JPS5952953B2 - Electroless plating control method and device - Google Patents

Electroless plating control method and device

Info

Publication number
JPS5952953B2
JPS5952953B2 JP16733479A JP16733479A JPS5952953B2 JP S5952953 B2 JPS5952953 B2 JP S5952953B2 JP 16733479 A JP16733479 A JP 16733479A JP 16733479 A JP16733479 A JP 16733479A JP S5952953 B2 JPS5952953 B2 JP S5952953B2
Authority
JP
Japan
Prior art keywords
plating
plating solution
refractive index
concentration
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16733479A
Other languages
Japanese (ja)
Other versions
JPS5690968A (en
Inventor
建 荒木
裕允 酒井
裕 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16733479A priority Critical patent/JPS5952953B2/en
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to US06/204,046 priority patent/US4353933A/en
Priority to GB8036232A priority patent/GB2064827B/en
Priority to FR8024166A priority patent/FR2469466B1/en
Priority to DE19803043066 priority patent/DE3043066A1/en
Publication of JPS5690968A publication Critical patent/JPS5690968A/en
Priority to US06/352,549 priority patent/US4406248A/en
Priority to US06/352,550 priority patent/US4406249A/en
Priority to SG169/84A priority patent/SG16984G/en
Publication of JPS5952953B2 publication Critical patent/JPS5952953B2/en
Priority to HK64/85A priority patent/HK6485A/en
Priority to MY497/85A priority patent/MY8500497A/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は無電解ニッケルめつき等の無電解めつきの制御
方法及びこの無電解めつきに使用する制御装置に関し、
更に詳述すれば長期間に亘り安定して連続めつき作業を
行なうことを可能にした無電解めつき制御方法及びその
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling electroless plating such as electroless nickel plating, and a control device used for this electroless plating.
More specifically, the present invention relates to an electroless plating control method and an apparatus therefor that make it possible to stably perform continuous plating work over a long period of time.

無電解めつき液はその使用により金属塩、還元剤等がわ
ずかな時間で消耗し、液組成の変動が激’しいため、ひ
んぱんに消耗薬品の補給を行なつて析出速度、めつき被
膜の性状等を一定にする必要があり、このため種々の無
電解めつき液自動制御乃至補給装置もしくは方法が提案
されている (特開昭53−44434号、同53−4
5631号、同54−8123号等)。しかし、無電解
めつき液、例えば高温用酸性無電解ニッケルめつき液は
、液寿命が短かく、上述した自動補給法によるにせよ、
或いは必要時に手により補給液を補給する方法によるに
せよ、比較的短時間で液が老化し、金属イオン濃度や還
元剤濃度等を建浴初期と同じ濃度になるように補給して
も析出速度が建浴初期と比べて著しく低下し、まためつ
き被膜の性状もかなり変化したものになる。
When using an electroless plating solution, metal salts, reducing agents, etc. are consumed in a short period of time, and the composition of the solution fluctuates drastically. It is necessary to keep properties etc. constant, and for this purpose various automatic control or replenishment devices or methods for electroless plating solution have been proposed (Japanese Patent Laid-Open Nos. 53-44434 and 53-4).
No. 5631, No. 54-8123, etc.). However, electroless plating solutions, such as high-temperature acidic electroless nickel plating solutions, have a short service life, and even with the automatic replenishment method described above,
Or, even if you manually replenish the replenishing solution when necessary, the solution ages in a relatively short period of time, and even if you replenish the metal ion concentration, reducing agent concentration, etc. to the same concentration as at the beginning of bath preparation, the precipitation rate will decrease. compared to the initial stage of bath preparation, and the properties of the glare film have also changed considerably.

こうなると液を廃棄し、新たな液を建浴しなければなら
ない。このため、上述した無電解めつき液の自動制御法
を採用して補給液を自動補給する場合にあつても、これ
とは別個に液の老化度を絶えず監視し、それに応じた対
策を購じる必要があり、従つて従来の無電解めつき法は
前記自動制御法を採用したとしても比較的短期間でめつ
き液を廃棄しなければならず、またその管理面でも十分
満足し得るものではなかつた。
In this case, the liquid must be discarded and a new bath prepared. For this reason, even if the above-mentioned automatic control method for electroless plating solution is adopted to automatically replenish the replenishment solution, the degree of aging of the solution must be constantly monitored and appropriate countermeasures should be taken. Therefore, in the conventional electroless plating method, even if the automatic control method described above is adopted, the plating solution must be disposed of in a relatively short period of time, and the management aspect is also not satisfactory. It wasn't something.

本発明は上記事情を改善するためになされたもので、長
期間の安定した連続めつき作業が可能であり、液の建て
換えの必要を殆んど無くすることができ、少なくとも従
来に比べて液の建て換え期間を著しく遅らせることがで
きて、廃液、廃水処理の面でも有利であると共に、析出
速度、めつき被膜の性状等を長期に亘りほぼ一定に保持
し得、液管理を簡単かつ確実に行なうことができて、特
に無電解ニツケルめつき、無電解コバルトめつき、無電
解ニツケルーコバルト合金めつきの実施に好適な無電解
めつき制御方法及びその装置を提供することを目的とす
る。
The present invention has been made to improve the above-mentioned circumstances, and enables stable continuous plating work over a long period of time, almost eliminates the need for replacing the liquid, and is at least better than the conventional method. It is possible to significantly delay the period for rebuilding the liquid, which is advantageous in terms of waste liquid and wastewater treatment, and it is also possible to maintain the deposition rate, properties of the plating film, etc. almost constant over a long period of time, making liquid management simple and easy. An object of the present invention is to provide an electroless plating control method and apparatus that can be performed reliably and is particularly suitable for implementing electroless nickel plating, electroless cobalt plating, and electroless nickel-cobalt alloy plating. .

