JPS638709B2 - - Google Patents

Info

Publication number
JPS638709B2
JPS638709B2 JP56003813A JP381381A JPS638709B2 JP S638709 B2 JPS638709 B2 JP S638709B2 JP 56003813 A JP56003813 A JP 56003813A JP 381381 A JP381381 A JP 381381A JP S638709 B2 JPS638709 B2 JP S638709B2
Authority
JP
Japan
Prior art keywords
current
power factor
load
output current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56003813A
Other languages
Japanese (ja)
Other versions
JPS57119672A (en
Inventor
Kazuya Endo
Tadamasa Niimi
Hiroshi Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56003813A priority Critical patent/JPS57119672A/en
Publication of JPS57119672A publication Critical patent/JPS57119672A/en
Publication of JPS638709B2 publication Critical patent/JPS638709B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Ac-Ac Conversion (AREA)

Description

【発明の詳細な説明】 この発明は、交流機等の負荷に可変周波数の交
流電力を供給する周波数交換装置の出力電流制御
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an output current control method of a frequency exchange device that supplies variable frequency AC power to a load such as an AC machine.

第1図は、この種の周波数変換装置の概略を示
す概略構成図、第2図は第1図の各部波形を示す
波形図である。
FIG. 1 is a schematic configuration diagram showing an outline of this type of frequency conversion device, and FIG. 2 is a waveform diagram showing waveforms of various parts of FIG. 1.

第1図のAおよびBがサイリスタブリツジから
なる制御整流回路1相分で、これらを3組使用し
て電力変換装置が構成される。サイリスタブリツ
ジAは負荷Lに正極性の電流を供給し、サイリス
タブリツジBは負極性の電流を供給するが、これ
らの選択は、第2図aで示されるような各相の電
流指令値i*の極性に応じて、同図cで示されるよ
うなサイリスタ選択信号を発することにより行わ
れる。なお、PCは電流指令値i*と、直流変流器
CTによつて検出される電流現在値iとを比較し
てサイリスタ群A,Bの位相制御を行なう制御回
路である。
A and B in FIG. 1 represent one phase of a controlled rectifier circuit consisting of a thyristor bridge, and three sets of these are used to construct a power converter. Thyristor bridge A supplies a positive polarity current to the load L, and thyristor bridge B supplies a negative polarity current, but these selections are determined by the current command value of each phase as shown in Figure 2a. This is done by issuing a thyristor selection signal as shown in c in the figure, depending on the polarity of i * . In addition, the PC is the current command value i * and the DC current transformer.
This is a control circuit that controls the phase of thyristor groups A and B by comparing the current value i detected by CT.

ここで、負荷Lが軽負荷となつて電流指令値i*
が低レベル領域になると、電流指令演算器(図示
なし)のオフセツトやノイズの影響、さらには
正、負側サイリスタ選択信号発生器(図示なし)
の持つヒステリシス特性等により、本来所望する
時点での正、負サイリスタ群の切換えが行われな
くなつたり、電流指令値i*と実際値iとが一致し
なくなる場合が生じる。また、電流指令値が低レ
ベルの領域では、第2図bで示すような電流実際
値iが零になる期間tpとそうでない期間tsとが生
じる、つまり電流に断続現象が生じるが、この断
続の程度に応じて制御系のゲインが変化すること
が知られている。したがつて、この電流断続の程
度が大きくなるような微小電流領域では、電流制
御系をマイナループとして有する速度制御系が不
安定となる場合がある。このため、電流断続の程
度に応じて電流制御系のゲインを補償する電流断
続補償方式が知られているが、この方式において
も微小電流領域では補償量が大きくなるため、良
好な補償を行なうのが困難であるというのが現状
である。
Here, the load L becomes a light load and the current command value i *
When it reaches a low level region, the influence of offset and noise of the current command calculator (not shown), as well as the positive and negative side thyristor selection signal generators (not shown)
Due to the hysteresis characteristic of the thyristor, the positive and negative thyristor groups may not be switched at the originally desired time, or the current command value i * and the actual value i may not match. In addition, in a region where the current command value is at a low level, there are periods t p in which the actual current value i is zero and periods t s in which it is not, as shown in FIG. 2b, that is, an intermittent phenomenon occurs in the current. It is known that the gain of the control system changes depending on the degree of this interruption. Therefore, in a small current region where the degree of current intermittent is large, a speed control system having a current control system as a minor loop may become unstable. For this reason, an intermittent current compensation method is known that compensates the gain of the current control system according to the degree of intermittent current, but even with this method, the amount of compensation increases in the small current region, so it is difficult to perform good compensation. The current situation is that it is difficult.

