a shows that when the load is relatively heavy, and b shows that when the load is relatively light. FIG. 4 is a block diagram showing another example of a conventional AC motor control device equipped with a disturbance prevention circuit, FIG. 5 is a block diagram showing an embodiment of the present invention, and FIG. FIG. Code explanation, 1...
...AC power supply, 2...Converter, 3...
...Inverter, 4...Induction motor, 5...
... Current smoothing reactor, 6... Phase shifter for converter, 7... Current detector, 8...
・Current control computing unit, 9...Voltage control computing unit, 10...Voltage detector, 11...Inverter control circuit, 12...Voltage /Frequency converter, 13... Speed setter, 14... Motor terminal voltage detector, 15... 2-phase/3-phase converter, 16...・Integrator, 17... Arithmetic unit,
18... Differential circuit, 19... Adder,
20... Magnetic flux detector, 21... Comparator, 22... Polarity switch, 23... Division circuit, 24... Differentiation circuit, 25... Linearization circuit.
Claims (1)
転するための制御装置において、交流電動機の内部磁束
を演算する演算回路と、インバータ駆動装置の出力電圧
を制御する位相制御器の制御入力信号を速度設定信号で
割算する除算回路と、前記演算回路により求めた内部磁
束信号である第1の信号と前記除算回路により求めた割
算結果である第2の信号を微分して出力する微分回路と
、前記微分出力をインバータ駆動装置の速度設定信号に
重畳させる手段とを有して成ることを特徴とする交流電
動機の制御装置。1. In a control device for variable speed operation of an AC motor using an inverter drive device, a control input signal of a calculation circuit that calculates the internal magnetic flux of the AC motor and a phase controller that controls the output voltage of the inverter drive device is controlled by the speed control device. a division circuit that divides by a setting signal; and a differentiation circuit that differentiates and outputs a first signal that is the internal magnetic flux signal obtained by the arithmetic circuit and a second signal that is the division result obtained by the division circuit. , and means for superimposing the differential output on a speed setting signal of an inverter drive device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55178055A JPS5953800B2 (en) | 1980-12-18 | 1980-12-18 | AC motor control device |
DE19813149693 DE3149693A1 (en) | 1980-12-18 | 1981-12-15 | Regulation device for a rotating-field machine supplied from a converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55178055A JPS5953800B2 (en) | 1980-12-18 | 1980-12-18 | AC motor control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57106394A JPS57106394A (en) | 1982-07-02 |
JPS5953800B2 true JPS5953800B2 (en) | 1984-12-26 |
Family
ID=16041806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55178055A Expired JPS5953800B2 (en) | 1980-12-18 | 1980-12-18 | AC motor control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5953800B2 (en) |
DE (1) | DE3149693A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59165697U (en) * | 1983-04-21 | 1984-11-06 | 明治ナシヨナル工業株式会社 | discharge lamp lighting device |
JPS61190897A (en) * | 1985-02-18 | 1986-08-25 | 三菱電機株式会社 | Discharge lamp lighting device |
JPS636699U (en) * | 1986-06-30 | 1988-01-18 | ||
JPS6350497U (en) * | 1986-09-19 | 1988-04-05 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3616334C2 (en) * | 1986-05-15 | 2000-11-02 | Asea Brown Boveri | Method of damping at least one electrical harmonic at the mains frequency in a multi-phase AC network |
JPS63198600A (en) * | 1987-02-13 | 1988-08-17 | Toyo Electric Mfg Co Ltd | Control of pwm inverter |
DE4006447A1 (en) * | 1990-03-01 | 1991-09-05 | Loher Ag | CONTROL SYSTEM FOR A PULSE INVERTER CONTROLLED ROTARY FIELD MACHINE |
CN105024619A (en) * | 2015-08-21 | 2015-11-04 | 广东新宝电器股份有限公司 | Intelligent speed control system of food stirring processor |
-
1980
- 1980-12-18 JP JP55178055A patent/JPS5953800B2/en not_active Expired
-
1981
- 1981-12-15 DE DE19813149693 patent/DE3149693A1/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59165697U (en) * | 1983-04-21 | 1984-11-06 | 明治ナシヨナル工業株式会社 | discharge lamp lighting device |
JPS61190897A (en) * | 1985-02-18 | 1986-08-25 | 三菱電機株式会社 | Discharge lamp lighting device |
JPS636699U (en) * | 1986-06-30 | 1988-01-18 | ||
JPS6350497U (en) * | 1986-09-19 | 1988-04-05 |
Also Published As
Publication number | Publication date |
---|---|
JPS57106394A (en) | 1982-07-02 |
DE3149693A1 (en) | 1982-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4459534A (en) | Method for controlling induction motor and apparatus therefor | |
CA1166682A (en) | Control system for a linear synchronous motor | |
US4361794A (en) | Induction motor drive apparatus | |
US4792741A (en) | Control unit for non-circulating current type cycloconverter | |
EP0536569A2 (en) | AC motor control apparatus and control apparatus of electric rolling stock using the same | |
JPS5953800B2 (en) | AC motor control device | |
JPH0199476A (en) | High frequency link converter | |
US4677361A (en) | Apparatus for operating an elevator | |
EP0049241B1 (en) | Method and apparatus for controlling an ac induction motor | |
JPS5855765A (en) | Detecting circuit for electric current | |
JPH02168895A (en) | Method of decreasing peak current value of voltage-type pulse width modulation control inverter | |
JPS6330236Y2 (en) | ||
KR930004025B1 (en) | Speed control system of induction motor | |
JP2589070B2 (en) | Converter phase controller | |
JP3990044B2 (en) | Inverter device | |
JPH083199Y2 (en) | Power converter | |
JPS6355313B2 (en) | ||
JPS6035918B2 (en) | AC motor control device | |
JPH0370498A (en) | Controller for ac rotary magnet electric machine | |
JPS598156B2 (en) | AC variable speed electric motor device | |
JPH0412698A (en) | Control method for voltage type pwm inverter | |
JPS6035913B2 (en) | Control device for inverter equipment | |
JPS5996888A (en) | Controller for induction motor | |
JPS60213287A (en) | Controller of induction motor | |
JPS638709B2 (en) |