即ち、本発明者らは従来の欠点を解決するため種々検討
を行なつた結果、無電解めつき液の濃度を測定すること
により、めつきによる薬品消耗量を検知し、その測定値
に応じてめつきによる消耗成分を自動的に補給すると同
時に、無電解めつき液の屈析率を測定することによつて
確実にめつき液の老化度を検知することができ、めつき
液の屈折率が所定設定値以上になつた場合、めつき液の
一部を汲み出すと共に、この汲み出し成分に対応する補
給剤を自動的に補給することにより、めつき液が自動的
に少しづつ更新され、めつき液を長期間連続的に使用す
ることができ、しかも長期連続使用する間において析出
速度、析出物の性状等をほぼ一定化し得、上述した目的
が達成されることを知見し、本発明をなすに至つたもの
である。
That is, as a result of various studies conducted by the present inventors in order to solve the conventional drawbacks, the amount of chemical consumption due to plating can be detected by measuring the concentration of the electroless plating solution, and the amount of chemical consumption due to plating can be detected according to the measured value. By automatically replenishing components consumed by plating, and at the same time measuring the refractive index of the electroless plating solution, it is possible to reliably detect the degree of aging of the plating solution. When the rate exceeds a predetermined set value, a portion of the plating solution is pumped out and a replenisher corresponding to the pumped-out component is automatically replenished, thereby automatically renewing the plating solution little by little. , discovered that the plating solution can be used continuously for a long period of time, and that the precipitation rate, properties of the precipitate, etc. can be kept almost constant during long-term continuous use, and that the above objectives are achieved. This led to the invention.

以下、本発明の一実施例につき図面を参照して説明する
。第1図は無電解ニツケルめつきに使用する装置の一例
を示すもので、図中1はめつき槽であり、図示していな
いがこのめつき槽1には所用の装置(例えば、ヒーター
、スチームパイプ等の無電解ニツケルめつき液2を所定
温度に加熱するための加熱装置、めつき終了後めつき液
2を室温付近にまで冷却するための冷却装置、淵過機、
攪拌機など)が付帯している。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. Fig. 1 shows an example of equipment used for electroless nickel plating, and 1 in the figure is a plating tank. A heating device for heating the electroless nickel plating solution 2 such as a pipe to a predetermined temperature, a cooling device for cooling the plating solution 2 to around room temperature after completion of plating, a filtration machine,
A stirrer, etc.) is included.

前記めつき槽1には、濃度検知器3、屈折率検知器4、
及びポンプ5を介装する循環パイプ6の一端が連通し、
前記ポンプ5の作動によりめつき槽1内のめつき液2が
このパイプ6の一端からパイプ6内に流入し、パイプ6
内を流れる間に濃度検知器3にてめつき液2の濃度(例
えばニツケルイオン濃度)が測定され、かつ屈折率検知
器4にてめつき液2の屈折率が測定された後、前記パイ
プ6の他端からめつき液2がめつき槽1内に戻されるよ
うになつている。
The plating tank 1 includes a concentration detector 3, a refractive index detector 4,
and one end of a circulation pipe 6 interposed with the pump 5 communicates with each other,
Due to the operation of the pump 5, the plating liquid 2 in the plating tank 1 flows into the pipe 6 from one end of the pipe 6.
After the concentration of the plating liquid 2 (for example, nickel ion concentration) is measured by the concentration detector 3 while flowing through the pipe, and the refractive index of the plating liquid 2 is measured by the refractive index detector 4, the The plating liquid 2 is returned into the plating tank 1 from the other end of the plating tank 6.

第2図は濃度検知器3の一例を示すもので、この例にあ
つては前記パイプ6にバイパス管7を配設し、このバイ
パス管7に流通形セル8aを備えた分光光度計8を介装
してあり、めつき液2がバイパス管7内を通つて分光光
度計8の流通形セル8aを流れる際にめつき液2の光の
透過率を測定することによりめつき液2中のニツケルイ
オン量が測定され(なお、次亜リン酸塩を還元剤とする
酸性無電解ニツケルめつきの場合、めつきによる金属消
耗を敏感にとらえるためにはめつき液中の・ニツケル錯
体の吸光度を検知することが好ましく、このニツケル錯
体の吸収波長におけるめつき液透過率を電圧に変換する
機構を採用することが好ましい。
FIG. 2 shows an example of the concentration detector 3. In this example, a bypass pipe 7 is disposed in the pipe 6, and a spectrophotometer 8 equipped with a flow type cell 8a is installed in the bypass pipe 7. By measuring the light transmittance of the plating solution 2 as it flows through the bypass pipe 7 and through the flow-through cell 8a of the spectrophotometer 8, The amount of nickel ions in the plating solution is measured (in the case of acidic electroless nickel plating using hypophosphite as the reducing agent, the absorbance of the nickel complex in the plating solution is It is preferable to detect this, and it is preferable to employ a mechanism that converts the plating liquid transmittance at the absorption wavelength of the nickel complex into a voltage.

)、これによりめつき液2の濃度が検知されるようにな
つていると共に、ニツケルイオン・量が所定の濃度設定
値以下になつた場合、分光光度計8に連絡された制御装
置9より信号Aが発せられるようになつている。なお、
このようにニツケル分を分析することにより、めつきに
よるニツケル消耗量がわかると共に、通常還元剤の消耗
・量、…変動量も同時にわかる。第3図は屈折率検知器
4の一例を示すもので、この例もパイプ6にバイパス管
10を設け、このバイパス管10に屈折率検知器4を設
けているものである。
), the concentration of the plating solution 2 is detected, and when the amount of nickel ions falls below a predetermined concentration setting value, a signal is sent from the control device 9 connected to the spectrophotometer 8. A is starting to be emitted. In addition,
By analyzing the nickel content in this manner, the amount of nickel consumed due to plating can be determined, and at the same time, the consumption and amount of the reducing agent, as well as the amount of fluctuation, can be determined at the same time. FIG. 3 shows an example of the refractive index detector 4, in which a bypass pipe 10 is provided in the pipe 6, and the refractive index detector 4 is provided in this bypass pipe 10.

この検知器4は、集光器11からバイパス管10に配置
したプリズム12に与えられた入射光Lぃをめつき液境
界面で全反射させ、プリズム12からの屈折光LBを受
光器13にて受光するようにしたもので、この受光器1
3で臨界光線を感知し、めつき液2の屈折率の変化によ
り移動する臨界光線の強度を常に同じに保つように比較
増巾器14を用いてサーボモーター11aを動作させ、
集光器11を動かすことにより、入射光LAの角度を自
動的に変化、制御するようになつていると共に、この角
度の変化を角度検出器11bにより検出し、角度の変化
を電位差変化として取り出すようになつている。
This detector 4 totally reflects incident light L given from a condenser 11 to a prism 12 disposed in a bypass pipe 10 at the plating liquid boundary surface, and sends refracted light LB from the prism 12 to a light receiver 13. This receiver 1
3, the servo motor 11a is operated using the comparison intensifier 14 so as to always keep the same intensity of the critical ray that moves due to changes in the refractive index of the plating liquid 2;
By moving the condenser 11, the angle of the incident light LA is automatically changed and controlled, and the change in angle is detected by the angle detector 11b, and the change in angle is extracted as a change in potential difference. It's becoming like that.