したがつて、この発明は、周波数変換装置の出
力電流が低レベルの領域における上記の如き欠点
を除去し、安定した制御を行ないうる周波数変換
装置の出力電流制御方法を提供することを目的と
するものである。
Therefore, it is an object of the present invention to provide a method for controlling the output current of a frequency converter, which eliminates the above-mentioned drawbacks in a region where the output current of the frequency converter is at a low level and can perform stable control. It is something.

この発明の特徴は、負荷に可変周波数の交流電
力を供給する周波数変換装置の出力電流制御方法
において、該出力電流が低レベルで、その断続の
度合が大きくなる領域では、負荷に所定の量の無
効電流分を供給してその力率を低下させる力率変
更手段を設け、該手段によつて前記変換装置の出
力電流レベルを所定の値に保つようにした点にあ
る。
A feature of the present invention is that in an output current control method of a frequency converter that supplies variable frequency AC power to a load, in a region where the output current is at a low level and the degree of intermittent power is large, a predetermined amount of power is applied to the load. The present invention is characterized in that a power factor changing means is provided to reduce the power factor by supplying a reactive current, and the output current level of the converter is maintained at a predetermined value by the means.

この発明の実施例を説明する前に、その原理に
ついて説明する。
Before explaining embodiments of the present invention, the principle thereof will be explained.

いま、周波数変換装置の負荷として交流電動機
を考えると、その出力Pは線間電圧をvl、線電流
il、電動機力率をCOSおよび効率をηとすると、 P=√3vl・il・COS・η ……(1) と表わすことができる。そこで、(1)式において
P、vlおよびηを一定とすると、力率COSが変
われば、線電流ilの大きさも変わることがわかる。
ところで、変換装置の出力電流または負荷電流が
小さくなると、上記の如き種々の問題が発生する
ので、その出力電流または負荷に流れる電流が小
さくならないように、力率COSを小さくするこ
とによつて実現しようとするものである。
Now, if we consider an AC motor as the load of a frequency converter, its output P is the line voltage v l and the line current
When i l is the motor power factor, COS is the motor power factor, and η is the efficiency, it can be expressed as P=√3v l・i l・COS・η (1). Therefore, assuming that P, v l and η are constant in equation (1), it can be seen that if the power factor COS changes, the magnitude of the line current i l also changes.
By the way, when the output current or load current of the converter becomes small, various problems such as those mentioned above occur, so in order to prevent the output current or the current flowing through the load from becoming small, it is possible to reduce the power factor COS. This is what I am trying to do.

以下、この発明の実施例を図面を参照して説明
する。第3図はこの発明の実施例を示すブロツク
図、第4図は第3図の実施例における特性説明
図、第5図は第3図の力率変更信号発生器の実施
例を示す回路構成図である。
Embodiments of the present invention will be described below with reference to the drawings. Fig. 3 is a block diagram showing an embodiment of the present invention, Fig. 4 is a characteristic explanatory diagram of the embodiment of Fig. 3, and Fig. 5 is a circuit configuration showing an embodiment of the power factor changing signal generator of Fig. 3. It is a diagram.

第3図において、i2 *は交流電動機における電
機子電流のトルク電流成分指令値、i1 *は同じく
電機子電流の磁化電流成分指令値を表わし、これ
らによつて交流機に流れる電流の制御が行われ
る。力率変更信号発生器10は、磁化電流成分指
令値i1 *に以下に述べる所定の無効電流分を重畳
することによつて、交流機の力率を変更させるた
めの信号を発するものである。
In Fig. 3, i 2 * represents the torque current component command value of the armature current in the AC motor, and i 1 * also represents the magnetization current component command value of the armature current, and these are used to control the current flowing through the AC machine. will be held. The power factor change signal generator 10 emits a signal for changing the power factor of the alternating current machine by superimposing a predetermined reactive current component described below on the magnetizing current component command value i 1 * . .

例えば、同期電動機について、供給電力が交流
でありながら、あたかも直流機のように取り扱う
ことができる制御方法であるベクトル制御方法
(ここでは、その具体的な内容はこの発明と直接
関係がないので、説明は省略する)では、一般に
電動機力率1で運転されるためi1 *=0となり、
したがつてi2 *のレベルがそのまま実際の電機子
電流レベルとなる。
For example, for a synchronous motor, the vector control method is a control method that allows it to be handled as if it were a DC machine even though the supplied power is AC (here, the specific details are not directly related to this invention, so (explanation is omitted), the electric motor is generally operated with a power factor of 1, so i 1 * = 0,
Therefore, the level of i 2 * becomes the actual armature current level.

そこで、通常は電動機力率1による制御を行な
い、電機子電流の微小レベル領域では、i1 *に適
当な値を設定すること、つまり負荷に励磁電流分
を流すことによつて力率を低下させ、これによつ
て負荷に流れる電流、つまり変換装置の出力電流
を大きくして電流の断続が生じないようにする。
Therefore, the motor is normally controlled using a power factor of 1, and when the armature current is at a very low level, the power factor can be reduced by setting an appropriate value for i 1 * , that is, by passing the excitation current through the load. This increases the current flowing to the load, that is, the output current of the converter, to prevent interruptions in the current.

そのために、力率変更信号発生器10の入力に
は電機子電流のトルク電流成分指令値i2 *が導か
れ、このi2 *によつて力率変更信号△i1 *を発生さ
せ、これに磁化電流成分指令値i1 *を加算して新
たな磁化電流成分指令値(i1 *)′とする。この場
合、力率変更信号△i1 *の極性によつて電動機力
率を遅れにも進みにもできるものであるが、遅れ
力率とすることによつて、界磁電流をほぼ△i1 *
による励磁電流分だけ減少させることができる。
しかも、周波数変換装置の出力電流、つまり電機
子電流の低レベル領域においてのみ少量の無効成
分を供給するだけであるから、系統に対する影響
も僅かである。
For this purpose, the torque current component command value i 2 * of the armature current is introduced to the input of the power factor change signal generator 10, and this i 2 * generates the power factor change signal △i 1 * . The magnetizing current component command value i 1 * is added to the magnetizing current component command value (i 1 *)' to obtain a new magnetizing current component command value (i 1 * )'. In this case, depending on the polarity of the power factor change signal △i 1 * , the motor power factor can be made to be lagging or leading, but by setting the lagging power factor, the field current can be changed to approximately △i 1 *
The excitation current can be reduced by the excitation current.
Furthermore, since only a small amount of reactive component is supplied in the low level region of the output current of the frequency converter, that is, the armature current, the influence on the system is small.

一般に交流機を駆動する場合には、各相の電機
子電流のピーク値をipとすると、 ip=√(1 *2+(2 *2 ……(2) で表わされる(ただし、i1 *、i2 *はそれぞれ上述
の指令値を表わす)が、交流機の電機子を力率1
で制御する場合においては、磁化電流成分指令値
i1 *は零であるから、上記(2)式により、ip=i2 *
なる。したがつて、i2 *とipとの関係は例えば第4
図のように表わされ、特に電機子電流の小さいと
ころでは、点線で示されるような特性となる。こ
の点線で示されるような領域においては、前述の
ように電流に断続現象が生じて好ましくないの
で、この発明では同図の実線で示すように、低電
流領域においてはipが一定値ikとなるようにする。
そうすると、この場合の磁化電流成分指令値
(i1 *)′は、(2)式においてi1 *のかわりに(i1 *)′
を、またipをikとおけば、 (i1 *)′=√(k2−(2 *2 として求めることができる。
Generally, when driving an alternating current machine, if the peak value of the armature current of each phase is i p , it is expressed as i p =√( 1 * ) 2 + ( 2 * ) 2 ...(2) , i 1 * and i 2 * respectively represent the above-mentioned command values), the armature of the alternating current machine has a power factor of 1.
When controlling with magnetizing current component command value
Since i 1 * is zero, i p =i 2 * according to the above equation (2). Therefore, the relationship between i 2 * and i p is, for example, the fourth
It is expressed as shown in the figure, and in particular where the armature current is small, the characteristics are as shown by the dotted line. In the region shown by the dotted line, the current discontinuities occur as described above, which is undesirable. Therefore, in the present invention, as shown by the solid line in the same figure, i p is set to a constant value i k in the low current region. Make it so that
Then, the magnetizing current component command value (i 1 * )′ in this case becomes (i 1 * )′ instead of i 1 * in equation (2).
, and if i p is set as i k , it can be obtained as (i 1 * )′ = √ ( k ) 2 − ( 2 * ) 2 .