そして、めつき液2の屈折率が変化、増大し、所定の屈
折率設定値以上になると にの検知器4の場合、臨界光
線位置の変動による入射光LA角度の変化に相応する電
位差値が所定の電位差設定値にまで到達すると)、制御
装置15から信号Bが発せられるようになつている。な
お、図示していないが前記パイプ6には濃度検知器3配
設箇所より上流側に冷却器が介装され、バイパス管7,
10を流れるめつき液が室温まで冷却され、ほぼ一定温
度で濃度或いは屈折率測定が行なわれるようになつてい
る。
Then, when the refractive index of the plating liquid 2 changes and increases and exceeds a predetermined refractive index setting value, in the case of the detector 4, the potential difference value corresponding to the change in the angle of the incident light LA due to the change in the critical ray position changes. When a predetermined potential difference setting value is reached), a signal B is generated from the control device 15. Although not shown, a cooler is interposed in the pipe 6 on the upstream side of the concentration detector 3, and a bypass pipe 7,
The plating liquid flowing through 10 is cooled to room temperature, and the concentration or refractive index is measured at a substantially constant temperature.

なお、これらの測定において温度による影響を防止する
ために、その他恒温槽を利用したり、測温プローブを設
け、電気的に補償を行なう等の方法も採用できる。16
は消耗薬品用補給剤補給機構で、補給剤タンタ17と、
一端がこのタンク17に連結している補給剤供給管]8
と、及びこの供給管]8に介装されている電磁バルブ1
9とからなり、前記濃度検知器3の制御装置9からの信
号Aにより電磁バルブ19が所定時間開き、めつきによ
る薬品の消耗に対応して所定の補給剤、例えばニツケル
塩、還元剤、阻調整剤等が所定量めつき槽1内に供給さ
れるようになつている。
In addition, in order to prevent the influence of temperature in these measurements, other methods such as using a constant temperature bath, providing a temperature measuring probe, and performing electrical compensation can also be adopted. 16
is a replenishment agent replenishment mechanism for consumable chemicals, with replenishment agent Tanta 17,
Replenishment agent supply pipe whose one end is connected to this tank 17]8
and the solenoid valve 1 interposed in the supply pipe ] 8
9, an electromagnetic valve 19 is opened for a predetermined period of time in response to a signal A from the control device 9 of the concentration detector 3, and a predetermined replenisher, such as nickel salt, reducing agent, inhibitor, etc., is opened in response to the consumption of chemicals due to plating. A predetermined amount of a conditioning agent and the like is supplied into the plating tank 1.

なお、第1図においてはタンタ17を1個設置している
だけであるが、補給用のニツケル塩、還元剤、…調整剤
等をそれぞれ別個に収容するため、それに応じて複数個
のタンクを設置し、かつそれぞれに供給管、電磁バルブ
を配設するようにしてもよい。
In addition, although only one tanker 17 is installed in Figure 1, multiple tanks are installed to store the replenishing nickel salt, reducing agent, adjusting agent, etc. separately. In addition, a supply pipe and a solenoid valve may be provided respectively.

20は汲み出し機構で、一端がめつき槽1内に連通する
汲み出し管21と、この汲み出し管21に介装され、前
記屈折率検知器4の制御装置15からの信号Bにより所
定時間作動してめつき槽1中のめつき液2を所定量吸い
上げる制御ポンプ22からなり、屈折率検知器4からの
信号Bによつてポンプ22が所定時間作動し、めつき槽
1から所定量のめつき液2が排出されるようになつてい
る。
Reference numeral 20 denotes a pumping mechanism, which has a pumping pipe 21 whose one end communicates with the inside of the plating tank 1, and which is interposed in the pumping pipe 21 and is operated for a predetermined period of time by a signal B from the control device 15 of the refractive index detector 4. It consists of a control pump 22 that sucks up a predetermined amount of plating liquid 2 from the plating tank 1. The pump 22 operates for a predetermined period of time in response to the signal B from the refractive index detector 4, and the pump 22 sucks up a predetermined amount of plating liquid from the plating tank 1. 2 is now being discharged.

更に、23は汲み出し消費薬品用補給剤補給機構で、補
給剤タンク24と、一端がこのタンク24に連結してい
る補給剤供給管25と、及びこの供給管25に介装され
ている電磁バルブ26とからなり、この電磁バルブ26
が屈折率検知器4の制御装置15からの信号Bを受け、
前記ポンプ22の作動が停止した後所定時間開き、前記
めつき液2の汲み出しに応じて所定量の汲み出し消費薬
品用補給剤がめつき槽1内に供給されるようになつてい
る。 (なお、この補給機構23の場合においても、補
給剤の種類等に応じ、複数個のタンクを設置し、それぞ
れに供給管、電磁バルブを配設することもできる。)次
に、上記構造の装置を用いて無電解ニツケルめつきの制
御を行なう方法につき説明する。
Furthermore, 23 is a replenishment replenishment mechanism for pumped consumable chemicals, which includes a replenishment tank 24, a replenishment supply pipe 25 connected to this tank 24 at one end, and an electromagnetic valve interposed in this supply pipe 25. 26, this electromagnetic valve 26
receives the signal B from the control device 15 of the refractive index detector 4,
After the pump 22 stops operating, it is opened for a predetermined period of time, and a predetermined amount of replenisher for the pumped consumable chemicals is supplied into the plating tank 1 in response to the pumping of the plating liquid 2. (In the case of this replenishment mechanism 23 as well, it is also possible to install a plurality of tanks and arrange supply pipes and electromagnetic valves in each tank depending on the type of replenisher etc.) Next, the above structure A method of controlling electroless nickel plating using the apparatus will be explained.