つまり、磁化電流成分値i1 *を零としないで、
該成分値とトルク電流成分指令値とのベクトル合
成値が一定の値ikとなるような有意の値を選択す
る。その結果、力率変更信号△i1 *は次のように
表わすことができる。
In other words, without making the magnetizing current component value i 1 * zero,
A significant value is selected such that the vector composite value of the component value and the torque current component command value becomes a constant value i k . As a result, the power factor change signal Δi 1 * can be expressed as follows.

△i1 *=√(k2−(2 *2 〔但し、(i2 *2(ik2〕 △i1 *=0〔但し、(i2 *2〓(ik2〕 次に、力率変更信号発生器の実施例について、
第5図を参照して説明する。
△i 1 * =√( k ) 2 − ( 2 * ) 2 [However, (i 2 * ) 2 (i k ) 2 ] △i 1 * = 0 [However, (i 2 * ) 2 〓(i k ) 2 ] Next, regarding an example of a power factor changing signal generator,
This will be explained with reference to FIG.

上記の力率変更信号△i1 *は、トルク電流成分
指令値i2 *をもとにして作られるから、力率変更
信号発生器10には上記電流i2 *が入力される。
この入力信号は、乗算器101によつて(i2 *2
の演算が行われ、加算器103へ与えられる。加
算器103の他方には、ポテンシヨメータ102
によつて設定された信号−(ik2が入力されてい
るから、加算器103にてこれらの加算が行われ
て、−〔(i2 *2−(ik2〕が算出される。なお、加

器103はダイオードDによつて一方向のみの極
性を有するから、(i2 *2〓(ik2の領域ではその
出力は零となる。演算値(ik2−(i2 *2は、平方
根演算器104にて√(k2−(2 *2の演算が行

れ、これが力率変更信号△i1 *として出力される。
Since the above power factor change signal Δi 1 * is generated based on the torque current component command value i 2 * , the above current i 2 * is input to the power factor change signal generator 10.
This input signal is converted into (i 2 * ) 2 by the multiplier 101
is calculated and provided to the adder 103. A potentiometer 102 is connected to the other side of the adder 103.
Since the signal (i k ) 2 set by be done. Note that since the adder 103 has polarity in only one direction due to the diode D, its output becomes zero in the region of (i 2 * ) 2 〓(i k ) 2 . The calculated value (i k ) 2 - (i 2 * ) 2 is calculated as √ ( k ) 2 - ( 2 * ) 2 by the square root calculator 104, and this is output as the power factor change signal △i 1 *. be done.

なお、(i2 *2〓(ik2の領域では加算器103
からの出力が零であるから、したがつて力率変更
信号も零になる。
Note that in the area of (i 2 * ) 2 〓(i k ) 2 , the adder 103
Since the output from the power factor is zero, the power factor change signal is also zero.

以上のように、この発明によれば、低負荷電流
領域では負荷の力率を低下させて電流指令値およ
び実際値のレベルを上げることにより、周波数変
換装置におけるサイリスタ群の順、逆の切換を所
望の特性で正確に行なうことができ、また電流断
続現象を無くすことができるため制御系のゲイン
変動を小さくすることが可能となり、安定した制
御を行なうことができるという利点を有するもの
である。
As described above, according to the present invention, by lowering the power factor of the load and increasing the levels of the current command value and actual value in the low load current region, the thyristor groups in the frequency converter can be switched in the forward or reverse direction. This has the advantage of being able to perform accurate control with desired characteristics, and eliminating current intermittent phenomena, making it possible to reduce gain fluctuations in the control system and ensuring stable control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周波数変換装置の概略構成図、第2図
は第1図の各部波形を示す波形図、第3図はこの
発明の実施例を示すブロツク図、第4図はこの発
明の実施例における特性説明図、第5図は第3図
の力率変更信号発生器の実施例を示す回路図であ
る。 符号説明、L……負荷、PC……制御回路、CT
……直流変流器、A,B……サイリスタ群、10
……力率変更信号発生器、101……乗算器、1
02……ポテンシヨメータ、103……加算器、
104……平方根演算器、D……ダイオード。
FIG. 1 is a schematic configuration diagram of a frequency converter, FIG. 2 is a waveform diagram showing waveforms of each part of FIG. 1, FIG. 3 is a block diagram showing an embodiment of the present invention, and FIG. 4 is an embodiment of the invention. FIG. 5 is a circuit diagram showing an embodiment of the power factor changing signal generator of FIG. 3. Symbol explanation, L...Load, PC...Control circuit, CT
...DC current transformer, A, B...Thyristor group, 10
... Power factor change signal generator, 101 ... Multiplier, 1
02... Potentiometer, 103... Adder,
104...Square root calculator, D...Diode.