まず、無電解ニツケルめつきは、被めつき物に対し所定
の前処理を行なつた後、これを所定温度、例えば90℃
に加熱してあるめつき槽1内のめつき液2中に浸漬する
ことによつて行なう。−方、このようなめつきの実施と
共に、ポンプ5を作動させてめつき槽1内のめつき液2
の一部をパイプ6内に導入し、濃度検知器3及び屈折率
検知器4に導いてめつき液2の濃度(第2図の濃度検知
器3のに従つた場合はニツケルイオン濃度)及びめつき
液2の屈折率をそれぞれ測定する。そして、めつきの進
行によりめつき槽1内のめつき液2の濃度、特にニツケ
ルイオン濃度、還元剤(例えば次亜リン酸ソーダ)の濃
度が低下し、また次亜リン酸塩を還元剤とする無電解ニ
ツケルめつき液の場合にはめつき液2の?が低下してく
るが、このような濃度変化が生じ、例えば第2図に示す
濃度検知器3を用いた場合であれば分光光度計8により
測定されたニツケルイオン濃度が所定の濃度設定値以下
に低下すると、この検知器3の制御装置9から信号Aが
発せられ、この信号Aが消耗薬品用補給剤補給機構16
の電磁バルブ19に与えられてバルブ19が所定時間開
く。
First, in electroless nickel plating, the object to be plated is subjected to a predetermined pretreatment and then heated to a predetermined temperature, for example, 90°C.
This is done by immersing the plate in a plating solution 2 in a plating tank 1 which has been heated to . - On the other hand, when carrying out such plating, the pump 5 is operated to drain the plating liquid 2 in the plating tank 1.
A part of the plating solution is introduced into the pipe 6 and guided to the concentration detector 3 and the refractive index detector 4 to measure the concentration of the plating solution 2 (or the nickel ion concentration in the case of the concentration detector 3 in FIG. 2). The refractive index of each plating liquid 2 is measured. As the plating progresses, the concentration of the plating solution 2 in the plating tank 1, especially the nickel ion concentration and the concentration of the reducing agent (for example, sodium hypophosphite) decreases, and the hypophosphite is used as the reducing agent. In the case of electroless nickel plating solution, use plating solution 2. However, such a concentration change occurs, and for example, if the concentration detector 3 shown in FIG. When the level decreases to 1, a signal A is issued from the control device 9 of this detector 3, and this signal A is sent to the consumable chemical replenishment replenishment mechanism 16.
is applied to the electromagnetic valve 19 to open the valve 19 for a predetermined period of time.

これによりタンク17内の補給剤(この補給剤は、主と
してめつきにより消耗されるニツケル塩、還元剤、それ
に…調整剤からなり、更に必要に応じて少量の錯化剤、
安定剤、光沢剤等が添加される。なお、一般にはニツケ
ル塩、還元剤、?調整剤はそれぞれ別個に隔離して収容
しておくことが好ましに。この場合、錯化剤、安定剤、
光沢剤等は上記三者のうち互に反応し合わない成分と混
合しておくことが好ましい。)の所定量がめつき槽1内
のめつき液2に加えられ、めつきで消耗したニツケルイ
オン、還元剤等が補給され、まためつき液2のmlが調
整される。このような補給剤の補給により、めつき液2
の温度はほぼ一定化され、従つてめつき速度(析出速度
)がほぼ一定に保持される。
As a result, the replenishment agent in the tank 17 (this replenishment agent mainly consists of the nickel salt consumed by plating, the reducing agent, and the adjusting agent, and if necessary, a small amount of the complexing agent,
Stabilizers, brighteners, etc. are added. In general, nickel salt, reducing agent, ? Preferably, each conditioning agent is housed separately and separately. In this case, complexing agents, stabilizers,
It is preferable that the brightener and the like be mixed with components that do not react with each other among the above three components. ) is added to the plating solution 2 in the plating tank 1 to replenish the nickel ions, reducing agent, etc. consumed by plating, and adjust the ml of the plating solution 2 again. By replenishing the replenisher like this, the plating solution 2
The temperature is kept almost constant, and therefore the plating rate (deposition rate) is kept almost constant.

また、めつき液2中に反応生成物が蓄積してくると、め
つき液2の屈折率が高くなり、第3図に″示す屈折率検
知器4によりめつき液2の屈折率が測定された結果、そ
の測定値が所定の屈折率設定値以上に増大した場合、制
御装置15より信号Bが発せられると共に、この信号B
が汲み出し機構20のポンプ22に与えられ、ポンプ2
2が所定時間作動し、めつき槽1内のめつき液2が所定
量汲み出し管21を通つて排出される。
Furthermore, as reaction products accumulate in the plating solution 2, the refractive index of the plating solution 2 increases, and the refractive index of the plating solution 2 is measured by the refractive index detector 4 shown in FIG. As a result, if the measured value increases beyond a predetermined refractive index setting value, the control device 15 issues a signal B, and this signal B
is applied to the pump 22 of the pumping mechanism 20, and the pump 2
2 is operated for a predetermined period of time, and a predetermined amount of the plating liquid 2 in the plating tank 1 is discharged through the pumping pipe 21.