Claims (1)

【特許請求の範囲】[Claims] 1 負荷に可変周波数の交流電力を供給する周波
数変換装置の出力電流を実質的に有効分のみとし
て高力率運転を行なう制御方法において、該出力
電流有効分の低レベル領域では、負荷に所定の量
の無効電流分を供給してその力率を低下させるこ
とにより、前記変換装置の出力電流レベルをほと
んど断続が生じない範囲に保つようにしたことを
特徴とする周波数変換装置の出力電流制御方法。
1. In a control method that performs high power factor operation with the output current of a frequency converter that supplies variable frequency AC power to a load substantially only as an effective component, in a low level region of the effective output current, a predetermined value is applied to the load. A method for controlling the output current of a frequency converter, characterized in that the output current level of the converter is maintained within a range where there is almost no interruption by supplying a large amount of reactive current to reduce its power factor. .
JP56003813A 1981-01-16 1981-01-16 Controlling system of output current for frequency converter device Granted JPS57119672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56003813A JPS57119672A (en) 1981-01-16 1981-01-16 Controlling system of output current for frequency converter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56003813A JPS57119672A (en) 1981-01-16 1981-01-16 Controlling system of output current for frequency converter device

Publications (2)

Publication Number Publication Date
JPS57119672A JPS57119672A (en) 1982-07-26
JPS638709B2 true JPS638709B2 (en) 1988-02-24

Family

ID=11567623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56003813A Granted JPS57119672A (en) 1981-01-16 1981-01-16 Controlling system of output current for frequency converter device

Country Status (1)

Country Link
JP (1) JPS57119672A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269355B2 (en) * 2014-07-04 2018-01-31 株式会社安川電機 Matrix converter, power generation system, and power factor control method
CN105763121B (en) * 2016-03-03 2018-05-01 湖南大学 Synchronous electric spindle towards varying load superhigh speed grinding accelerates strong magnetic control method

Also Published As

Publication number Publication date
JPS57119672A (en) 1982-07-26

Similar Documents

Publication Publication Date Title
EP0013615B1 (en) Apparatus for controlling a.c. motor
SU1291034A3 (en) Device for controlling induction motor
US4904919A (en) Dual mode control of a PWM motor drive for current limiting
US4019105A (en) Controlled current induction motor drive
JP2718001B2 (en) Power control device for induction motor
ATE38598T1 (en) LOAD STATE CONTROL OF AN INVERTER-POWERED ASYNCHRONOUS MACHINE.
JPS5928159B2 (en) Excitation adjustment device
US4156275A (en) Power conversion unit
JPS638709B2 (en)
JP2946106B2 (en) AC motor control method and device
JP3070314B2 (en) Inverter output voltage compensation circuit
JP2639985B2 (en) Control method of single-phase induction motor
JPH0452719B2 (en)
JPH0783605B2 (en) Rectifier circuit controller
SU1309244A1 (en) Electric drive
JPH05244791A (en) Speed controller for ac motor
JPH0713440Y2 (en) AC power supply
JPH06233461A (en) Reactive power compensation device and its controller
SU1053255A1 (en) Device for controlling asynchronous machine with phase rotor
JPS58136288A (en) Controlling method for induction motor
JP2519078Y2 (en) Frequency control device for main shaft drive generator
SU1508318A2 (en) Thyratron electric motor
JPS6292794A (en) Control circuit for voltage type inverter
JPS59185188A (en) Controlling method and device of pwm inverter
JPH0731192A (en) Controller and control method for variable speed drive system