にの排出液は廃液処理装置に送るのが望ましく、副生
物の除去を行なつた後、有効成分を再利用しても良い。
)。ポンプ22の作動が停止すると、汲み出し消費薬品
用補給剤補給機構23の電磁バルブ26が所定時間開き
、タンク24の補給剤にの補給剤は前記汲み出しにより
失なわれた成分を補給するもので、主として錯化剤であ
り、通常めつき液2の建浴時の組成と同じ組成のもの、
もしくはその濃縮液、又はめつきにより殆んど消耗する
ことのない錯化剤を主体とするものからなる。なお、補
給すべき成分が例えば金属塩と還元剤のように互に反応
するおそれがあるものの場合、これらは別々に隔離して
収容しておくことが好ましい。)がめつき槽1内のめつ
き液2に供給される。従つて、このようなめつき液2の
汲み出し、及び汲み出しに対応する補給剤の補給により
、めつき液2中の反応生成物の蓄積が防止され、反応生
成物量がほぼ一定にコントロールされる。このため、反
応生成物の蓄積によるめつき速度の低下が防止され、長
期間に亘り連続使用してもめつき液2が絶えず更新され
た状態となるので、長期の使用にかかわらずめつき速度
がほぼ一定に保持され、めつき被膜の性状(例えば次亜
リン酸塩を還元剤とする場合であればNi−P合金組成
、或いはめつき被膜の硬度など)もほぼ一定に保たれる
。この点につき更に詳述すると、長時間に亘りめつきを
行なつていると、めつき液2中に反応生成物(主に還元
剤の分解生成物及びめつき反応の中和塩と考えられる)
が蓄積し、この反応生成物がめつき速度等に影響を与え
、上述したようにめつきによる消耗成分を補給してもめ
つき速度を低下させることになると共に、場合によりめ
つき被膜の性状を変化させる原因ともなるが、本発明者
らの検討によれば、このような反応生成物の蓄積、換言
すれば液の老化はめつき液2の屈折率変化により確実に
検知し得、上述したようにめつき液2の屈折率が所定屈
折率設定値以上になつた場合、めつき液2の一部を排出
し、かつ屈折率検知器4に呼応した補給(主として汲み
出しにより失なわれる成分の補給)を行なうことにより
、めつき液2中の反応生成物量をほぼ一定に保持し、め
つき液2の寿命をほぼ半永久的に、少なくとも従来法に
比較して格段に液寿命を伸ばすことができたものであり
、しかもこのような長期連続使用の間において、めつき
速度、めつき被膜の性状等をほぼ一定に保持し得たもの
である。
It is desirable to send the waste liquid to a waste liquid treatment device, and after removing by-products, the active ingredient may be reused.
). When the operation of the pump 22 is stopped, the electromagnetic valve 26 of the pumped consumable drug replenishment replenishment mechanism 23 is opened for a predetermined time, and the replenishment agent in the tank 24 replenishes the components lost due to the pumping. It is mainly a complexing agent, and usually has the same composition as the composition when preparing the plating solution 2,
Or, it consists mainly of a concentrated solution thereof, or a complexing agent that is hardly consumed by plating. Note that if the components to be replenished are likely to react with each other, such as a metal salt and a reducing agent, it is preferable to separate and store these components. ) is supplied to the plating liquid 2 in the plating tank 1. Therefore, by pumping out the plating liquid 2 and replenishing the replenisher corresponding to the pumping out, accumulation of reaction products in the plating liquid 2 is prevented, and the amount of reaction products is controlled to be approximately constant. This prevents the plating speed from decreasing due to the accumulation of reaction products, and the plating solution 2 is constantly refreshed even after long-term continuous use, so the plating speed remains constant even after long-term use. The properties of the plating film (for example, the Ni-P alloy composition or the hardness of the plating film when hypophosphite is used as the reducing agent) are also kept substantially constant. To explain this point in more detail, if plating is carried out for a long time, reaction products (mainly considered to be decomposition products of the reducing agent and neutralized salts of the plating reaction) may be present in the plating solution 2. )
accumulates, and this reaction product affects the plating speed, etc., and as mentioned above, even if the consumable components due to plating are replenished, the plating speed decreases, and in some cases, the properties of the plating film change. However, according to studies by the present inventors, the accumulation of such reaction products, in other words, the aging of the solution, can be reliably detected by the change in the refractive index of the plating solution 2, and as described above, When the refractive index of the plating liquid 2 exceeds a predetermined refractive index setting value, a part of the plating liquid 2 is drained and replenishment is performed in response to the refractive index detector 4 (mainly replenishment of components lost due to pumping out). ), it is possible to maintain the amount of reaction products in the plating solution 2 almost constant and extend the life of the plating solution 2 almost semi-permanently, at least significantly compared to the conventional method. Moreover, the plating speed, the properties of the plating film, etc. could be maintained almost constant during such long-term continuous use.

また、上述しためつき方法によれば、めつき液2が簡単
かつ確実に自動制御、自動管理され、電気めつきに比較
して従来管理の面倒であつた無電解めつきが非常に容易
に管理され得る。
Furthermore, according to the above-mentioned plating method, the plating solution 2 is easily and reliably automatically controlled and managed, and electroless plating, which has traditionally been troublesome to manage, is now much easier than electrolytic plating. can be managed.

更にまた、上述したようにめつき液2の濃度が補給によ
り常時ほぼ一定値に保持されるので、めつきの進行によ
るニツケル濃度の減少に基づく析出速度の低下を補償す
るためめつき前のニツケル濃度を高くしておくような操
作は必要とせず、めつき液2のニツケル濃度を低くする
ことができると共に、めつき液の更新は前記汲み出し機
構20により自動的に少しづつ行なわれるため、廃水、
廃液処理の負担が激減する。なお、上記実施例において
はめつき液2中のニツケルイオン量の測定法として上述
したように直接めつき液の吸光度を測定する方法を採用
したが、これに限られることはなく、めつき液にEDT
A等の適当な試薬、試示薬を加えて所定の色に発色させ
、その発色の程度によりニツケルイオン量を測定する方
法も採用することができる。
Furthermore, as mentioned above, since the concentration of the plating solution 2 is always maintained at a nearly constant value by replenishment, the nickel concentration before plating is adjusted to compensate for the decrease in the precipitation rate due to the decrease in the nickel concentration due to the progress of plating. The nickel concentration of the plating solution 2 can be lowered without requiring any operations to keep the nickel concentration high, and since the plating solution is automatically renewed little by little by the pumping mechanism 20, wastewater,
The burden of waste liquid treatment is drastically reduced. In the above example, the method of directly measuring the absorbance of the plating solution was adopted as a method for measuring the amount of nickel ions in the plating solution 2, but the method is not limited to this. E.D.T.
It is also possible to adopt a method in which a suitable reagent or test agent such as A is added to develop a predetermined color, and the amount of nickel ions is measured based on the degree of color development.

しかしこの場合、濃度測定後のめつき液は、第2図に示
すようにバイパス管7からパイプ6に戻すことはできず
、廃棄のため別途に廃液処理設備に送ることが必要であ
る。なおまた、このようにめつき液の吸光度を測定する
以外に他の適宜な濃度検知法、例えば電位差測定法など
が採用可能である。しかしながら、上述しためつき液の
吸光度を直接測定する方法が装置が複雑化せず、かつ測
定しためつき液をめつき槽1内に戻すことができる等の
点から最も有利である。また、阻を測定することにより
めつき液の濃度を検知することも可能である。更に、上
述したニツケルイオン濃度の測定盲旧測定を組み合せ、
めつき液の…はこの州測定値により自動制御する等の方
法も採用できる。また、めつき液の屈折率を検知する方
法として、上記方法に限られず、例えば受光器で屈折光
の総体光量の変化を直接感知し、或いは臨界光線の動き
を光量の変化として直接感知し、それを電気出力とする
方法等が採用され得る。更に、上記実施例では濃度検知
、屈折率検知機構をバイパス管に組み入れたが、このよ
うなバイパス管を設けず、直接循環パイプに組入れるよ
うにしてもよく、また濃度検知を行なつた後、屈折率検
知を行なうようにしたが、勿論これに限られることはな
く、その順序を逆にし、或いはそれぞれ別個独立の回路
で検知するようにしてもよく、また上述したように検知
器をめつき槽外に設置し、これにめつき液を循環させる
ようにしたが、めつき槽内に濃度或いは屈折率検知機構
を設けることもできる。
However, in this case, the plating solution after concentration measurement cannot be returned to the pipe 6 from the bypass pipe 7 as shown in FIG. 2, and must be separately sent to a waste solution treatment facility for disposal. Furthermore, in addition to measuring the absorbance of the plating solution in this manner, other appropriate concentration detection methods, such as potentiometric measurement, can be employed. However, the above-mentioned method of directly measuring the absorbance of the plating solution is the most advantageous since the apparatus does not become complicated and the measured plating solution can be returned to the plating tank 1. It is also possible to detect the concentration of the plating solution by measuring the concentration. Furthermore, by combining the above-mentioned blind measurement of nickel ion concentration,
Methods such as automatic control of the plating liquid based on the measured values can also be adopted. Furthermore, the method for detecting the refractive index of the plating liquid is not limited to the above-mentioned method, for example, directly sensing a change in the total amount of refracted light with a light receiver, or directly sensing the movement of a critical ray as a change in the amount of light, A method of converting it into electrical output may be adopted. Furthermore, in the above embodiment, the concentration detection and refractive index detection mechanisms were incorporated into the bypass pipe, but such a bypass pipe may not be provided and they may be directly incorporated into the circulation pipe. Although the refractive index is detected in this embodiment, the present invention is not limited to this, and the order of the refractive index detection may be reversed, or the detection may be performed using separate circuits. Although the plating solution is installed outside the tank and the plating liquid is circulated therein, a concentration or refractive index detection mechanism can also be provided inside the plating tank.

なおまた、汲み出し機構として第1図に2点鎖線で示し
たようにオーバーフロー管27をめつき槽1に設け、屈
折率検知器4からの信号Bを補給機構23に伝えて汲み
出し薬品用補給剤をめつき槽1内のめつき液2に供給し
、補給剤の添加によるめつき液2の増量分を前記オーバ
ーフロー管27から排出することにより、めつき液2を
汲み出す等の構成とすることもできる。
Furthermore, as a pumping mechanism, an overflow pipe 27 is provided in the plating tank 1 as shown by the two-dot chain line in FIG. is supplied to the plating liquid 2 in the plating tank 1, and the increased amount of the plating liquid 2 due to the addition of the replenisher is discharged from the overflow pipe 27, thereby pumping out the plating liquid 2. You can also do that.

更に、上記実施例は無電解ニツケルめつきの制御につき
説明したが、無電解コバルトめつき、無電解コバルトー
ニツケル合金めつき等も同様に制御し得、その他の構成
についても本発明の要旨を逸脱しない範囲で種々変更し
て差支えない。以上説明したように、本発明によれば、
無電解めつき液の濃度を自動的に検知することにより、
めつきによる消耗量を検知し、それに応じてめつきによ
る消耗成分を自動的に補給すると共に、無電解めつき液
の屈折率を自動的に検知することにより、めつき液の老
化度を検知し、それに応じてめつき液の一部の汲み出し
とこの汲み出しによる消耗成分を自動的に補給すること
ができ、これにより液の更新が自動的に少量づつ行なわ
れるため液の建てかえの必要が殆んどなくなり、少なく
とも従来に比較にて液寿命を゛著しく伸ばすことができ
る。
Furthermore, although the above embodiment describes the control of electroless nickel plating, electroless cobalt plating, electroless cobalt-nickel alloy plating, etc. can be similarly controlled, and other configurations may depart from the gist of the present invention. You may make various changes as long as you do not. As explained above, according to the present invention,
By automatically detecting the concentration of electroless plating solution,
It detects the amount of consumption due to plating and automatically replenishes the consumable components due to plating accordingly. It also detects the degree of aging of the plating liquid by automatically detecting the refractive index of the electroless plating liquid. Accordingly, a portion of the plating solution can be pumped out and the consumable components caused by this pumping can be automatically replenished.As a result, the solution is automatically renewed in small amounts, so there is no need to replace the solution. The liquid life can be significantly extended, at least compared to conventional methods.

かつ、めつき液中の金属分、還元剤等がほぼ一定濃度で
保持される上、めつきによる反応生成物量が限度内に維
持されるため、析出速度や析出被膜の物性等がほぼ一定
化され、安定性の高い浴条件を長期維持することができ
ると共に、従来とほぼ同一析出速度を保持しつつ従来よ
りも低い金属濃度でめつき液を管理することもでき、廃
液、廃水処理の点からも有利である。以下実施を示す。
In addition, the metal content, reducing agent, etc. in the plating solution are maintained at a nearly constant concentration, and the amount of reaction products caused by plating is maintained within limits, so the deposition rate and physical properties of the deposited film are almost constant. This makes it possible to maintain highly stable bath conditions for a long period of time, and also to manage the plating solution at a lower metal concentration than before while maintaining almost the same deposition rate as before, which improves waste liquid and wastewater treatment. It is also advantageous. The implementation is shown below.

の無電解ニツケルめつき1001を90℃に加温し、第
1図〜第3図に示すような制御装置を使用し、自動的か
つ連続的にニツケルイオン濃度(670nmの光の透過
率を測定することにより行なつた)及び屈折率を測定し
つつめつきを行なつた。
Electroless nickel plated 1001 was heated to 90°C, and the nickel ion concentration (670 nm light transmittance) was automatically and continuously measured using a control device as shown in Figures 1 to 3. ) and the refractive index was measured.

この場合、ニッケルイオンの設定値を4g/lとし、め
つき液のニツケルイオン濃度がこれ以下になつた場合、
信号Aを発した消耗薬品用補給剤として下記組成の補給
液(1),(2),(3)をそれぞれ1回につき400
m1(Ni2+0.2gハ相当)添加した。 (なお、
これら補給液1,2,3はそれぞれ補給管、電磁バルブ
を備えた3個のタンクに収容し、信号Aが発せられた場
合、各電磁バルブが同時に所定時間開いて同量の補給液
をめつき槽内に同時に供給できるようにした。)また、
屈折率設定値を16.0Brix%とし、めつき液の屈
折率がこれ以上になつた場合、信号Bを発して1回当り
51のめつき液を汲み出した後、汲み出し消費薬品用補
給剤として下記組成の補給液451を添加するようにし
た(本発明法)。
In this case, the set value of nickel ions is 4 g/l, and if the nickel ion concentration of the plating solution falls below this value,
As a replenisher for the consumable chemicals that generated signal A, use 400 ml of each of replenishment liquids (1), (2), and (3) of the following composition each time.
ml (equivalent to Ni2 + 0.2 g) was added. (In addition,
These replenishment liquids 1, 2, and 3 are stored in three tanks each equipped with a replenishment pipe and an electromagnetic valve, and when signal A is issued, each electromagnetic valve opens simultaneously for a predetermined period of time, aiming to supply the same amount of replenishment liquid. It is now possible to simultaneously supply water into the tank. )Also,
The refractive index setting value is 16.0Brix%, and when the refractive index of the plating liquid exceeds this value, a signal B is generated and 51 pieces of plating liquid are pumped out at a time, and then used as a replenishment agent for pumped out consumable chemicals. A replenishment liquid 451 having the following composition was added (method of the present invention).

また、比較のため、屈折率測定を行なわず、従つて液の
汲み出し及び補給液(4)の補給を行なわない以外は上
記と同様にしてめつきを行なつた(ニツケルイオン濃度
のみを測定し、それに応じて補給液1,2,3のみを添
加した。
For comparison, plating was carried out in the same manner as above, except that the refractive index was not measured and therefore the liquid was not pumped out and the replenishing liquid (4) was not replenished (only the nickel ion concentration was measured). , only replenishers 1, 2, and 3 were added accordingly.

:比較法)。所定ターン数(なお、lターンとは、連続
的にめつきを行なつた場合、めつき液11に対してニツ
ケルイオンが4g消耗した場合をいう。)毎に析出速度
、Ni−P合金組成を調べ、第1表に示す結果を得た。
補給液 (1) なお、第4図に前記組成の無電解ニツケルめつき液のタ
ーン数と屈折率(Brix%)との関係を示す(測定温
度25℃)。
: comparative law). Deposition rate and Ni-P alloy composition are determined every predetermined number of turns (one turn means when 4g of nickel ions are consumed per plating solution 11 when plating is performed continuously). was investigated, and the results shown in Table 1 were obtained.
Replenishment Solution (1) In addition, FIG. 4 shows the relationship between the number of turns and the refractive index (Brix%) of the electroless nickel plating solution having the above composition (measurement temperature: 25° C.).

第4図の結果より、めつき液の屈折率は無電解ニツケル
めつきのターン数、即ちめつき液の老化度が増加すると
直線的に増加し、従つて屈折率の測定によりめつき液の
老化度を確実に検知し得ることが認められる。
From the results shown in Figure 4, the refractive index of the plating solution increases linearly as the number of turns in electroless nickel plating increases, that is, the degree of aging of the plating solution. It is recognized that the degree of oxidation can be detected reliably.

〔実施例 2〕 下記組成 の無電解コバルトメツキを90℃に加温し、第1図〜第
3図に示すような制御装置を使用し、自動的かつ連続的
にコバルトイオン濃度及び屈折率を測定しつつめつきを
行なつた。
[Example 2] Electroless cobalt plating with the following composition was heated to 90°C, and the cobalt ion concentration and refractive index were automatically and continuously controlled using a control device as shown in Figures 1 to 3. I took measurements and looked at them.

この場合、コバルトイオンの設定値を4g/lとし、め
つき液のコバルトイオン濃度がこれ以下になつた場合、
信号Aを発して消耗薬品用補給剤として下記組成の補給
液5,6,7をそれぞれ1回につき2m1ハ添加した。
(なお、これら補給液5,6,7はそれぞれ補給管、
電磁バルブを備えた3個のタンタに収容し、信号Aが発
せられた場合、各電磁バルブが同時に所定時間開いて同
量の補給液をめつき槽内に同時に供給できるようにした
。)また、屈折率設定値を11.5Brix%とし、め
つき液の屈折率がこれ以上になつた場合、信号Bを発し
て1回当り10〜50m1/lのめつき液を汲み出した
後、汲み出し消費薬品用補給剤として下記組成の補給液
8を汲み出し量と同量添加するようにした(本発明法)
。また比較のため、屈折率測定を行なわず、従つて液の
汲み出し及び補給液8の補給を行なわない以外は上記と
同様にしてめつきを行なつた(コバルトイオン濃度のみ
を測定し、それに応じて補給液5,6,7のみを添加し
た。
In this case, the set value of cobalt ions is 4 g/l, and if the cobalt ion concentration of the plating solution falls below this value,
Signal A was emitted, and 2 ml of replenishment liquids 5, 6, and 7 having the following compositions were added each time as replenishers for consumable chemicals.
(These replenishment liquids 5, 6, and 7 are respectively replenishment pipes,
It was housed in three tanks equipped with electromagnetic valves, and when signal A was issued, each electromagnetic valve opened at the same time for a predetermined time so that the same amount of replenishment liquid could be simultaneously supplied into the plating tank. ) Also, if the refractive index setting value is 11.5Brix% and the refractive index of the plating liquid exceeds this value, signal B is emitted and 10 to 50 m1/l of plating liquid is pumped out each time, and then, As a replenishment agent for pumped consumable medicines, replenishment liquid 8 having the following composition was added in an amount equal to the pumped amount (method of the present invention).
. For comparison, plating was carried out in the same manner as above, except that refractive index measurement was not performed and, therefore, the liquid was not pumped out and the replenishment liquid 8 was not replenished (only the cobalt ion concentration was measured, and the Only replenishment liquids 5, 6, and 7 were added.

:比較法)。所定ターン数(なお、1ターンとは、連続
的にめつきを行なつた場合、めつき液11に対してコバ
ルトイオンが4g消耗した場合をいう。)毎に析出速度
、CO−P合金組成を調べ、第2表に示す結果を得た。
: comparative law). Deposition rate and CO-P alloy composition are determined every predetermined number of turns (one turn means when 4g of cobalt ions are consumed per plating solution 11 when plating is performed continuously). was investigated, and the results shown in Table 2 were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すプロツタ図、第2図は
本発明の濃度検知器の一例を示すプロツク図、第3図は
本発明の屈折率検知器の一例を示すプロツク図、第4図
は無電解ニツケルめつきのターン数と屈折率の関係を示
すグラフである。 1・・・・・・めつき槽、2・・・・・・めつき液、3
・・・・・・濃度検知器、4・・・・・・屈折率検知器
、5・・・・・・ポンプ、6・・・・・・循環パイプ、
16・・・・・・消゛耗薬品用補給剤補給機構、20・
・・・・・汲み出し機構、23・・・・・・汲み出し消
費薬品用補給剤補給機構、A,B・・・・・・信号。
FIG. 1 is a plot diagram showing an example of the present invention, FIG. 2 is a plot diagram showing an example of the concentration detector of the present invention, and FIG. 3 is a plot diagram showing an example of the refractive index detector of the present invention. FIG. 4 is a graph showing the relationship between the number of turns of electroless nickel plating and the refractive index. 1...Plating tank, 2...Plating liquid, 3
...Concentration detector, 4...Refractive index detector, 5...Pump, 6...Circulation pipe,
16... Replenishment mechanism for consumable chemicals, 20.
...Pumping mechanism, 23...Pumping out replenishment mechanism for consumable chemicals, A, B...Signal.

Claims (1)

【特許請求の範囲】 1 無電解めつき液の濃度を連続的もしくは間欠的に測
定し、その測定値がめつきによる消耗により所定の濃度
設定値以下になつたことを検知した場合、めつきによる
消耗分に対応する補給剤を自動的に補給し、かつ前記め
つき液の屈折率を連続的もしくは間欠的に測定し、その
測定値が所定屈折率設定値以上になつたことを検知した
場合、前記めつき液の一部を自動的に汲み出すと共に、
その汲み出しにより失なわれる成分に対応する補給剤を
自動的に補給することを特徴とする無電解めつき制御方
法。 2 無電解めつき液が無電解ニッケルめつき液、無電解
コバルトめつき液、又は無電解ニッケル−コバルト合金
めつき液である特許請求の範囲第1項記載の方法。 3 無電解めつき液の濃度を自動的に測定しかつその測
定値が所定濃度設定値以下になつた場合に信号を発する
濃度検知器と、前記めつき液の屈折率を自動的に測定し
かつその測定値が所定屈折率設定値以上になつた場合に
信号を発する屈折率検知器と、前記濃度検知器からの信
号によりめつきによる消耗分に対応する補給剤を自動的
に補給する消耗薬品用補給剤補給機構と、及び前記屈折
率検知器からの信号により作動し、前記めつき液の一部
を自動的に汲み出すと共にこの汲み出しにより失なわれ
る成分に対応する補給剤を自動的に補給する汲み出し機
構及び汲み出し消費薬品用補給剤補給機構とを具備して
なることを特徴とする無電解めつき液制御装置。
[Claims] 1. If the concentration of the electroless plating solution is measured continuously or intermittently and it is detected that the measured value has fallen below a predetermined concentration setting value due to consumption due to plating, When the replenisher corresponding to the consumed amount is automatically replenished, and the refractive index of the plating liquid is measured continuously or intermittently, and it is detected that the measured value exceeds a predetermined refractive index setting value. , automatically pumping out a portion of the plating solution, and
An electroless plating control method characterized by automatically replenishing a replenisher corresponding to the component lost due to pumping. 2. The method according to claim 1, wherein the electroless plating solution is an electroless nickel plating solution, an electroless cobalt plating solution, or an electroless nickel-cobalt alloy plating solution. 3. A concentration detector that automatically measures the concentration of the electroless plating solution and issues a signal when the measured value falls below a predetermined concentration setting value, and a concentration detector that automatically measures the refractive index of the plating solution. and a refractive index detector that emits a signal when the measured value exceeds a predetermined refractive index setting value, and a consumable device that automatically replenishes a replenisher corresponding to the amount consumed by plating based on the signal from the concentration detector. A chemical replenishment replenishment mechanism is activated by a signal from the refractive index detector, and automatically pumps out a portion of the plating solution, and automatically supplies a replenishment agent corresponding to the components lost due to this pumping out. 1. An electroless plating liquid control device comprising: a pumping mechanism for replenishing the liquid, and a pumping mechanism for replenishing consumable chemicals.
JP16733479A 1979-11-14 1979-12-22 Electroless plating control method and device Expired JPS5952953B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP16733479A JPS5952953B2 (en) 1979-12-22 1979-12-22 Electroless plating control method and device
US06/204,046 US4353933A (en) 1979-11-14 1980-11-04 Method for controlling electroless plating bath
GB8036232A GB2064827B (en) 1979-11-14 1980-11-12 Method and apparatus for controlling electroless plating bath
FR8024166A FR2469466B1 (en) 1979-11-14 1980-11-13 METHOD AND APPARATUS FOR CONTROLLING BATHS USED FOR NON-ELECTROLYTIC COATINGS
DE19803043066 DE3043066A1 (en) 1979-11-14 1980-11-14 METHOD AND DEVICE FOR CONTROLLING A BATH FOR ELECTRIC PLATING
US06/352,549 US4406248A (en) 1979-11-14 1982-02-26 Apparatus for controlling electroless plating bath
US06/352,550 US4406249A (en) 1979-11-14 1982-02-26 Apparatus for controlling electroless plating bath
SG169/84A SG16984G (en) 1979-11-14 1984-02-25 Method and apparatus for controlling electroless plating bath
HK64/85A HK6485A (en) 1979-11-14 1985-01-24 Method and apparatus for controlling electroless plating bath
MY497/85A MY8500497A (en) 1979-11-14 1985-12-30 Method and apparatus for controlling electroless plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16733479A JPS5952953B2 (en) 1979-12-22 1979-12-22 Electroless plating control method and device

Publications (2)

Publication Number Publication Date
JPS5690968A JPS5690968A (en) 1981-07-23
JPS5952953B2 true JPS5952953B2 (en) 1984-12-22

Family

ID=15847801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16733479A Expired JPS5952953B2 (en) 1979-11-14 1979-12-22 Electroless plating control method and device

Country Status (1)

Country Link
JP (1) JPS5952953B2 (en)

Also Published As

Publication number Publication date
JPS5690968A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
JPS6016517B2 (en) Electroless plating control method
US4353933A (en) Method for controlling electroless plating bath
KR101248213B1 (en) Etchant managing device
JP2787142B2 (en) Electroless tin, lead or their alloy plating method
US5182131A (en) Plating solution automatic control
JP5695295B2 (en) Method and apparatus for coating a substrate surface
US7507587B2 (en) Automatic analysis and control system for electroless composite plating solution
EP0180713A1 (en) Apparatus and method for automatically maintaining an electroless plating bath
US4406249A (en) Apparatus for controlling electroless plating bath
JPS5952953B2 (en) Electroless plating control method and device
US3806393A (en) Apparatus for etching copper and copper alloys
JP2008235812A (en) Method of detecting abnormal supply of substrate processing apparatus, and the substrate processing apparatus using the same
JPS5952700B2 (en) Electroless plating control method and device
JPS5952952B2 (en) Electroless plating control method and device
JPS591679A (en) Controlling and administering method of etching solution
US4674440A (en) Apparatus for automatically replenishing an electroless plating bath
JP4654534B2 (en) Automatic analysis and management equipment for electroless composite nickel plating solution
US5200047A (en) Plating solution automatic control
KR20180087124A (en) Developing solution management apparatus
JP3550896B2 (en) Concentration control method of insoluble anode zinc electroplating solution
JPH0119070Y2 (en)
JPS6116440B2 (en)
EP0100203A1 (en) Apparatus and method for electroless plating
JP3099531B2 (en) Electroless copper plating bath automatic management system
JPH0247550B2 (en) MUDENKAIDOMETSUKIEKINOKANRIHOHO